JP2006052422A - Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method - Google Patents

Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method Download PDF

Info

Publication number
JP2006052422A
JP2006052422A JP2004233028A JP2004233028A JP2006052422A JP 2006052422 A JP2006052422 A JP 2006052422A JP 2004233028 A JP2004233028 A JP 2004233028A JP 2004233028 A JP2004233028 A JP 2004233028A JP 2006052422 A JP2006052422 A JP 2006052422A
Authority
JP
Japan
Prior art keywords
processed
carbon fiber
film forming
stage
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004233028A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tsukada
敏行 塚田
Masayuki Aiga
正幸 相賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004233028A priority Critical patent/JP2006052422A/en
Publication of JP2006052422A publication Critical patent/JP2006052422A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a film deposition method for a carbon fiber by which the outer surface of a cylindrical body to be treated can uniformly be film-deposited with the carbon fiber in a state that the body is placed upright in a vacuum chamber. <P>SOLUTION: When carbon fiber is film-formed on the outer surface of the cylindrical body 1 to be treated by a thermal CVD (Chemical Vapor Deposition) process, inside the body 1 arranged in a state where the axis line is stood within a vacuum chamber 3 of a film deposition system, a cylindrical fixture 2 made of a material with a high thermal conductivity conducting heat from a stage 5 to the body 1 from the inside face of the body 1 is inserted, so as to perform the film deposition treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、筒状の被処理体の外側面に熱CVD法を用いて炭素繊維を成膜する成膜方法、成膜装置、及び該成膜方法により作られたマグネトロンカソードに係り、主に、電子レンジなどの高周波加熱装置やレーダなどのパルス発生装置に用いられるマグネトロンカソードの成膜技術に関する。   The present invention relates to a film forming method for forming a carbon fiber on the outer surface of a cylindrical object to be processed using a thermal CVD method, a film forming apparatus, and a magnetron cathode made by the film forming method. The present invention relates to a film forming technique for a magnetron cathode used in a high-frequency heating device such as a microwave oven and a pulse generator such as a radar.

冷陰極用デバイスの一つとして炭素繊維がある。ここで炭素繊維とは、炭素原子が蜂の巣状の六角形の頂点に配置された炭素のシートを筒状に閉じたカーボンナノチューブや、グラフェンシートを積層したグラファイトナノファイバなどのことである。これら炭素繊維は通常、アーク放電法、レーザ蒸発法、プラズマCVD法、そして熱CVD法などにより形成できることがよく知られている(例えば、特許文献1参照)。   One of the cold cathode devices is carbon fiber. Here, the carbon fiber is a carbon nanotube in which a carbon sheet in which carbon atoms are arranged at the apexes of a honeycomb-like hexagon is closed in a cylindrical shape, a graphite nanofiber in which graphene sheets are laminated, or the like. It is well known that these carbon fibers can usually be formed by an arc discharge method, a laser evaporation method, a plasma CVD method, a thermal CVD method, or the like (for example, see Patent Document 1).

例えば、熱CVD法で炭素繊維の成膜を行う場合は、まず、成膜装置の真空チャンバ内のステージ上に被処理体を配置し、真空チャンバ内を真空引きした上で、ステージ上の被処理体を、ステージ下の抵抗加熱ヒータあるいは天面の赤外線ランプ(図示略)にて外部より加熱し、真空熱処理(還元処理)する。その後、炭素含有ガス及び水素ガスを真空チャンバ内に導入し、被処理体を条件温度まで加熱しながら、炭素含有ガスの炭素原子を被処理体の表面にある鉄原子あるいはコバルト原子と結びつけることにより、被処理体上に炭素繊維を成長させる。   For example, in the case of forming a carbon fiber film by a thermal CVD method, first, an object to be processed is placed on the stage in the vacuum chamber of the film forming apparatus, the vacuum chamber is evacuated, and the object on the stage is then evacuated. The treatment body is heated from the outside by a resistance heater under the stage or an infrared lamp (not shown) on the top surface, and vacuum heat treatment (reduction treatment) is performed. After that, by introducing carbon-containing gas and hydrogen gas into the vacuum chamber and heating the object to be processed to a condition temperature, the carbon atoms of the carbon-containing gas are combined with iron atoms or cobalt atoms on the surface of the object to be processed. Then, carbon fibers are grown on the object to be treated.

