JP2006052434A - Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method - Google Patents

Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method Download PDF

Info

Publication number
JP2006052434A
JP2006052434A JP2004233788A JP2004233788A JP2006052434A JP 2006052434 A JP2006052434 A JP 2006052434A JP 2004233788 A JP2004233788 A JP 2004233788A JP 2004233788 A JP2004233788 A JP 2004233788A JP 2006052434 A JP2006052434 A JP 2006052434A
Authority
JP
Japan
Prior art keywords
solution
caustic soda
electrolysis
exchange membrane
saline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004233788A
Other languages
Japanese (ja)
Inventor
Tomonori Izutsu
智典 井筒
Motomu Yoshino
求 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004233788A priority Critical patent/JP2006052434A/en
Publication of JP2006052434A publication Critical patent/JP2006052434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering the capability of a fluorine-containing cation-exchange membrane, and to provide a method for producing a raw caustic soda solution and chlorine using the fluorine-containing cation-exchange membrane treated by the method. <P>SOLUTION: The method for recovering the capability of the fluorine-containing cation-exchange membrane comprises the steps of: supplying an acidified salt solution having a pH of 1.5 to 3.5, to an anode chamber of a salt solution electrolytic cell which is partitioned by the fluorine-containing cation-exchange membrane; supplying a dilute caustic soda solution with a concentration of 20 to 30 wt.%, to a cathode chamber; and a step of holding the acidified salt solution and the dilute caustic soda solution in the electrolytic cell, in the state of having stopped energization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、食塩水電解槽の性能回復方法ならびに該方法により処理された含フッ素陽イオン交換膜を用いた生産苛性ソーダ溶液および塩素の製造方法に関する。   The present invention relates to a method for recovering the performance of a saline electrolyzer, a production caustic soda solution using a fluorine-containing cation exchange membrane treated by the method, and a method for producing chlorine.

含フッ素陽イオン交換膜を隔膜として有する電解槽を用いて、食塩水を電解して生産苛性ソーダ溶液と塩素を製造する方法は一般的に広く知られている。この食塩水電解において、長期間にわたって運転する場合や、食塩水中の不純物濃度が高い場合には、イオン交換膜内への不純物の沈着が起こり、電解電圧が上昇および/または電流効率が低下するなど、膜性能を低下させるという問題があった。この食塩水中の不純物とは、カルシウム、マグネシウム、ケイ素、ストロンチウムなど食塩水電解に使用される原料塩中に含まれ、膜性能に影響を与える物質をいい、これらの不純物が含フッ素陽イオン交換膜に極めて大きな影響を与えるため、従来行われていたアスベスト隔膜法や水銀法と比べてかなり厳密な塩水精製方法が必要とされていた。このような精製方法の一つとして、通常の食塩水精製工程にさらにキレート樹脂による精製を付加し、カルシウム、マグネシウムなどを除去する方法が知られている。しかし、キレート樹脂による精製を行っても、食塩水中の不純物を完全に除去することは難しく、食塩水中に10ppb程度の不純物が残存してしまう。このようなごく微量の不純物であっても、長期間にわたる運転においては徐々に膜内に沈着されて、膜性能を低下させるものであり、このような性能が低下した含フッ素陽イオン交換膜は、通常、新しい含フッ素陽イオン交換膜と取り替えられるものである。しかし、食塩水電解に用いる含フッ素陽イオン交換膜は相当高価であるため、経済性の点からも、膜性能が低下した膜の性能を回復させる技術が望まれている。   A method of producing a produced caustic soda solution and chlorine by electrolyzing saline using an electrolytic cell having a fluorine-containing cation exchange membrane as a diaphragm is generally widely known. In this salt water electrolysis, when operating for a long period of time or when the impurity concentration in the salt water is high, deposition of impurities occurs in the ion exchange membrane, and the electrolytic voltage increases and / or current efficiency decreases. There was a problem that the film performance was lowered. The impurities in the saline are substances that are included in the raw salt used for saline electrolysis, such as calcium, magnesium, silicon, and strontium, and affect the membrane performance. These impurities are fluorine-containing cation exchange membranes. Therefore, a much more rigorous salt water refining method is required as compared with the asbestos diaphragm method and the mercury method. As one of such purification methods, there is known a method in which purification by a chelate resin is further added to a normal saline purification step to remove calcium, magnesium and the like. However, even if purification with a chelate resin is performed, it is difficult to completely remove impurities in the saline solution, and impurities of about 10 ppb remain in the saline solution. Even such a very small amount of impurities is gradually deposited in the membrane over a long period of operation, and the membrane performance is lowered. The fluorine-containing cation exchange membrane having such a lowered performance is Usually, it can be replaced with a new fluorine-containing cation exchange membrane. However, since a fluorine-containing cation exchange membrane used for saline electrolysis is considerably expensive, a technique for recovering the performance of the membrane whose membrane performance has deteriorated is desired from the viewpoint of economy.

このような回復処理として、電解槽から膜を一旦取り外して処理をした場合には、処理後に電解槽に再装着させることが現実的には困難であり、膜が電解槽に取り付けられた状態のまま処理することが望まれている。また、電解槽に取り付けられた状態のまま処理した場合にも、処理液および処理温度条件により、膜を膨潤させたり、皺を発生させたり、あるいは膜が電極に接触し傷が発生するなどの問題があるため、膜にダメージを与えることなく処理することが望まれている。さらに、処理液によっては、通電したままで処理をした場合には、膜に水ブリスターが発生して電解電圧が上昇するおそれがあるため、通電を停止した状態で回復処理をすることが望まれている。   As such a recovery process, when the membrane is once removed from the electrolytic cell and processed, it is practically difficult to reattach the electrolytic cell after the treatment, and the membrane is attached to the electrolytic cell. It is desired to process as it is. In addition, even when the treatment is performed while attached to the electrolytic cell, depending on the treatment solution and treatment temperature conditions, the membrane may swell, wrinkles may occur, or the membrane may come into contact with the electrode and scratches may be generated. Because of the problems, it is desirable to process without damaging the film. Furthermore, depending on the treatment liquid, when the treatment is performed with current applied, water blisters may be generated on the membrane and the electrolysis voltage may increase. Therefore, it is desirable to perform a recovery treatment with the current supply stopped. ing.

このような回復処理方法としては、例えば、通電を停止した状態で、電解電圧の上昇、および電流効率が低下したパーフルオロカーボン系陽イオン交換膜を取付けている電解槽の陽極室にpH1以下の酸溶液を供給して、該イオン交換膜と該酸溶液を接触させることで膜性能を回復させる方法(例えば、特許文献1参照)が開示されている。しかし、該方法では、酸溶液のpHが極端に低いため、イオン交換膜の交換基がプロトン(H+)化されてイオン交換能力が失われてしまい、その結果、イオン交換膜の電気抵抗が上昇するという問題点や、一般的に電解槽の陽極室材料として使用されているチタンは、pH1以下では、腐食速度が速くなるため、陽極室材料にダメージを与える問題点がある。また、食塩水中に含まれるIおよび/またはBaにより、電流効率が低下した含フッ素イオン交換膜を有する電解槽を解体することなく、通電を中断し陰極室へ温水を供給し保持することで、電流効率を回復させる方法(例えば、特許文献2参照)が開示されている。しかし、該方法では、膜が膨潤し皺が発生する、あるいは電極に接触することによって傷が発生し電気抵抗が上昇するため、電解電圧を低下することができないなどの問題点がある。 As such a recovery treatment method, for example, an acid having a pH of 1 or less is installed in an anode chamber of an electrolytic cell in which a perfluorocarbon-based cation exchange membrane with an increased electrolysis voltage and a reduced current efficiency is attached in a state where energization is stopped. A method of restoring membrane performance by supplying a solution and bringing the ion exchange membrane into contact with the acid solution is disclosed (for example, see Patent Document 1). However, in this method, since the pH of the acid solution is extremely low, the exchange group of the ion exchange membrane is protonated (H + ) and the ion exchange capability is lost. As a result, the electric resistance of the ion exchange membrane is reduced. Titanium that is generally used as an anode chamber material of an electrolytic cell has a problem of damaging the anode chamber material because the corrosion rate increases at pH 1 or lower. In addition, by disassembling the electrolytic cell having a fluorine-containing ion exchange membrane with reduced current efficiency due to I and / or Ba contained in the saline solution, the energization is interrupted and hot water is supplied to the cathode chamber and held. A method for restoring current efficiency (for example, see Patent Document 2) is disclosed. However, this method has a problem that the membrane is swollen and wrinkles are generated, or scratches are generated by contact with the electrode and the electric resistance is increased, so that the electrolysis voltage cannot be lowered.

このように、含フッ素陽イオン交換膜に沈着した不純物を、通電を停止した状態で電解槽から該イオン交換膜を取り外すことなく効率的に除去し、また膜および電解槽材料に劣化を与えることなく、電解電圧および電流効率を回復させる方法はいまだ存在しないのが現状である。   In this way, impurities deposited on the fluorine-containing cation exchange membrane can be efficiently removed without removing the ion exchange membrane from the electrolytic cell in a state where current is stopped, and the membrane and the electrolytic cell material are deteriorated. However, there is currently no method for recovering electrolysis voltage and current efficiency.