ここで、鉄あるいはコバルトを含まない金属の場合は、炭素繊維が成長しないか、あるいは著しく成長速度が遅いことが知られている。また、成膜時、被処理体の温度が低いと炭素含有ガスの反応が遅く、高いと実質的な生成膜の製造管理が困難となることから、一般的に被処理体の温度は500〜600℃が良いとされている。
特開2001−279441号公報
Here, it is known that in the case of a metal not containing iron or cobalt, carbon fibers do not grow or the growth rate is remarkably slow. In addition, when the temperature of the object to be processed is low at the time of film formation, the reaction of the carbon-containing gas is slow, and when it is high, it becomes difficult to substantially manage the production of the produced film. 600 ° C is considered good.
JP 2001-279441 A

ところで、従来の熱CVD法による炭素繊維の成膜方法及び装置は、真空チャンバ内の上部の赤外線ランプや底部の抵抗加熱ヒータにより、被処理体の外部から熱を加える方式であったため、ステージ上に軸線を立てた状態で載せた筒状の被処理体の外側面に炭素繊維の成膜を行おうとすると、被処理体の縦方向の温度分布が不均一になることにより、均一な炭素繊維の成膜ができないという問題があった。炭素繊維の成膜は吸熱反応であるため、熱伝導が良好に行われないと、顕著な温度ムラを生じ、成膜速度や炭素繊維の形状等に大きな影響を与える。その結果、炭素繊維の膜厚分布が不均一になる。   By the way, the conventional carbon fiber film forming method and apparatus by the thermal CVD method is a method in which heat is applied from the outside of the object to be processed by an upper infrared lamp in the vacuum chamber or a resistance heater at the bottom. When the carbon fiber film is formed on the outer surface of the cylindrical object to be processed with the axis lined up in the vertical direction, the temperature distribution in the longitudinal direction of the object to be processed becomes non-uniform so that the uniform carbon fiber There was a problem that the film could not be formed. Since the film formation of the carbon fiber is an endothermic reaction, if the heat conduction is not performed satisfactorily, remarkable temperature unevenness occurs, which greatly affects the film formation rate, the shape of the carbon fiber, and the like. As a result, the carbon fiber film thickness distribution becomes non-uniform.

また、均一な膜厚を確保するために、筒状の被処理体を真空チャンバ内において横向きに配置し、被処理体を回転させながら下や上から加熱することが考えられるが、そうすると、被処理体を回転させる機構が新たに必要となるため、成膜装置を大幅に改造する必要があり、実現は難しい。   In order to ensure a uniform film thickness, it is conceivable to arrange a cylindrical object to be processed horizontally in the vacuum chamber and heat the object to be processed from below or above while rotating the object. Since a mechanism for rotating the processing body is newly required, it is necessary to greatly modify the film forming apparatus, which is difficult to realize.

さらに、成膜された被処理体を後工程で他の部品と組み立てる場合、炭素繊維は非常に脆くて、被処理体の成膜面に触れることができないために、後の工程を著しく困難なものにした。   Furthermore, when assembling the object to be processed with other parts in the subsequent process, the carbon fiber is very fragile and cannot touch the film forming surface of the object to be processed, making the subsequent process extremely difficult. It was a thing.

本発明は、上記事情を考慮し、筒状の被処理体を真空チャンバ内に縦置きした状態で、その外側面に対し均一な炭素繊維の成膜を行うことができるようにすると共に、組立済の部品に対しても炭素繊維の膜を生成することができる炭素繊維の成膜方法及び成膜装置を提供することを目的とする。   In consideration of the above circumstances, the present invention makes it possible to form a uniform carbon fiber film on the outer surface of a cylindrical object to be processed while being vertically placed in a vacuum chamber, and to assemble it. It is an object of the present invention to provide a carbon fiber film forming method and a film forming apparatus capable of forming a carbon fiber film on a finished part.

上記目的は下記構成により達成される。
(1) 筒状の被処理体の外側面に熱CVD法により炭素繊維を成膜するにあたり、成膜装置の真空チャンバ内に軸線を立てた状態で配置される前記筒状の被処理体の内部に、該被処理体の内側面から被処理体に対して熱を伝える加熱体を挿入した状態で成膜処理を行うことを特徴とする炭素繊維の成膜方法。
The above object is achieved by the following configuration.
(1) When forming a carbon fiber film on the outer surface of a cylindrical object by thermal CVD, the cylindrical object to be processed is disposed with its axis lined up in a vacuum chamber of a film forming apparatus. A film forming method for carbon fiber, characterized in that a film forming process is performed in a state in which a heating body for transferring heat from the inner side surface of the object to be processed is inserted.

(2) 上記(1)において、前記加熱体として、前記被処理体より熱伝導率の高い材料で構成され且つ下面が成膜装置のステージの上面に密着すると共に外周面が前記筒状の被処理体の内側面に密着する治具を被処理体の内部に挿入し、ステージからの熱で前記被処理体を加熱しながら成膜処理を行うことを特徴とする炭素繊維の成膜方法。   (2) In the above (1), the heating body is made of a material having higher thermal conductivity than the object to be processed, and the lower surface is in close contact with the upper surface of the stage of the film forming apparatus, and the outer peripheral surface is the cylindrical object. A carbon fiber film forming method comprising: inserting a jig in close contact with an inner surface of a processing object into the processing object, and performing the film forming process while heating the processing object with heat from a stage.

(3) 上記(2)において、前記治具が、下端面を前記ステージの上面に密着させる柱体として形成されていることを特徴とする炭素繊維の成膜方法。   (3) The carbon fiber film forming method according to (2), wherein the jig is formed as a column body in which a lower end surface is brought into close contact with an upper surface of the stage.

(4) 上記(2)において、前記治具が、鍔部の底面を前記ステージの上面に密着させ、鍔部の上面に被処理体の下端を載せるシルクハット型断面の柱状体として形成されていることを特徴とする炭素繊維の成膜方法。   (4) In the above (2), the jig is formed as a columnar body having a top-hat cross section in which the bottom surface of the collar portion is in close contact with the upper surface of the stage, and the lower end of the workpiece is placed on the top surface of the collar portion. A carbon fiber film forming method characterized by comprising:

(5) 上記(2)〜(4)のいずれかにおいて、前記治具が、前記被処理体よりも熱膨張率の大きい材料で構成されていることを特徴とする炭素繊維の成膜方法。   (5) In any one of the above (2) to (4), the jig is made of a material having a coefficient of thermal expansion larger than that of the object to be processed.

(6) 上記(1)において、前記筒状の被処理体としての中空筒状の陰極体を有し、且つ、その内部に前記加熱体としてのヒータコイルを配したマグネトロンカソードを成膜装置の真空チャンバ内に配置し、前記ヒータコイルに電流を流してヒータコイルを自己発熱させることで、前記陰極体をその内側面から加熱して、被処理体である陰極体の外側面に成膜処理を施すことを特徴とする炭素繊維の成膜方法。   (6) In the above (1), a magnetron cathode having a hollow cylindrical cathode body as the cylindrical object to be processed and having a heater coil as the heating body disposed therein is used as a film forming apparatus. Arranged in a vacuum chamber, the cathode coil is heated from its inner surface by passing a current through the heater coil and causing the heater coil to self-heat, and the film is formed on the outer surface of the cathode body that is the object to be processed. A method for forming a carbon fiber, comprising:

(7) 上記(2)〜(5)のいずれかに記載の成膜方法を実施するための成膜装置であって、真空排気が可能な真空チャンバと、該真空チャンバ内の底部に配置され上面に被処理体が載置されるステージと、該ステージを加熱するヒータと、前記真空チャンバ内に炭素繊維の成膜に必要な処理ガスを供給する処理ガス供給系と、前記ステージの上面に自身の下面を密着させて立設され且つ自身の外周面を筒状の被処理体の内側面に密着させた状態で被処理体の内部に挿入される高熱伝導材料製の円柱状の治具と、を具備することを特徴とする炭素繊維の成膜装置。   (7) A film forming apparatus for performing the film forming method according to any one of (2) to (5), wherein the vacuum chamber is capable of being evacuated, and is disposed at a bottom portion of the vacuum chamber. A stage on which an object to be processed is placed, a heater for heating the stage, a processing gas supply system for supplying a processing gas necessary for forming a carbon fiber into the vacuum chamber, and an upper surface of the stage A cylindrical jig made of a highly heat-conductive material that is inserted into the object to be processed in a state where the lower surface of the object is erected and the outer peripheral surface of the object is in close contact with the inner surface of the cylindrical object. And a carbon fiber film-forming apparatus.

(8) 上記(6)に記載の成膜方法の実施により、陰極体の外面に炭素繊維膜が生成されたことを特徴とする冷陰極型のマグネトロンカソード。   (8) A cold cathode type magnetron cathode, wherein a carbon fiber film is formed on the outer surface of the cathode body by performing the film forming method described in (6) above.