特開昭53−37598号公報JP 53-37598 A 特開2000−1794号公報JP 2000-1794 A

本発明は、含フッ素陽イオン交換膜の性能回復方法を提供する。また、該方法により処理された含フッ素陽イオン交換膜を用いた生産苛性ソーダ溶液および塩素の製造方法を提供する。   The present invention provides a method for recovering the performance of a fluorine-containing cation exchange membrane. Also provided are a production caustic soda solution and a chlorine production method using a fluorine-containing cation exchange membrane treated by the method.

すなわち、本発明は、含フッ素陽イオン交換膜で区画した食塩水電解槽の陽極室にpHが1.5〜3.5の酸性食塩水を供給する工程、陰極室に苛性ソーダ濃度20〜30重量%の希釈苛性ソーダ溶液を供給する工程、および通電を停止した状態で、該酸性食塩水、希釈苛性ソーダ溶液を該電解槽に保持する工程を含む含フッ素陽イオン交換膜の性能回復方法に関する。   That is, the present invention provides a step of supplying acidic saline having a pH of 1.5 to 3.5 to the anode chamber of a saline electrolysis cell partitioned by a fluorine-containing cation exchange membrane, and a caustic soda concentration of 20 to 30 wt. The present invention relates to a method for recovering the performance of a fluorine-containing cation exchange membrane, comprising a step of supplying a diluted caustic soda solution of 25% and a step of holding the acidic saline solution and the diluted caustic soda solution in the electrolytic cell in a state where current supply is stopped.

陽極室に供給する酸性食塩水の食塩濃度が150〜300g/Lであることが好ましい。   It is preferable that the salt concentration of the acidic saline supplied to the anode chamber is 150 to 300 g / L.

陽陰極室内の温度が60〜80℃であることが好ましい。   It is preferable that the temperature in the anode chamber is 60 to 80 ° C.

また、本発明は、前記性能回復方法により処理された含フッ素陽イオン交換膜を有する電解槽の陽極室に食塩水を供給する工程、および該食塩水を電解する工程を含む生産苛性ソーダ溶液の製造方法に関する。   Further, the present invention provides a production caustic soda solution comprising a step of supplying saline to an anode chamber of an electrolytic cell having a fluorine-containing cation exchange membrane treated by the performance recovery method, and a step of electrolyzing the saline Regarding the method.

さらに、本発明は、前記性能回復方法により処理された含フッ素陽イオン交換膜を有する電解槽の陽極室に食塩水を供給する工程、および該食塩水を電解する工程を含む塩素の製造方法に関する。   Furthermore, this invention relates to the manufacturing method of chlorine including the process of supplying salt solution to the anode chamber of the electrolytic cell which has the fluorine-containing cation exchange membrane processed by the said performance recovery method, and the process of electrolyzing this salt solution .

本発明の性能回復方法は、陽極室にpHが1.5〜3.5の酸性食塩水を供給し、陰極室に苛性ソーダ濃度20〜30重量%の希釈苛性ソーダ溶液を供給し、通電を停止した状態で、該酸性食塩水、希釈苛性ソーダ溶液を該電解槽に保持することで、性能が低下した該イオン交換膜の電解電圧および電流効率などの性能を回復させることができる。   In the performance recovery method of the present invention, acidic saline having a pH of 1.5 to 3.5 was supplied to the anode chamber, a diluted caustic soda solution having a caustic soda concentration of 20 to 30% by weight was supplied to the cathode chamber, and energization was stopped. By holding the acidic saline solution and diluted caustic soda solution in the electrolytic cell in a state, it is possible to recover performances such as electrolysis voltage and current efficiency of the ion exchange membrane whose performance has been lowered.

本発明は、含フッ素陽イオン交換膜で区画した食塩水電解槽の陽極室にpHが1.5〜3.5の酸性食塩水を供給する工程、陰極室に苛性ソーダ濃度20〜30重量%の希釈苛性ソーダ溶液を供給する工程、および通電を停止した状態で、該酸性食塩水、希釈苛性ソーダ溶液を該電解槽に保持する工程を含む含フッ素陽イオン交換膜の性能回復方法に関する。   The present invention includes a step of supplying acidic saline having a pH of 1.5 to 3.5 to an anode chamber of a saline electrolysis cell partitioned by a fluorine-containing cation exchange membrane, and a caustic soda concentration of 20 to 30% by weight to the cathode chamber. The present invention relates to a method for recovering the performance of a fluorine-containing cation exchange membrane, comprising a step of supplying a diluted caustic soda solution, and a step of holding the acidic saline solution and the diluted caustic soda solution in the electrolytic cell in a state where energization is stopped.

本発明の性能回復方法は、食塩水電解においてイオン交換膜内に沈着した不純物を除去することができるものである。食塩水電解で用いられる食塩水には、原料塩中に含まれる、カルシウム、マグネシウム、ケイ素、ストロンチウムなどが不純物として存在するが、このような不純物は、食塩水電解の際に、ナトリウムイオンとともに、イオン交換膜を通過して移動し、それらの飽和溶解度に達すると、Ca(OH)2、Mg(OH)2、SiO2、Sr(OH)・8H2Oなどとして、イオン交換膜表面および内部に付着し、膜抵抗を増加させるものである。 The performance recovery method of the present invention can remove impurities deposited in an ion exchange membrane in saline electrolysis. In the saline used in the saline electrolysis, calcium, magnesium, silicon, strontium and the like contained in the raw material salt are present as impurities, but such impurities, together with sodium ions during the saline electrolysis, When they move through the ion exchange membranes and reach their saturation solubility, they are converted into Ca (OH) 2 , Mg (OH) 2 , SiO 2 , Sr (OH) · 8H 2 O, etc. This increases the film resistance.

また、電解槽の抵抗成分としては、膜抵抗、電極抵抗、液抵抗、気泡抵抗などがあり、これらの抵抗値が大きくなると、一定の電流を流した場合の電解電圧の値は大きくなり、電力値(電流値と電圧値の積)が大きくなる。その結果、電力原単位(1トンの苛性ソーダを製造するのに必要な電力値)も大きくなり、結果、製品コストが高くなるものである。したがって、前記したように、イオン交換膜表面および内部に不純物が付着すると、膜抵抗が大きくなり、製品コストも高くなるものである。しかし、本発明の性能回復方法によると、膜に付着した不純物を除去して膜抵抗を低下させ、電解電圧を低下させることができ、その結果、電力原単位も小さくなり製品コストが下がるものである。さらに、膜抵抗が小さくなることで、電解電力量が電解反応に有効に利用されるようになり、電流効率を回復することができるものである。   In addition, the resistance component of the electrolytic cell includes membrane resistance, electrode resistance, liquid resistance, bubble resistance, etc. When these resistance values increase, the value of the electrolysis voltage when a constant current is passed increases, The value (product of current value and voltage value) increases. As a result, the power consumption (the power value necessary to produce 1 ton of caustic soda) increases, resulting in an increase in product cost. Therefore, as described above, if impurities adhere to the surface and the inside of the ion exchange membrane, the membrane resistance increases and the product cost also increases. However, according to the performance recovery method of the present invention, the impurities attached to the film can be removed to reduce the film resistance and the electrolysis voltage. As a result, the power unit is reduced and the product cost is reduced. is there. Furthermore, since the membrane resistance is reduced, the amount of electrolysis power can be effectively used for the electrolysis reaction, and the current efficiency can be recovered.

本発明で使用する含フッ素陽イオン交換膜は、一般的に食塩水電解に使用されているものであれば特に限定されるものではなく、イオン交換膜のポリマー構造および膜厚に関しても、本発明の目的が達成できるものであれば、特に制限されるものではない。イオン交換膜としては、例えば、補強材、高含水率層、低含水率層から構成されるイオン交換膜であるものがあげられる。補強材としては、PTFE繊維などがあげられ、高含水率層、低含水率層は、スルホン酸基やカルボン酸基を有するフッ素系ポリマーからなるものがあげられ、高含水率層が、スルホン酸基を有するフッ素系ポリマーからなり、低含水率層が、カルボン酸基を有するフッ素系ポリマーからなることが好ましい。スルホン酸基を有するフッ素系ポリマーおよびカルボン酸基を有するフッ素系ポリマーとしては、例えば、一般式(1)および一般式(2):   The fluorine-containing cation exchange membrane used in the present invention is not particularly limited as long as it is generally used for saline electrolysis, and the polymer structure and film thickness of the ion exchange membrane are not limited. There is no particular limitation as long as the object can be achieved. As an ion exchange membrane, what is an ion exchange membrane comprised from a reinforcing material, a high moisture content layer, and a low moisture content layer is mention | raise | lifted, for example. Examples of the reinforcing material include PTFE fibers, and the high water content layer and the low water content layer include those made of a fluorine-based polymer having a sulfonic acid group or a carboxylic acid group. The high water content layer is a sulfonic acid layer. It is preferably made of a fluorine-based polymer having a group, and the low water content layer is preferably made of a fluorine-based polymer having a carboxylic acid group. Examples of the fluorine-based polymer having a sulfonic acid group and the fluorine-based polymer having a carboxylic acid group include, for example, general formula (1) and general formula (2):

Figure 2006052434
Figure 2006052434

(式中、Xはフッ素原子または−CF3であり、Yは、 (In the formula, X is a fluorine atom or —CF 3 , and Y is

Figure 2006052434
Figure 2006052434

であり、Aは−SO3M、−COOMであり、Mはアルカリ金属であり、mは0〜2の整数、nは1〜4の整数である)
で示される繰り返し単位を有するポリマーなどをあげることができる。アルカリ金属としては、ナトリウム(Na)、カリウム(K)などをあげることができる。
A is —SO 3 M, —COOM, M is an alkali metal, m is an integer of 0-2, and n is an integer of 1-4)
Examples thereof include a polymer having a repeating unit represented by: Examples of the alkali metal include sodium (Na) and potassium (K).