上記(1)に記載の炭素繊維の成膜方法によれば、筒状の被処理体の内部に加熱体を挿入し、加熱体によって内側面から被処理体に熱を加えながら被処理体の外側面に成膜するので、成膜時の被処理体の温度勾配を小さくすることができて、均一な膜厚を有する炭素繊維の成膜を行うことができる。しかも、被処理体の内部に加熱体を挿入するだけであるから、成膜装置の大幅な改造の必要がなく、容易に実現可能である。   According to the carbon fiber film-forming method described in (1) above, a heating body is inserted into a cylindrical object to be processed, and heat is applied to the object to be processed from the inner surface by the heating object. Since the film is formed on the outer surface, the temperature gradient of the object to be processed at the time of film formation can be reduced, and the carbon fiber having a uniform film thickness can be formed. In addition, since only the heating body is inserted into the object to be processed, the film forming apparatus does not need to be significantly modified and can be easily realized.

上記(2)に記載の炭素繊維の成膜方法によれば、加熱体として高熱伝導材料製の治具を被処理体の内部に挿入し、ステージからの熱を治具を介して被処理体の内側面に伝えながら成膜するので、簡単な治具を付加するだけで、筒状の被処理体の外側面に均一な炭素繊維の膜を形成することができる。   According to the carbon fiber film forming method described in (2) above, a jig made of a high thermal conductivity material is inserted into the object to be treated as a heating element, and heat from the stage is passed through the jig to be treated. Since the film is formed while being transmitted to the inner surface, a uniform carbon fiber film can be formed on the outer surface of the cylindrical object by simply adding a simple jig.

上記(3)に記載の炭素繊維の成膜方法によれば、被処理体の内部に挿入する治具を、下端面がステージの上面に密着する柱体としたので、簡単な形状で効率良く、ステージの熱を被処理体に均等に伝えることができる。   According to the carbon fiber film-forming method described in (3) above, the jig to be inserted into the object to be processed is a column whose lower end surface is in close contact with the upper surface of the stage. The heat of the stage can be evenly transmitted to the object to be processed.

上記(4)に記載の炭素繊維の成膜方法によれば、被処理体の内部に挿入する治具を、シルクハット型断面の柱状体として形成したので、ステージ上に治具及び被処理体を安定姿勢で載置することができると共に、ステージの熱を有効に被処理体に伝えることができる。   According to the carbon fiber film forming method described in (4) above, since the jig to be inserted into the object to be processed is formed as a columnar body having a top-hat cross section, the jig and the object to be processed are placed on the stage. Can be placed in a stable posture, and the heat of the stage can be effectively transmitted to the object to be processed.

上記(5)に記載の炭素繊維の成膜方法によれば、被処理体の内部に挿入する治具を、被処理体よりも熱膨張率の大きい材料で構成したので、加熱時に被処理体と治具の密着性を良好に保つことができ、治具から被処理体への伝熱効率を高めることができる。   According to the carbon fiber film-forming method described in (5) above, the jig to be inserted into the object to be processed is made of a material having a higher thermal expansion coefficient than the object to be processed. It is possible to maintain good adhesion between the jig and the heat transfer efficiency from the jig to the object to be processed.

上記(6)に記載の炭素繊維の成膜方法によれば、真空チャンバ内に組立済のマグネトロンカソードを配置し、陰極体の内部に配したヒータコイルに電流を流して、ヒータコイルの自己発熱により陰極体を加熱しながら、陰極体の外側面に炭素繊維を成膜するので、成膜面の膜厚を均一化することができ、個体のばらつきを小さくすることができる。また、組立済のカソードを成膜処理できるので、成膜後のカソードの取り扱いが容易である。   According to the carbon fiber film-forming method described in (6) above, an assembled magnetron cathode is disposed in a vacuum chamber, and a current is passed through a heater coil disposed inside the cathode body, so that the heater coil self-heats. Since the carbon fiber is deposited on the outer surface of the cathode body while heating the cathode body, the film thickness on the deposition surface can be made uniform, and the variation among individuals can be reduced. In addition, since the assembled cathode can be subjected to film formation, the cathode after film formation can be easily handled.