また、含フッ素陽イオン交換膜全体の膜厚としては、50〜500μmであることが好ましく、100〜300μmであることがより好ましい。さらに、膜表面に気泡が付着することにより電気抵抗が増大することを防止するために、陽極および陰極表面にガス付着防止層を設けても良い。また、市販の含フッ素陽イオン交換膜としては、Nafion(R)(ナフィオン(R) デュポン株式会社製)、Flemion(R)(フレミオン(R) 旭硝子株式会社製)、Aciplex(R)(アシプレックス(R) 旭化成ケミカルズ株式会社製)などをあげることができる。 Moreover, as a film thickness of the whole fluorine-containing cation exchange membrane, it is preferable that it is 50-500 micrometers, and it is more preferable that it is 100-300 micrometers. Furthermore, a gas adhesion preventing layer may be provided on the anode and cathode surfaces in order to prevent electrical resistance from increasing due to bubbles adhering to the film surface. As the commercially available fluorine-containing cation exchange membrane, Nafion (R) (Nafion (R) manufactured by DuPont), Flemion (R) (Flemion (R) manufactured by Asahi Glass Co., Ltd.), Aciplex (R) (Aciplex (R) Asahi Kasei Chemicals Corporation).

本発明の性能回復方法で使用する酸性食塩水とは、酸を添加して酸性化したものをいう。   The acidic saline solution used in the performance recovery method of the present invention is acidified by adding an acid.

酸性化するための酸溶液としては、塩酸、硫酸などの鉱酸、酢酸などの有機酸などがあげられるが、これらの中でも膜内に残存していても再度電解させる際に、ClO-を分解してCl2に転化されて含フッ素陽イオン交換膜の性能(以下、膜性能という)を低下させない点から、塩酸が好ましい。さらに、硫酸などの鉱酸や酢酸などの有機酸などの他の酸溶液と比べて、イオン交換膜中に存在するアルカリ金属と反応して析出物を析出しにくい点からも、塩酸が好ましい。 The acid solution for acidification, hydrochloric, mineral acids such as sulfuric acid, in the like organic acids such as acetic acid, which also is again electrolyzed remained in the membrane Among these, ClO - decomposition Then, hydrochloric acid is preferable because it is not converted into Cl 2 and does not deteriorate the performance of the fluorinated cation exchange membrane (hereinafter referred to as membrane performance). Furthermore, hydrochloric acid is preferred because it is less likely to react with an alkali metal present in the ion-exchange membrane to precipitate precipitates than other acid solutions such as mineral acids such as sulfuric acid and organic acids such as acetic acid.

酸性食塩水のpHは、pH1.5〜3.5であり、好ましくは1.5〜2.5、より好ましくは1.7〜2.0である。pHが1.5〜3.5であることにより、イオン交換膜中のイオン交換基のプロトン化を抑制できるため、イオン交換基のイオン交換能力を保持することができ、その結果膜の電気抵抗が上昇することを抑制することができる。さらに、膜内に沈着するカルシウムおよび/またはその他の不純物を充分に溶解することができるため、充分な性能回復効果が得られる。   The pH of the acidic saline is 1.5 to 3.5, preferably 1.5 to 2.5, and more preferably 1.7 to 2.0. When the pH is 1.5 to 3.5, protonation of the ion exchange groups in the ion exchange membrane can be suppressed, so that the ion exchange ability of the ion exchange groups can be maintained, and as a result, the electrical resistance of the membrane Can be prevented from rising. Furthermore, since calcium and / or other impurities deposited in the film can be sufficiently dissolved, a sufficient performance recovery effect can be obtained.

また、酸性食塩水としては、不純物の含有量が少ないものが好ましい。不純物の含有量は、一般的に食塩水電解に使用されるものと比べて同等程度、またはそれ以下であることが好ましく、具体的には、酸性食塩水中の不純物であるカルシウムおよびマグネシウムの合計の濃度が20ppb以下であることが好ましく、10ppb以下であることがより好ましい。カルシウムとマグネシウムの合計の濃度が20ppb以下であることにより、電解電圧の上昇および/または電流効率の低下を抑制することができる。   Moreover, as acidic salt solution, what has little content of an impurity is preferable. The content of impurities is preferably comparable or less than that generally used for saline electrolysis, specifically, the total of impurities calcium and magnesium in acidic saline. The concentration is preferably 20 ppb or less, and more preferably 10 ppb or less. When the total concentration of calcium and magnesium is 20 ppb or less, an increase in electrolytic voltage and / or a decrease in current efficiency can be suppressed.

また不純物としては、前記したようなカルシウム、マグネシウム以外にも、ケイ素、ストロンチウムなどが酸性食塩水に使用される原料塩中に含まれて、膜性能に影響を与える物質も含まれるが、これらの不純物の含有量についても膜性能に影響を与えない程度に少ないことが好ましい。   Further, as impurities, in addition to calcium and magnesium as described above, silicon, strontium and the like are included in the raw salt used for acidic saline, and substances that affect membrane performance are also included. It is preferable that the content of impurities is also small so as not to affect the film performance.

酸性食塩水の製造方法は特に限定されず、例えば一般的に食塩水電解に使用される食塩水に酸を添加して酸性食塩水を作製することができる。   The production method of the acidic saline solution is not particularly limited. For example, an acid saline solution can be prepared by adding an acid to a saline solution generally used for saline electrolysis.

酸性食塩水の食塩濃度は、150〜300g/Lにすることが好ましく、より好ましくは150〜250g/L、さらに好ましくは190〜230g/Lである。濃度が150〜300g/Lであることにより、イオン交換膜が膨潤することを抑制できるため、膜が電極に接触して膜に傷が発生する、または膜に皺が発生することを防止できる。さらに、イオン交換膜が収縮することも抑制できるため、膜内に沈着した不純物と酸性食塩水を充分に接触させることができ、その結果充分な性能回復効果が得られる。   The salt concentration of the acidic saline is preferably 150 to 300 g / L, more preferably 150 to 250 g / L, and still more preferably 190 to 230 g / L. When the concentration is 150 to 300 g / L, it is possible to suppress swelling of the ion exchange membrane. Therefore, it is possible to prevent the membrane from coming into contact with the electrode and causing scratches on the membrane or wrinkles on the membrane. Further, since the ion exchange membrane can be prevented from shrinking, the impurities deposited in the membrane can be sufficiently brought into contact with the acidic saline solution, and as a result, a sufficient performance recovery effect can be obtained.

本発明の性能回復方法で使用する希釈苛性ソーダ溶液は、希釈苛性ソーダ溶液中の不純物含有量が少ないものであることが好ましい。不純物の含有量は、一般的に食塩水電解に使用されるものと比べて同等程度、またはそれ以下であることが好ましく、具体的には、希釈苛性ソーダ溶液中の不純物であるカルシウムおよびマグネシウムの合計の濃度が20ppb以下であることが好ましく、10ppb以下であることがより好ましい。カルシウムとマグネシウムの合計の濃度が20ppb以下であることにより、電解電圧の上昇および/または電流効率の低下を抑制できるものである。さらに、希釈苛性ソーダ溶液中の不純物である鉄は、陰極に大きな影響を与えるものであり、鉄の含有量が高くなると電極に付着して電極過電圧に影響をおよぼす。具体的には、0.1ppm以下であることが好ましく、0.05ppm以下であることがより好ましい。鉄の濃度が0.1ppm以下であることにより、電極の過電圧が上昇することを抑制できるため、電解電圧が上昇することを防止できる。   The diluted caustic soda solution used in the performance recovery method of the present invention preferably has a small impurity content in the diluted caustic soda solution. The content of impurities is preferably comparable or less than that generally used for saline electrolysis, specifically, the total of calcium and magnesium as impurities in dilute caustic soda solution The concentration of is preferably 20 ppb or less, and more preferably 10 ppb or less. When the total concentration of calcium and magnesium is 20 ppb or less, an increase in electrolytic voltage and / or a decrease in current efficiency can be suppressed. Furthermore, iron, which is an impurity in the diluted caustic soda solution, has a great influence on the cathode. When the iron content increases, it adheres to the electrode and affects the electrode overvoltage. Specifically, it is preferably 0.1 ppm or less, and more preferably 0.05 ppm or less. When the iron concentration is 0.1 ppm or less, it is possible to suppress an increase in the overvoltage of the electrode, and thus it is possible to prevent the electrolytic voltage from increasing.

ここで不純物とは、前記カルシウム、マグネシウム、鉄以外にもケイ素、硫黄があげられるが、これらの含有量についても膜性能に影響を与えない程度に少ないことが好ましい。   Here, the impurities include silicon and sulfur in addition to the calcium, magnesium and iron, but the content of these is preferably small enough not to affect the film performance.

本発明の性能回復方法で使用する希釈苛性ソーダ溶液の製造方法は特に限定されず、例えば、一般的に食塩水電解によって製造される生産苛性ソーダ溶液を希釈したものを使用することができる。   The manufacturing method of the diluted caustic soda solution used in the performance recovery method of the present invention is not particularly limited, and for example, a product obtained by diluting a production caustic soda solution generally manufactured by brine electrolysis can be used.

ここで、生産苛性ソーダ溶液とは、電解により陰極室に生成した、苛性ソーダ濃度31〜35重量%の苛性ソーダ溶液であり、該生産苛性ソーダ溶液と、電解槽に供給する苛性ソーダ溶液または純水を混合して、希釈苛性ソーダ溶液を作製してもよい。   Here, the produced caustic soda solution is a caustic soda solution having a caustic soda concentration of 31 to 35% by weight generated in the cathode chamber by electrolysis. The produced caustic soda solution is mixed with the caustic soda solution or pure water supplied to the electrolytic cell. A diluted caustic soda solution may be prepared.

本発明の性能回復方法で使用する希釈苛性ソーダ溶液の苛性ソーダ濃度は、濃度を20〜30重量%にすることが好ましく、より好ましくは20〜25重量%、より好ましくは20〜23重量%である。苛性ソーダ濃度が20〜30重量%であることにより、イオン交換膜が膨張することを抑制できるため、膜が電極に接触して膜に傷が発生する、または膜に皺が発生することを抑制できる。また、イオン交換膜の膨張を抑制することで、陽極室への希釈苛性ソーダ溶液の浸透量も抑制できるため、陽極室の酸性食塩水のpHを低く維持して不純物を充分に溶解することができ、充分な性能回復が得られる。さらに、イオン交換膜の収縮も抑制できるため、イオン交換膜中のスルホン酸基を有するポリマーからなる層からの水の移行量およびカルボン酸基を有するポリマーからなる層の水の移行量が減少することがなく、その結果充分な性能回復が得られる。   The caustic soda concentration of the diluted caustic soda solution used in the performance recovery method of the present invention is preferably 20 to 30% by weight, more preferably 20 to 25% by weight, and more preferably 20 to 23% by weight. When the caustic soda concentration is 20 to 30% by weight, it is possible to suppress the ion exchange membrane from expanding, and thus it is possible to suppress the membrane from coming into contact with the electrode and causing damage to the membrane, or the membrane from being wrinkled. . In addition, by suppressing the expansion of the ion exchange membrane, the amount of the diluted caustic soda solution penetrating into the anode chamber can be suppressed, so that the pH of the acidic saline solution in the anode chamber can be kept low and the impurities can be sufficiently dissolved. Sufficient performance recovery can be obtained. Furthermore, since the shrinkage of the ion exchange membrane can also be suppressed, the amount of water transferred from the polymer layer having a sulfonic acid group and the amount of water transferred from the polymer layer having a carboxylic acid group in the ion exchange membrane are reduced. As a result, a sufficient performance recovery can be obtained.

本願発明の性能回復方法は、陽極室の酸性食塩水のpH、食塩濃度および陰極室の希釈苛性ソーダ溶液の苛性ソーダ濃度に特徴を有するものである。   The performance recovery method of the present invention is characterized by the pH of the acidic saline solution in the anode chamber, the salt concentration, and the caustic soda concentration of the diluted caustic soda solution in the cathode chamber.

陽極室の酸性食塩水のpHは、1.5〜3.5の範囲にあることを特徴とする。また、陰極室の希釈苛性ソーダ溶液のpHは、20〜30重量%の苛性ソーダ濃度に対応するpHの範囲である。両極室のpHがこのような範囲にあることによって、イオン交換膜に沈着している不純物をより溶出させやすい環境を作ることができる。   The pH of the acidic saline solution in the anode chamber is in the range of 1.5 to 3.5. The pH of the diluted caustic soda solution in the cathode chamber is in the pH range corresponding to a caustic soda concentration of 20 to 30% by weight. When the pH of the bipolar chamber is in such a range, an environment in which impurities deposited on the ion exchange membrane can be more easily eluted can be created.

陽極室の酸性食塩水の食塩濃度が低い場合、あるいは陰極室の希釈苛性ソーダ溶液の苛性ソーダ濃度が低い場合には、イオン交換膜を緩める作用を示し、酸性食塩水、希釈苛性ソーダ溶液、溶出した不純物をより自由に流動させることができるため、不純物の溶出による性能回復を促進することができるため好ましい。   When the salt concentration of the acidic saline solution in the anode chamber is low or the sodium hydroxide concentration of the diluted caustic soda solution in the cathode chamber is low, it acts to loosen the ion exchange membrane, and the acidic saline solution, diluted caustic soda solution, and eluted impurities are removed. Since it can be made to flow more freely, performance recovery by elution of impurities can be promoted, which is preferable.

また、本発明の性能回復方法について、図1を用いて説明する。本発明の性能回復方法は、通電を停止後、含フッ素陽イオン交換膜5で、陽極3を有する陽極室2と陰極8を有する陰極室7とに区画された電解槽10の陽極室2に前記酸性食塩水1を供給し、陰極室に前記希釈苛性ソーダ溶液6を供給し、その後、通電を停止した状態で、該酸性食塩水1、希釈苛性ソーダ溶液6を該電解槽10に保持し、処理終了後、陽極室2からは、酸性食塩水と溶出不純物4を、陰極室7からはNaClを含む希釈苛性ソーダ溶液9を排出する。   The performance recovery method of the present invention will be described with reference to FIG. In the performance recovery method of the present invention, after the energization is stopped, the anode chamber 2 of the electrolytic cell 10 is divided into the anode chamber 2 having the anode 3 and the cathode chamber 7 having the cathode 8 by the fluorine-containing cation exchange membrane 5. The acidic saline solution 1 is supplied, the diluted caustic soda solution 6 is supplied to the cathode chamber, and then the acidic saline solution 1 and the diluted caustic soda solution 6 are held in the electrolytic cell 10 in a state where power supply is stopped. After the completion, the acidic chamber and the eluted impurities 4 are discharged from the anode chamber 2, and the diluted caustic soda solution 9 containing NaCl is discharged from the cathode chamber 7.

本発明の性能回復方法において、陽極室および陰極室に処理溶液を供給する方法は、特に限定されず連続的および断続的に供給してもよい。好ましくは、陽極室および陰極室において、食塩電解の際に供給されていた溶液と完全に入替るように供給する。さらに好ましくは、溶液が完全に入替った後、陰極室への希釈苛性ソーダ溶液の供給を停止し、陽極室への酸性食塩水の供給を続ける。希釈苛性ソーダ溶液の供給を停止することで、陰極室から陽極室に浸透する希釈苛性ソーダ溶液の浸透量を減少させ、陽極室のpH上昇を防ぐことができる。また、陽極室に酸性食塩水を供給し続けることで、陰極室から浸透してきた希釈苛性ソーダ溶液によるpH上昇を防ぐことができ、陽極室内のpHを低いまま維持でき、膜内の不純物を溶出しやすくできる。   In the performance recovery method of the present invention, the method for supplying the treatment solution to the anode chamber and the cathode chamber is not particularly limited, and may be supplied continuously and intermittently. Preferably, the anode chamber and the cathode chamber are supplied so as to completely replace the solution supplied during the salt electrolysis. More preferably, after the solution is completely replaced, the supply of the diluted caustic soda solution to the cathode chamber is stopped and the supply of the acidic saline solution to the anode chamber is continued. By stopping the supply of the diluted caustic soda solution, the permeation amount of the diluted caustic soda solution penetrating from the cathode chamber to the anode chamber can be reduced, and the pH increase of the anode chamber can be prevented. In addition, by continuing to supply acidic saline to the anode chamber, it is possible to prevent a pH increase due to the diluted caustic soda solution that has permeated from the cathode chamber, to maintain the pH in the anode chamber low, and to elute impurities in the membrane. Easy to do.