上記(7)に記載の炭素繊維の成膜装置によれば、通常の成膜装置の要素の他に、筒状の被処理体の内部に挿入する治具を備えるので、上記(2)〜(5)のいずれかに記載の成膜方法を実施することができる。   According to the carbon fiber film forming apparatus described in (7) above, in addition to the elements of a normal film forming apparatus, a jig to be inserted into a cylindrical object to be processed is provided. The film-forming method as described in any of (5) can be implemented.

上記(8)に記載の冷陰極型のマグネトロンカソードは、組立済の段階で陰極体の外面に炭素繊維の膜が生成されているので、炭素繊維の成膜面に触れずに後の組立工程を進めることができ、後の取り扱いが簡単である。   In the cold cathode type magnetron cathode according to the above (8), since the carbon fiber film is formed on the outer surface of the cathode body in the assembled stage, the subsequent assembly process without touching the carbon fiber film forming surface is performed. Is easy to handle.

以下、本発明の好適な実施の形態を図面に基づいて説明する。
まず、本発明に係る第1の実施の形態について述べる。
図1は円筒状の被処理体に成膜処理を行う熱CVD成膜装置の断面図である。
この成膜装置は、真空排気が可能な真空チャンバ3と、真空チャンバ3内の底部に配置され上面に被処理体1が載置されるステージ5と、ステージ5を下から加熱するヒータ4と、真空チャンバ3内に炭素繊維の成膜に必要な処理ガスを供給する処理ガス供給系(制御バルブ6、7付きの炭化水素系ガス及び水素ガスのボンベ8、9)と、排気系としてのロータリポンプ11及びバルブ10と、ステージ5の上面に自身の下面を密着させて立設され且つ自身の外周面を円筒状の被処理体1の内側面に密着させた状態で被処理体1の内部に挿入される高熱伝導材料製の円柱状の治具2(加熱体)と、を具備している。
治具2は、被処理体1より熱伝導率の高い材料で構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
First, a first embodiment according to the present invention will be described.
FIG. 1 is a cross-sectional view of a thermal CVD film forming apparatus for performing a film forming process on a cylindrical object.
This film forming apparatus includes a vacuum chamber 3 that can be evacuated, a stage 5 that is disposed at the bottom of the vacuum chamber 3 and on which the workpiece 1 is placed, and a heater 4 that heats the stage 5 from below. A processing gas supply system (hydrocarbon gas cylinders 8 and 9 with control valves 6 and 7 and hydrogen gas cylinders 8 and 9) for supplying a processing gas necessary for film formation of carbon fiber into the vacuum chamber 3, and an exhaust system The rotary pump 11 and the valve 10 are erected with their lower surfaces in close contact with the upper surface of the stage 5 and their outer peripheral surfaces are in close contact with the inner surface of the cylindrical target object 1. And a cylindrical jig 2 (heating body) made of a high thermal conductive material to be inserted therein.
The jig 2 is made of a material having a higher thermal conductivity than the workpiece 1.

次に、鉄(またはコバルト)を含有する被処理体1の外側面に炭素繊維の成膜を行う場合は、成膜装置の真空チャンバ3内に軸線を立てた状態で被処理体1を配置する。その際、筒状の被処理体1の内部に円柱状の治具2を挿入し、治具2の下面をステージ5の上面に密着させる。そして、この状態で真空チャンバ3内に混合還元ガスを導入しながら排気し、ステージ5の下からヒータ4で加熱して、成膜処理の前の還元処理を行う。   Next, when carbon film is formed on the outer surface of the target object 1 containing iron (or cobalt), the target object 1 is disposed in a state where the axis is set up in the vacuum chamber 3 of the film forming apparatus. To do. At that time, a cylindrical jig 2 is inserted into the cylindrical object 1 and the lower surface of the jig 2 is brought into close contact with the upper surface of the stage 5. In this state, the mixed reducing gas is exhausted while being introduced into the vacuum chamber 3, and heated by the heater 4 from under the stage 5 to perform a reducing process before the film forming process.

その後は、いったん真空チャンバ3内を真空に排気した後、炭化水素系ガスと水素ガスの混合ガスを真空チャンバ3内に送りつつ排気し、真空チャンバ3内の圧力を所定圧にした後、ヒータ4を制御してステージ5の温度を所定温度に保ち、成膜処理を行う。そして、処理後は、ヒータ4とステージ5を冷却して被処理体1を真空チャンバ3内より取り出す。   Thereafter, the inside of the vacuum chamber 3 is once evacuated, then the mixed gas of hydrocarbon gas and hydrogen gas is evacuated while being sent into the vacuum chamber 3, the pressure in the vacuum chamber 3 is set to a predetermined pressure, and the heater 4 is controlled to keep the temperature of the stage 5 at a predetermined temperature, and the film forming process is performed. After the processing, the heater 4 and the stage 5 are cooled and the object 1 is taken out from the vacuum chamber 3.