性能回復の処理における電解槽の温度は、60〜80℃であることが好ましく、より好ましくは60〜70℃、さらに好ましくは60〜65℃である。温度が60〜80℃であることで、イオン交換膜の収縮を抑制できるため、スルホン酸基を有するポリマーからなる層からの水の移行量およびカルボン酸基を有するポリマーからなる層の水の移行量が減少することがなく、その結果充分な性能回復が得られる。さらに、イオン交換膜の膨潤も抑制できるため、陽極室への希釈苛性ソーダ溶液の浸透量を抑制でき、陽極室の酸性食塩水のpHを低く維持して不純物を溶解し、充分な性能回復効果が得られる。   The temperature of the electrolytic cell in the performance recovery treatment is preferably 60 to 80 ° C, more preferably 60 to 70 ° C, and still more preferably 60 to 65 ° C. Since the shrinkage of the ion exchange membrane can be suppressed when the temperature is 60 to 80 ° C., the amount of water transferred from the layer comprising a polymer having a sulfonic acid group and the water migration of a layer comprising a polymer having a carboxylic acid group The amount does not decrease and as a result a sufficient performance recovery is obtained. Furthermore, since the swelling of the ion exchange membrane can also be suppressed, the amount of the diluted caustic soda solution penetrating into the anode chamber can be suppressed, the pH of the acidic saline solution in the anode chamber can be kept low to dissolve impurities, and a sufficient performance recovery effect can be obtained. can get.

性能回復の処理に必要な時間は、1時間以上が好ましく、より好ましくは1〜16時間、さらに好ましくは1〜8時間である。   The time required for the performance recovery treatment is preferably 1 hour or more, more preferably 1 to 16 hours, and further preferably 1 to 8 hours.

また、本発明の性能回復方法においては、通電を停止した状態で溶液を保持するものである。通電したままで処理をした場合には、膜に水ブリスターが発生して電解電圧が上昇するおそれがあるため好ましくない。ただし、上述のような影響を発生させない程度に、電解槽の防食およびその他の保守用微小電流を流すことは妨げないものである。   Moreover, in the performance recovery method of this invention, a solution is hold | maintained in the state which stopped electricity supply. If the treatment is performed while the current is applied, water blisters are generated in the membrane and the electrolysis voltage may increase, which is not preferable. However, it is not impeded that anticorrosion of the electrolytic cell and other maintenance minute currents flow to such an extent that the above-described effects are not generated.

本発明の性能回復方法は、長期にわたる使用により不純物が蓄積したイオン交換膜の性能を回復するものであるが、食塩水中の不純物の増加により、大きく電解電圧が上昇および/または電流効率が低下したイオン交換膜に実施することも可能である。また、イオン交換膜を取り替えるまでに本発明の性能回復方法を実施する回数は制限されるものではなく、何回でも実施することができる。   The performance recovery method of the present invention recovers the performance of an ion exchange membrane in which impurities accumulate due to long-term use. However, due to the increase of impurities in saline, the electrolysis voltage is greatly increased and / or the current efficiency is decreased. It is also possible to implement on an ion exchange membrane. In addition, the number of times of performing the performance recovery method of the present invention before replacing the ion exchange membrane is not limited, and can be performed any number of times.

また、本発明は、前記性能回復方法により処理された含フッ素陽イオン交換膜を有する電解槽の陽極室に食塩水を供給する工程、および該食塩水を電解する工程を含む生産苛性ソーダ溶液の製造方法、および同工程を含む塩素の製造方法に関する。   Further, the present invention provides a production caustic soda solution comprising a step of supplying saline to an anode chamber of an electrolytic cell having a fluorine-containing cation exchange membrane treated by the performance recovery method, and a step of electrolyzing the saline The present invention relates to a method and a method for producing chlorine including the same steps.

本発明の生産苛性ソーダ溶液の製造方法は、図2に示すように、前記性能回復方法により処理された含フッ素イオン交換膜14を有する電解槽10を用いて、通常行なわれる食塩水電解により生産苛性ソーダ溶液16を製造することができる。具体的には、電解槽10の陽極室2に食塩水11を供給し、陰極室7に苛性ソーダ溶液15を供給して電解を行なうと、陽極室2からは塩素ガス13が発生し、陰極室7からは、生産苛性ソーダ溶液16と水素ガス17が発生する。また、電気分解後に陽極室2から未分解食塩水である淡塩水12が排出される。また、陰極室7で生成する苛性ソーダ濃度31〜35重量%の生産苛性ソーダ溶液16は、一部製品として陰極室7から抜き取られ、抜き取った後の残りの生産苛性ソーダ溶液16に純水18を加え希釈したもの、または希釈しないままの生産苛性ソーダ溶液16をさらに苛性ソーダ溶液15として陰極室7に供給して、食塩水電解を行なうことができる。   As shown in FIG. 2, the production method of the production caustic soda solution of the present invention uses the electrolytic cell 10 having the fluorine-containing ion exchange membrane 14 treated by the above performance recovery method to produce the production caustic soda by usual salt electrolysis. Solution 16 can be produced. Specifically, when electrolysis is performed by supplying the saline solution 11 to the anode chamber 2 of the electrolytic cell 10 and supplying the caustic soda solution 15 to the cathode chamber 7, chlorine gas 13 is generated from the anode chamber 2, and the cathode chamber 7 produces a production caustic soda solution 16 and hydrogen gas 17. Moreover, the fresh salt water 12 which is undecomposed salt solution is discharged | emitted from the anode chamber 2 after electrolysis. Further, the caustic soda solution 16 having a concentration of 31 to 35% by weight produced in the cathode chamber 7 is extracted from the cathode chamber 7 as a part of the product, and diluted by adding pure water 18 to the remaining produced caustic soda solution 16 after the extraction. The produced caustic soda solution 16 that has been or has not been diluted can be further supplied to the cathode chamber 7 as a caustic soda solution 15 to perform brine electrolysis.

食塩水としては、原料塩を溶解し、1次精製および2次精製工程で不純物を除去したものであることが好ましい。食塩水の食塩濃度としては、270〜320g/Lであることが好ましく、300〜310g/Lであることがより好ましい。食塩水の食塩濃度が270〜320g/Lであることにより、イオン交換膜の収縮を抑制できるため、溶液が膜内に充分に浸透することができる。また、電気分解後に陽極室から排出される未分解食塩水(淡塩水)の食塩濃度としては、150〜230g/Lであることが好ましく、190〜210g/Lであることがより好ましい。未分解食塩水(淡塩水)の食塩濃度が150〜230g/Lであることで、イオン交換膜の膨張を抑制でき、皺の発生や傷の発生を防止することができる。   The saline solution is preferably prepared by dissolving the raw material salt and removing impurities in the primary purification and secondary purification steps. The salt concentration of the saline is preferably 270 to 320 g / L, and more preferably 300 to 310 g / L. Since the salt concentration of the saline is 270 to 320 g / L, the shrinkage of the ion exchange membrane can be suppressed, so that the solution can sufficiently penetrate into the membrane. Further, the salt concentration of undecomposed saline (fresh salt water) discharged from the anode chamber after electrolysis is preferably 150 to 230 g / L, and more preferably 190 to 210 g / L. When the salt concentration of undecomposed saline (fresh salt water) is 150 to 230 g / L, expansion of the ion exchange membrane can be suppressed, and generation of wrinkles and scratches can be prevented.

また、陰極室に供給する苛性ソーダ溶液としては、電気分解によって製造された生産苛性ソーダ溶液の一部を製品として抜き取った後の残りの生産苛性ソーダ溶液に純水を加え希釈したもの、または希釈しないままの生産苛性ソーダ溶液を用いることができる。その苛性ソーダ濃度は、電流密度1〜7kA/m2である場合、30〜34重量%であることが好ましく、31〜32重量%であることがより好ましい。苛性ソーダ濃度が30〜34重量%であると、イオン交換膜の収縮を抑制することができるため、溶液が膜内に充分に浸透することができる。さらに、イオン交換膜の膨張も抑制することができるため、陽極からのNaClの移行量が増加して生産苛性ソーダ溶液中の食塩濃度が上昇することを防ぐことができ、製品の品質を向上することができる。 As the caustic soda solution supplied to the cathode chamber, a part of the produced caustic soda solution produced by electrolysis is extracted as a product and diluted with pure water added to the remaining produced caustic soda solution, or left undiluted. Production caustic soda solution can be used. When the current density is 1 to 7 kA / m 2 , the caustic soda concentration is preferably 30 to 34% by weight, and more preferably 31 to 32% by weight. When the caustic soda concentration is 30 to 34% by weight, shrinkage of the ion exchange membrane can be suppressed, so that the solution can sufficiently penetrate into the membrane. Furthermore, since the expansion of the ion exchange membrane can also be suppressed, it is possible to prevent an increase in the amount of NaCl transferred from the anode and increase the salt concentration in the produced caustic soda solution, thereby improving the quality of the product. Can do.

電解時の陽極室、陰極室の温度は、特に限定されるものではなく、通常用いられる温度であればよいが、膜性能を最大限発揮するために電流密度に応じた温度範囲に設定することが好ましい。該温度範囲は、膜の種類によって若干異なるが、例えば、電流密度が1.0kA/m2以上、2.0kA/m2未満である場合、68〜82℃が好ましく、2.0kA/m2以上、3.0kA/m2未満である場合、77〜85℃が好ましく、3.0kA/m2以上、4kA/m2未満である場合、80〜88℃が好ましい。また、イオン交換膜は電解槽の温度が上昇または低下することで、物理的に伸縮し、膜の性能に影響を与える傾向がある。例えば、温度の上昇とともに膜は膨張し、膜抵抗が下がり電解電圧が低下する傾向があるが、過度に高い温度では、膜に皺を発生させたり、膜が膨張することで、膜と電極が接触して膜に傷が発生し、その結果、膜抵抗が上がり電解電圧を上昇させる傾向がある。また、90℃をこえると膜、ガスケットの寿命に影響をおよぼす傾向がある。逆に、温度が低下すると、膜は温度の低下とともに収縮し、一旦電流効率は上昇するが、さらに温度が下がると電流効率は大幅に低下する傾向がある。さらに、過度に低い温度では、膜内への溶液の浸透を妨げ、膜にダメージを与える傾向がある。 The temperature of the anode chamber and the cathode chamber during electrolysis is not particularly limited and may be any temperature that is usually used. However, in order to maximize the film performance, the temperature range should be set according to the current density. Is preferred. The temperature range is slightly different depending on the type of film. For example, when the current density is 1.0 kA / m 2 or more and less than 2.0 kA / m 2 , 68 to 82 ° C. is preferable, and 2.0 kA / m 2. above, it is less than 3.0 kA / m 2, preferably from 77 to 85 ° C., 3.0 kA / m 2 or more, is less than 4 kA / m 2, preferably 80-88 ° C.. Also, the ion exchange membrane tends to physically expand and contract as the temperature of the electrolytic cell rises or falls, affecting the performance of the membrane. For example, the membrane expands as the temperature rises, and the membrane resistance tends to decrease and the electrolysis voltage decreases, but at an excessively high temperature, the membrane and the electrode expand due to generation of wrinkles or expansion of the membrane. There is a tendency for the film to come into contact and become scratched. As a result, the film resistance tends to increase and the electrolysis voltage tends to increase. Moreover, when it exceeds 90 degreeC, there exists a tendency which affects the lifetime of a film | membrane and a gasket. On the contrary, when the temperature is lowered, the film contracts as the temperature is lowered, and the current efficiency is once increased. However, when the temperature is further lowered, the current efficiency tends to be greatly lowered. Further, at an excessively low temperature, the solution tends to be prevented from penetrating into the membrane and damaged.

電解時には、陰極面で水素(H2)が発生するとともに、水酸化物イオン(OH-)が発生する。一方陽極面では、塩素(Cl2)が発生するとともに、ナトリウムイオン(Na+)が発生する。このナトリウムイオンが、含フッ素陽イオン交換膜を通って、陽極室から陰極室へ移動し、陰極室の水酸化物イオンと結合し、陰極室では苛性ソーダ濃度31〜35重量%の生産苛性ソーダ溶液が製造されるものである。 During electrolysis, hydrogen (H 2 ) is generated on the cathode surface and hydroxide ions (OH ) are generated. On the other hand, chlorine (Cl 2 ) is generated and sodium ions (Na + ) are generated on the anode surface. This sodium ion moves from the anode chamber to the cathode chamber through the fluorine-containing cation exchange membrane, and is combined with the hydroxide ion in the cathode chamber. In the cathode chamber, a caustic soda solution having a caustic soda concentration of 31 to 35% by weight is produced. It is manufactured.

また、電解槽としては、通常食塩水電解に用いられるものであれば特に限定されるものではなく、さらに単極式であっても複極式であってもよい。   The electrolytic cell is not particularly limited as long as it is normally used for saline electrolysis, and may be a monopolar type or a bipolar type.

また、電極としても、通常食塩水電解に用いられるものであれば特に限定されるものではないが、陽極としては、RuO2系材料(チタン基体状に20g・m-2程度の酸化ルテニウムを熱分解コーティングしたもの)が好ましく、陰極としては、Ni化学物被覆膜陰極、多孔質Ni陰極、Raney Ni合金陰極などが好ましく用いられる。 Also, the electrode is not particularly limited as long as it is usually used for saline electrolysis, but as the anode, a RuO 2 material (ruthenium oxide of about 20 g · m −2 on a titanium substrate is heated. The cathode is preferably a Ni chemical-coated film cathode, a porous Ni cathode, a Raney Ni alloy cathode, or the like.

つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be described with reference to examples, but the present invention is not limited to such examples.

<酸性食塩水のpHの測定方法>
酸性食塩水のpH測定には、測定範囲pH0〜14、測定値を25℃自動補正表示、測定原理にガラス電極法を採用しているpH計(横河電機株式会社製 PH82)を使用する。このpH計をpH4とpH7の標準液で校正を行なった後、以下の方法で、酸性食塩水のpHを測定する。
<Method for measuring pH of acidic saline solution>
For pH measurement of acidic saline, a pH meter (PH82 manufactured by Yokogawa Electric Co., Ltd.) employing a measurement range of pH 0 to 14, a measured value automatically corrected and displayed at 25 ° C., and a glass electrode method as a measurement principle is used. After the pH meter is calibrated with standard solutions of pH 4 and pH 7, the pH of the acidic saline solution is measured by the following method.

ポリプロピレン製の20L容器に酸性食塩水15Lを入れ、25℃の条件にて、pHを測定する。   15 L of acidic saline is placed in a 20 L container made of polypropylene, and the pH is measured under the condition of 25 ° C.

<希釈苛性ソーダ溶液、苛性ソーダ溶液、生産苛性ソーダ溶液のpH測定方法>
希釈苛性ソーダ溶液、苛性ソーダ溶液、生産苛性ソーダ溶液のpH測定には、測定範囲pH0〜14、測定値を25℃自動補正表示、測定原理にガラス電極法を採用しているpH計(横河電機株式会社製 PH82)を使用する。このpH計をpH7とpH9の標準液で校正を行なった後、以下の方法で、希釈苛性ソーダ溶液、苛性ソーダ溶液、生産苛性ソーダ溶液のpHを測定する。
<Method for measuring pH of diluted caustic soda solution, caustic soda solution, and produced caustic soda solution>
For pH measurement of dilute caustic soda solution, caustic soda solution, and production caustic soda solution, pH range adopting glass electrode method for measuring range pH 0-14, measured value automatically corrected display at 25 ° C, and measuring principle (Yokogawa Electric Corporation) Use PH82). After the pH meter is calibrated with standard solutions of pH 7 and pH 9, the pH of the diluted caustic soda solution, the caustic soda solution, and the produced caustic soda solution is measured by the following method.

pHが14.0以上となる場合には、下記計算式によって算出した値をpH値として判断する。   When pH becomes 14.0 or more, the value calculated by the following formula is judged as pH value.

Figure 2006052434
Figure 2006052434

<テストピース作製>
実機電解槽に装着されたイオン交換膜(デュポン株式会社製、Nafion(R)981(ナフィオン(R)981))を取外し、テストピース用の膜として10×10cmに裁断した。そのテストピースの中の1枚を、1.0mol/Lの塩酸に16時間浸漬させ、その塩酸の組成をICP分析した結果、カルシウムおよびその他の不純物の蓄積が検出された。
<Test piece production>
Actual electrolytic loaded ion exchange membrane tank removed (DuPont Co., Nafion (R) 981 (Nafion (R) 981)), was cut into 10 × 10 cm as a film for the test piece. One of the test pieces was immersed in 1.0 mol / L hydrochloric acid for 16 hours, and the composition of the hydrochloric acid was analyzed by ICP. As a result, accumulation of calcium and other impurities was detected.

実施例1
作製したテストピース用の膜を締付型電解槽内(有効膜面積:1.0dm2、陽極:RuO2被覆Ti製エキスパンドメタル、陰極:活性ニッケル被覆ニッケル製エキスパンドメタル、極間0.5mm)に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.410V、電流効率94.10%を示すことを確認した後、電解を停止した。
Example 1
The prepared test piece membrane is placed in a clamping type electrolytic cell (effective membrane area: 1.0 dm 2 , anode: RuO 2 coated Ti expanded metal, cathode: active nickel coated nickel expanded metal, 0.5 mm gap) The electrolytic bath temperature is 82 ° C., the current density is 30 A / dm 2 , a salt solution of 310 g / L is supplied to the anode chamber as an electrolysis solution, and Cl 2 and a salt concentration of 200 g are supplied at the outlet of the anode chamber by electrolysis. The flow rate is adjusted so as to discharge / L undecomposed saline solution, a caustic soda solution having a caustic soda concentration of 32 wt% is supplied to the cathode chamber, and a production caustic soda solution having an caustic soda concentration of 33 wt% is discharged by electrolysis. The flow rate was adjusted and electrolysis was performed. Electrolysis was performed for 10 days until the voltage and current efficiency transitions were stabilized under the above conditions, and after confirming that the voltage was 3.410 V and the current efficiency was 94.10%, the electrolysis was stopped.

電解停止後、陽極室を60℃に保持し、性能回復処理溶液としてpH2.0、食塩濃度300g/Lの酸性食塩水を供給し、8時間循環した。一方、陰極室は60℃に保持し、性能回復処理溶液として苛性ソーダ濃度30重量%の希釈苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 60 ° C., and an acidic saline solution having a pH of 2.0 and a salt concentration of 300 g / L was supplied as a performance recovery treatment solution and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 60 ° C., a diluted caustic soda solution having a caustic soda concentration of 30% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance is restored for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、電圧が40mV低下、電流効率が0.5%上昇し、膜の性能回復効果が認められた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out the electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. As a result of conducting electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the voltage was reduced by 40 mV, the current efficiency was increased by 0.5%, and the effect of restoring the performance of the film was observed. The results are shown in Table 1.