以上のように、筒状の被処理体1の内部に治具2を挿入し、ステージ5からの熱を治具2を介して被処理体1の内側面に伝えながら被処理体1の外側面に成膜することにより、成膜時の被処理体1の温度勾配を小さくすることができて、均一な膜厚を有する炭素繊維の成膜を行うことができる。また、被処理体1の内部に簡単な構造の治具2を挿入するだけであるから、成膜装置の大幅な改造の必要がなく、容易に実現可能である。   As described above, the jig 2 is inserted into the cylindrical object 1 and the heat from the stage 5 is transferred to the inner surface of the object 1 via the jig 2 while the outside of the object 1 is being removed. By forming the film on the side surface, the temperature gradient of the object to be processed 1 at the time of film formation can be reduced, and the carbon fiber having a uniform film thickness can be formed. In addition, since the jig 2 having a simple structure is simply inserted into the object 1 to be processed, the film forming apparatus does not need to be significantly modified and can be easily realized.

なお、被処理体1の内部に挿入する治具2を、被処理体1よりも熱膨張率の大きい材料で構成すれば、加熱時に熱膨脹差により被処理体1と治具2の密着度を高めることができるので、治具2から被処理体1への伝熱効率をいっそう高めることができる。   If the jig 2 to be inserted into the object to be processed 1 is made of a material having a higher coefficient of thermal expansion than the object to be processed 1, the degree of adhesion between the object to be processed 1 and the jig 2 can be increased by the difference in thermal expansion during heating. Since it can raise, the heat-transfer efficiency from the jig | tool 2 to the to-be-processed object 1 can be improved further.

また、図2に示すように、治具12の形状はシルクハット型断面の柱状体としてもよい。そうすれば、治具12の鍔部の底面をステージ5の上面に安定して密着させることができるので、ステージ5上に治具12及び被処理体1を安定姿勢で載置することができ、ステージ5の熱をより有効に被処理体1に伝えることができる。   Moreover, as shown in FIG. 2, the shape of the jig 12 may be a columnar body having a top-hat cross section. By doing so, the bottom surface of the flange of the jig 12 can be stably brought into close contact with the upper surface of the stage 5, so that the jig 12 and the workpiece 1 can be placed on the stage 5 in a stable posture. The heat of the stage 5 can be transmitted to the workpiece 1 more effectively.

また、図1、図2では、1個の真空チャンバ3で1個の被処理体1を処理する場合を例示したが、1個の真空チャンバ3で複数の被処理体1を同時に成膜処理するようにしてもよい。その場合は、治具12の形状は、図3に示すように、隣り合うもの同士をつなげた形にすれば、取り扱いが楽になるし、被処理体1間の間隔も適正にとれるようになる。   1 and 2 exemplify the case where one object 1 is processed in one vacuum chamber 3, but a plurality of objects 1 are simultaneously formed in one vacuum chamber 3. You may make it do. In that case, as shown in FIG. 3, if the shape of the jig 12 is such that adjacent objects are connected to each other, handling becomes easier and the interval between the objects to be processed 1 can be properly taken. .

次に成膜処理の実施例1を説明する。
被処理体1は、外径4.2mm、内径3.7mm、高さ3.6mmのSUS304製の筒体であり、鉄を含んでいる。この筒体(被処理体)1の内部に、良熱伝導体である円柱無酸素銅の治具2を圧入気味に挿入する。治具2は、外径3.7mm、高さ4mmのものである。これを成膜装置にセットする。
Next, Example 1 of the film forming process will be described.
The object 1 is a cylindrical body made of SUS304 having an outer diameter of 4.2 mm, an inner diameter of 3.7 mm, and a height of 3.6 mm, and contains iron. A cylindrical oxygen-free copper jig 2, which is a good heat conductor, is inserted into the cylindrical body (object to be processed) 1 in a press-fit manner. The jig 2 has an outer diameter of 3.7 mm and a height of 4 mm. This is set in a film forming apparatus.