実施例2
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.412V、電流効率94.12%を示すことを確認した後、電解を停止した。
Example 2
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution (fresh salt solution) with a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and caustic soda concentration of 32 wt. % Caustic soda solution was supplied, and electrolysis was performed by adjusting the flow rate so as to discharge the produced caustic soda solution having a caustic soda concentration of 33 wt% by electrolysis. Electrolysis was performed for 10 days until the voltage and current efficiency transitions were stabilized under the above conditions, and after confirming that the voltage was 3.412 V and the current efficiency was 94.12%, the electrolysis was stopped.

電解停止後、陽極室を60℃に保持し、性能回復処理溶液としてpH2.0、食塩濃度200g/Lの酸性食塩水を供給し、8時間循環した。一方、陰極室は60℃に保持し、性能回復処理溶液として苛性ソーダ濃度23重量%の希釈苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 60 ° C., and an acidic saline solution having a pH of 2.0 and a salt concentration of 200 g / L was supplied as a performance recovery treatment solution, and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 60 ° C., a diluted caustic soda solution having a caustic soda concentration of 23% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance is restored for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、電圧が50mV低下、電流効率が1.2%上昇し、膜の性能回復効果が認められた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. As a result of performing electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the voltage was reduced by 50 mV, the current efficiency was increased by 1.2%, and the effect of restoring the performance of the film was observed. The results are shown in Table 1.

実施例3
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.408V、電流効率94.11%を示すことを確認した後、電解を停止した。
Example 3
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution (fresh salt solution) with a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and caustic soda concentration of 32 wt. % Caustic soda solution was supplied, and electrolysis was performed by adjusting the flow rate so as to discharge the produced caustic soda solution having a caustic soda concentration of 33 wt% by electrolysis. Electrolysis was performed for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, and after confirming that the voltage was 3.408 V and the current efficiency was 94.11%, the electrolysis was stopped.

電解停止後、陽極室を60℃に保持し、性能回復処理溶液としてpH1.7、食塩濃度200g/Lの酸性食塩水を供給し、8時間循環した。一方、陰極室は60℃に保持し、性能回復処理溶液として苛性ソーダ濃度23重量%の希釈苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 60 ° C., and an acidic saline solution having a pH of 1.7 and a salt concentration of 200 g / L was supplied as a performance recovery treatment solution and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 60 ° C., a diluted caustic soda solution having a caustic soda concentration of 23% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance is restored for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、電圧が56mV低下、電流効率が1.6%上昇し、膜の性能回復効果が認められた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out the electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline solution having Cl 2 and a salt concentration of 200 g / L at the outlet of the anode chamber. The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathode chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis, and electrolysis was performed. As a result of electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the voltage was reduced by 56 mV, the current efficiency was increased by 1.6%, and the effect of restoring the performance of the film was observed. The results are shown in Table 1.

実施例4
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.414V、電流効率94.11%を示すことを確認した後、電解を停止した。
Example 4
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution (fresh salt solution) with a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and caustic soda concentration of 32 wt. % Caustic soda solution was supplied, and electrolysis was performed by adjusting the flow rate so as to discharge the produced caustic soda solution having a caustic soda concentration of 33 wt% by electrolysis. Electrolysis was carried out for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions. After confirming that the voltage was 3.414 V and the current efficiency was 94.11%, the electrolysis was stopped.

電解停止後、陽極室を60℃に保持し、性能回復処理溶液としてpH1.7、食塩濃度200g/Lの酸性食塩水を供給し、8時間循環した。一方、陰極室は60℃に保持し、性能回復処理溶液として苛性ソーダ濃度30重量%の希釈苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 60 ° C., and an acidic saline solution having a pH of 1.7 and a salt concentration of 200 g / L was supplied as a performance recovery treatment solution and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 60 ° C., a diluted caustic soda solution having a caustic soda concentration of 30% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance is restored for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、電圧が48mV低下、電流効率が0.8%上昇し、膜の性能回復効果が認められた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. As a result of performing electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the voltage was decreased by 48 mV, the current efficiency was increased by 0.8%, and the performance recovery effect of the film was recognized. The results are shown in Table 1.

比較例1
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.410V、電流効率94.10%を示すことを確認した後、電解を停止した。
Comparative Example 1
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution (fresh salt solution) with a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and caustic soda concentration of 32 wt. % Caustic soda solution was supplied, and electrolysis was performed by adjusting the flow rate so as to discharge the produced caustic soda solution having a caustic soda concentration of 33 wt% by electrolysis. Electrolysis was performed for 10 days until the voltage and current efficiency transitions were stabilized under the above conditions, and after confirming that the voltage was 3.410 V and the current efficiency was 94.10%, the electrolysis was stopped.

電解停止後、陽極室を80℃に保持し、性能回復処理溶液としてpH9.0、食塩濃度320g/Lの食塩水を供給し、8時間循環した。一方、陰極室は80℃に保持し、性能回復処理溶液として苛性ソーダ濃度34重量%の苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 80 ° C., and a saline solution having a pH of 9.0 and a salt concentration of 320 g / L was supplied as a performance recovery treatment solution and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 80 ° C., a caustic soda solution having a caustic soda concentration of 34% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance recovery treatment is performed for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、実施前と変化なく、膜の性能回復は認められなかった。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out the electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. As a result of conducting electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the performance of the film was not recovered as before. The results are shown in Table 1.

比較例2
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.408V、電流効率94.15%を示すことを確認した後、電解を停止した。
Comparative Example 2
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, and the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution having a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and a caustic soda solution having a caustic soda concentration of 32% by weight in the cathode chamber. Then, the flow rate was adjusted so as to discharge the produced caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis, and electrolysis was performed. Electrolysis was performed for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, and after confirming that the voltage was 3.408 V and the current efficiency was 94.15%, the electrolysis was stopped.

電解停止後、陽極室を60℃に保持し、温水を供給し、8時間循環した。一方、陰極室は60℃に保持し、性能回復処理溶液として苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 60 ° C., hot water was supplied and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 60 ° C., a caustic soda solution having a caustic soda concentration of 32% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance recovery treatment is performed for 8 hours. Carried out.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。電解後すぐに電圧上昇し、電解を中止し、膜の状態を確認したところ、膜に皺が発生していた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. Immediately after the electrolysis, the voltage increased, the electrolysis was stopped, and the state of the membrane was confirmed. As a result, wrinkles were generated on the membrane. The results are shown in Table 1.

比較例3
実施例1と同様に、作製したテストピース用の膜を締付型電解槽内に設置し、電解槽温度82℃、電流密度30A/dm2、電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量を調整し、陰極室には苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給し、電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行い、電圧3.413V、電流効率94.11%を示すことを確認した後、電解を停止した。
Comparative Example 3
In the same manner as in Example 1, the prepared test piece membrane was placed in a clamping type electrolytic cell, and the electrolytic cell temperature was 82 ° C., the current density was 30 A / dm 2 , and the salt concentration in the anode chamber as an electrolytic solution was 310 g / L salt solution is supplied, the flow rate is adjusted to discharge Cl 2 and undecomposed saline solution (fresh salt solution) with a salt concentration of 200 g / L at the outlet of the anode chamber by electrolysis, and caustic soda concentration of 32 wt. % Caustic soda solution was supplied, and electrolysis was performed by adjusting the flow rate so as to discharge the produced caustic soda solution having a caustic soda concentration of 33 wt% by electrolysis. Electrolysis was performed for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, and after confirming that the voltage was 3.413 V and the current efficiency was 94.11%, the electrolysis was stopped.

電解停止後、陽極室を45℃に保持し、性能回復処理溶液としてpH9.0、食塩濃度20g/Lの溶液を供給し、8時間循環した。一方、陰極室は45℃に保持し、性能回復処理溶液として苛性ソーダ濃度2重量%の溶液を供給し、陰極室内が完全に入替ってから供給を停止し、8時間保持し性能回復処理を実施した。   After the electrolysis was stopped, the anode chamber was kept at 45 ° C., and a solution with a pH of 9.0 and a sodium chloride concentration of 20 g / L was supplied as a performance recovery treatment solution and circulated for 8 hours. On the other hand, the cathode chamber is maintained at 45 ° C., a solution having a caustic soda concentration of 2% by weight is supplied as a performance recovery treatment solution, the supply is stopped after the cathode chamber is completely replaced, and the performance recovery treatment is carried out for 8 hours. did.