SUS304の熱伝導率は、0.016W/mm・K、銅は0.416W/mm・Kである。筒体1の底部から上部までの縦方向の熱伝導度α(W/K)は、筒体1の外半径をR、内半径をr、高さをhとした場合、以下の式と値となる。
α=0.016π(R2−r2)/h=0.014
The thermal conductivity of SUS304 is 0.016 W / mm · K, and that of copper is 0.416 W / mm · K. The vertical thermal conductivity α (W / K) from the bottom to the top of the cylinder 1 is expressed by the following equation and value when the outer radius of the cylinder 1 is R, the inner radius is r, and the height is h: It becomes.
α = 0.016π (R 2 −r 2 ) /h=0.014

また、筒体1の内部に銅を詰めた場合の熱伝導度β(W/K)は、以下の式と値となる。
β=0.016π(R2−r2)/h+0.416πr2/h=1.26
Moreover, the thermal conductivity β (W / K) when copper is filled in the cylindrical body 1 has the following formula and value.
β = 0.016π (R 2 −r 2 ) /h+0.416πr 2 /h=1.26

この実施例では、縦方向の熱伝導度が0.014から1.26と約90倍になることが分かる。また、筒体1に挿入する治具2は、筒体1よりも熱膨張率の大きい材質を利用すると、成膜中に熱膨張の差により筒体1と治具2が密着するので、治具2から筒体1へ熱が伝わる際の抵抗が少なくなり、より効果的である。   In this example, it can be seen that the thermal conductivity in the longitudinal direction is about 90 times from 0.014 to 1.26. Further, when the jig 2 inserted into the cylinder 1 is made of a material having a higher thermal expansion coefficient than that of the cylinder 1, the cylinder 1 and the jig 2 are brought into close contact with each other due to the difference in thermal expansion during film formation. The resistance when heat is transferred from the tool 2 to the cylinder 1 is reduced, which is more effective.

成膜装置にセットしたら、真空チャンバ3内に水素と窒素の混合還元ガスを導入口より導入しつつ、排気口より排気し、真空チャンバ3内の圧力を約1気圧にした。その後、ステージ5を加熱するためのヒータ電流をヒータ4に流し、ステージ5の温度を約600℃にして、成膜処理の前に被処理体1の表面を還元処理した。その後は、ロータリポンプ11にて真空チャンバ3内を真空にした。   When set in the film forming apparatus, a mixed reducing gas of hydrogen and nitrogen was introduced into the vacuum chamber 3 from the introduction port and exhausted from the exhaust port, so that the pressure in the vacuum chamber 3 was set to about 1 atm. Thereafter, a heater current for heating the stage 5 was supplied to the heater 4, the temperature of the stage 5 was set to about 600 ° C., and the surface of the object 1 was reduced before the film formation process. After that, the vacuum chamber 3 was evacuated by the rotary pump 11.

その後、導入口から炭化水素系ガスと水素の混合ガスを送りつつ、排気口より排気し、真空チャンバ3内の圧力を1気圧にした後、ステージ5の温度を約550℃に保ち、45分間成膜処理を行った。   Thereafter, while sending a mixed gas of hydrocarbon-based gas and hydrogen from the introduction port, the exhaust gas is exhausted from the exhaust port, the pressure in the vacuum chamber 3 is set to 1 atm, and the temperature of the stage 5 is maintained at about 550 ° C. for 45 minutes. A film forming process was performed.

そして、被処理体1とステージ5を冷却した後、被処理体1を真空チャンバ3内より取り出した。
この処理後の筒体1の上部、中央部、そして底部の膜厚分布を測定した結果が図6(a)である。また、治具無しの膜厚分布が図6(b)である。治具無しの場合の装置構成は、図4に示すようになる。治具無しの場合の被処理体1は、底部の炭素繊維13の膜厚が厚いのに対して上部が薄く、図5の模式図の形状であった。これに対して、治具2を用いた場合は、膜厚分布が均一であった。
Then, after the object 1 and the stage 5 were cooled, the object 1 was taken out from the vacuum chamber 3.
FIG. 6A shows the result of measuring the film thickness distribution at the top, center, and bottom of the cylindrical body 1 after this treatment. The film thickness distribution without the jig is shown in FIG. FIG. 4 shows the apparatus configuration without a jig. In the case where the jig 1 is not used, the carbon fiber 13 at the bottom is thick, while the top is thin, and the shape of the schematic diagram of FIG. On the other hand, when the jig 2 was used, the film thickness distribution was uniform.