性能回復処理終了後、性能回復効果を確認するために再度電解を行い、電圧および電流効率推移を確認した。電解を実施するために処理溶液と電解用の溶液を入れ替えた。電解用の溶液として陽極室に食塩濃度310g/Lの食塩水を供給し、陰極室に苛性ソーダ濃度32重量%の苛性ソーダ溶液を供給した。電解槽内の溶液が完全に入れ替わってから、電解槽温度82℃、電流密度30A/dm2、陽極室溶液が電気分解によって陽極室出口でCl2と食塩濃度200g/Lの未分解食塩水(淡塩水)を排出するように流量に調整し、陰極室溶液が電気分解によって苛性ソーダ濃度33重量%の生産苛性ソーダ溶液を排出するように流量を調整し、電解を行なった。上記条件で電圧および電流効率推移が安定するまで10日間電解を行なった結果、電圧が27mV上昇、電流効率が1.5%上昇しており、電圧は上昇し、電流効率のみ回復が認められた。結果を表1に示す。 After the performance recovery process was completed, electrolysis was performed again to confirm the performance recovery effect, and voltage and current efficiency transitions were confirmed. In order to carry out electrolysis, the treatment solution and the solution for electrolysis were exchanged. As an electrolysis solution, a saline solution having a salt concentration of 310 g / L was supplied to the anode chamber, and a caustic soda solution having a caustic soda concentration of 32% by weight was supplied to the cathode chamber. After the solution in the electrolytic cell is completely replaced, the electrolytic cell temperature is 82 ° C., the current density is 30 A / dm 2 , and the anode chamber solution is electrolyzed and undecomposed saline (Cl 2 and sodium chloride concentration 200 g / L at the outlet of the anode chamber). The flow rate was adjusted so as to discharge (fresh salt water), and the flow rate was adjusted so that the cathodic chamber solution discharged a caustic soda solution having a caustic soda concentration of 33% by weight by electrolysis. As a result of performing electrolysis for 10 days until the transition of voltage and current efficiency was stabilized under the above conditions, the voltage increased by 27 mV, the current efficiency increased by 1.5%, the voltage increased, and only the current efficiency was recovered. . The results are shown in Table 1.

Figure 2006052434
Figure 2006052434

性能回復処理時の電解槽の構成を示す図である。It is a figure which shows the structure of the electrolytic cell at the time of a performance recovery process. 電解時の電解槽の構成を示す図である。It is a figure which shows the structure of the electrolytic vessel at the time of electrolysis.

符号の説明Explanation of symbols

1 酸性食塩水
2 陽極室
3 陽極
4 酸性食塩水と溶出不純物
5 含フッ素陽イオン交換膜
6 希釈苛性ソーダ溶液
7 陰極室
8 陰極
9 NaClを含む希釈苛性ソーダ溶液
10 電解槽
11 食塩水
12 淡塩水
13 塩素ガス
14 本発明の性能回復方法により処理された含フッ素イオン交換膜
15 苛性ソーダ溶液
16 生産苛性ソーダ溶液
17 水素ガス
18 純水
DESCRIPTION OF SYMBOLS 1 Acidic salt solution 2 Anode chamber 3 Anode 4 Acidic salt solution and elution impurities 5 Fluorine-containing cation exchange membrane 6 Diluted caustic soda solution 7 Cathode chamber 8 Cathode 9 Diluted caustic soda solution containing NaCl 10 Electrolytic cell 11 Saline 12 Fresh salt 13 Chlorine Gas 14 Fluorine-containing ion exchange membrane treated by the performance recovery method of the present invention 15 Caustic soda solution 16 Production caustic soda solution 17 Hydrogen gas 18 Pure water

Claims (5)

含フッ素陽イオン交換膜で区画した食塩水電解槽の陽極室にpHが1.5〜3.5の酸性食塩水を供給する工程、陰極室に苛性ソーダ濃度20〜30重量%の希釈苛性ソーダ溶液を供給する工程、および通電を停止した状態で、該酸性食塩水、希釈苛性ソーダ溶液を該電解槽に保持する工程を含む含フッ素陽イオン交換膜の性能回復方法。 A step of supplying an acidic saline solution having a pH of 1.5 to 3.5 to an anode chamber of a saline electrolytic cell partitioned with a fluorine-containing cation exchange membrane, and a diluted caustic soda solution having a caustic soda concentration of 20 to 30% by weight to the cathode chamber. A method for recovering the performance of a fluorinated cation exchange membrane, comprising a step of supplying, and a step of holding the acidic saline solution and diluted caustic soda solution in the electrolytic cell in a state in which energization is stopped. 陽極室に供給する酸性食塩水の食塩濃度が150〜300g/Lである請求項1記載の性能回復方法。 The performance recovery method according to claim 1, wherein the salt concentration of the acidic saline supplied to the anode chamber is 150 to 300 g / L. 陽陰極室内の温度が60〜80℃である請求項1または2記載の性能回復方法。 The performance recovery method according to claim 1 or 2, wherein the temperature in the anode chamber is 60 to 80 ° C. 請求項1、2または3記載の性能回復方法により処理された含フッ素陽イオン交換膜を有する電解槽の陽極室に食塩水を供給する工程、および該食塩水を電解する工程を含む生産苛性ソーダ溶液の製造方法。 A production caustic soda solution comprising a step of supplying saline to an anode chamber of an electrolytic cell having a fluorine-containing cation exchange membrane treated by the performance recovery method according to claim 1, 2 and 3, and a step of electrolyzing the saline Manufacturing method. 請求項1、2または3記載の性能回復方法により処理された含フッ素陽イオン交換膜を有する電解槽の陽極室に食塩水を供給する工程、および該食塩水を電解する工程を含む塩素の製造方法。 A process for supplying chlorine to an anode chamber of an electrolytic cell having a fluorine-containing cation exchange membrane treated by the method for recovering performance according to claim 1, 2 or 3, and a process for producing chlorine comprising the step of electrolyzing the saline Method.
JP2004233788A 2004-08-10 2004-08-10 Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method Pending JP2006052434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233788A JP2006052434A (en) 2004-08-10 2004-08-10 Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233788A JP2006052434A (en) 2004-08-10 2004-08-10 Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method

Publications (1)

Publication Number Publication Date
JP2006052434A true JP2006052434A (en) 2006-02-23

Family

ID=36030095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233788A Pending JP2006052434A (en) 2004-08-10 2004-08-10 Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method

Country Status (1)

Country Link
JP (1) JP2006052434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529301A (en) * 2007-06-12 2010-08-26 ソルヴェイ(ソシエテ アノニム) Aqueous composition containing salt, process and use
US8535509B2 (en) 2009-01-23 2013-09-17 Dow Global Technologies Llc Membrane restoration
US8591766B2 (en) 2005-05-20 2013-11-26 Solvay (Societe Anonyme) Continuous process for preparing chlorohydrins
US8715568B2 (en) 2007-10-02 2014-05-06 Solvay Sa Use of compositions containing silicon for improving the corrosion resistance of vessels
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591766B2 (en) 2005-05-20 2013-11-26 Solvay (Societe Anonyme) Continuous process for preparing chlorohydrins
JP2010529301A (en) * 2007-06-12 2010-08-26 ソルヴェイ(ソシエテ アノニム) Aqueous composition containing salt, process and use
US8715568B2 (en) 2007-10-02 2014-05-06 Solvay Sa Use of compositions containing silicon for improving the corrosion resistance of vessels
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US8535509B2 (en) 2009-01-23 2013-09-17 Dow Global Technologies Llc Membrane restoration
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin

Similar Documents

Publication Publication Date Title
CA1321973C (en) Method for producing high purity quaternary ammonium hydroxides
CA1335973C (en) Process for preparing quaternary ammonium hydroxides
KR870001768B1 (en) Improved operation and regeneration of permselective ion-exchange membranes in brine electrolysis cells
CN103305864B (en) The method for the oxygen-consuming electrode electrolyzing alkali metal chloride arranged with microgap
JP2006052434A (en) Method for recovering capability of salt solution electrolysis cell, and method for producing raw caustic soda solution and chlorine using fluorine-containing cation-exchange membrane treated by the method
EP0099588A2 (en) Method of regenerating cation exchange membrane
US20090242422A1 (en) Method for recovering performance of electrolyzer for use in production of polysulfide and method for stopping holding electrolyzer
US4118308A (en) Method of renewing a porous diaphragm having reduced permeability to alkali metal chloride brines
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JPS62214189A (en) Dehalogenation of chloroacetic acid and bromoacetic acid
US4204921A (en) Method for rejuvenating chlor-alkali cells
EP0694632B1 (en) Electrolysis cell diaphragm reclamation
JP2007107088A (en) Method for activating cathode for electrolysis and electrolysis method
JPS622036B2 (en)
TWI529998B (en) Membrane restoration process
US4470890A (en) Method for preventing cathode corrosion
JP2006225693A (en) Method for producing periodate
WO2013054341A4 (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JP5231067B2 (en) Method for recovering performance of electrolytic cell used for production of polysulfide and method for producing polysulfide
JPS609111B2 (en) Cathode for halogenated alkali electrolysis and its manufacturing method
JP2010156034A (en) Apparatus and method for producing persulfuric acid
JP2006183113A (en) Method for recovering performance in salt water electrolytic cell, method for manufacturing produced caustic soda solution using cathode treated by the method and method for manufacturing chlorine
CN112853397A (en) Industrial ionic membrane for resisting organic impurity chlor-alkali and preparation method thereof
JP2005126760A (en) Ion exchange membrane electrolysis method
TW201343972A (en) Method for cleaning chlorine membrane electrochemical cell