また、電子顕微鏡にて筒体(被処理体)1の表面を観察したところ、直径0.05〜0.3μmの炭素繊維を確認できた。このような結果は、図2に示すシルクハット型断面の治具12を用いた場合も、同様に得られた。   Moreover, when the surface of the cylinder (to-be-processed object) 1 was observed with the electron microscope, the carbon fiber with a diameter of 0.05-0.3 micrometer was confirmed. Such a result was obtained in the same manner when the jig 12 having a top hat cross section shown in FIG. 2 was used.

次に本発明の第2の実施の形態について述べる。
図7は第2の実施の形態の成膜方法の説明図である。
この成膜方法で用いる成膜装置は、先の実施の形態と違って、ヒータ、ステージを備えず、導入口3A及び排気口3Bを有する真空チャンバ3の底部に、電流導入端子14、15を備え、それに接続するヒータ用電源32を備えている。
この成膜装置は、2つの被処理物を同時に処理することができるように、電流導入端子14、15及びヒータ用電源32の組を2組備えている。その他の設備については図1と同様であり、特に図示はしない。
Next, a second embodiment of the present invention will be described.
FIG. 7 is an explanatory diagram of the film forming method of the second embodiment.
Unlike the previous embodiment, the film forming apparatus used in this film forming method does not include a heater and a stage, and current introduction terminals 14 and 15 are provided at the bottom of the vacuum chamber 3 having the introduction port 3A and the exhaust port 3B. And a heater power supply 32 connected thereto.
This film forming apparatus includes two sets of current introduction terminals 14 and 15 and a heater power source 32 so that two objects to be processed can be processed simultaneously. Other facilities are the same as those in FIG. 1 and are not particularly shown.

本実施の形態の成膜処理は、冷陰極型のマグネトロンカソード20の組立体における陰極体21に対して行うものであり、処理に当たっては、その組立体を2つ用意する。このマグネトロンカソード20は、筒状の被処理体としての中空筒状の陰極体21を有し、その内部に加熱体としてのヒータコイル24を配した構造をなしている。   The film forming process of the present embodiment is performed on the cathode body 21 in the assembly of the cold cathode type magnetron cathode 20, and two assemblies are prepared for the process. The magnetron cathode 20 has a hollow cylindrical cathode body 21 as a cylindrical object to be processed, and has a structure in which a heater coil 24 as a heating body is disposed therein.

図8はマグネトロンカソード20の詳細図である。
マグネトロンカソード20の電子放出部は、ステンレス(SUS304)製の円筒状の陰極体21であり、鉄を含んでいる。このカソード20は、陰極体21、その内部に挿入されたヒータコイル24、上側エンドハット22、下側エンドハット23、センターリード25、サイドリード26、側管29、接続端子27、28、ステム30を有するものである。
FIG. 8 is a detailed view of the magnetron cathode 20.
The electron emission portion of the magnetron cathode 20 is a cylindrical cathode body 21 made of stainless steel (SUS304) and contains iron. The cathode 20 includes a cathode body 21, a heater coil 24 inserted therein, an upper end hat 22, a lower end hat 23, a center lead 25, a side lead 26, a side tube 29, connection terminals 27 and 28, and a stem 30. It is what has.

陰極体21の外側面に炭素繊維を成膜する場合、まず、このマグネトロンカソード20を真空チャンバ3内に収容し、接続端子27、28を真空チャンバ3の底部に固定してある電流導入端子14、15に接続する。   When the carbon fiber is formed on the outer surface of the cathode body 21, first, the magnetron cathode 20 is accommodated in the vacuum chamber 3, and the current introduction terminal 14 in which the connection terminals 27 and 28 are fixed to the bottom of the vacuum chamber 3. , 15.

次に、真空チャンバ3内に混合還元ガスを導入口3Aから導入しつつ、排気口3Bより排気し、チャンバ3内の圧力を所定圧にする。その後、2つの電流導入端子14,15間に交流電圧を印加し、電流導入端子14、接続端子27、センターリード25、ヒータコイル24、上側エンドハット22、陰極体21、下側エンドハット23、サイドリード26、接続端子28、電流導入端子15へ自己発熱のための電流を流し、ヒータコイル24の自己発熱により、被処理体である陰極体21を内側から約600℃に昇温させて、成膜処理前の還元処理をする。   Next, the mixed reducing gas is introduced into the vacuum chamber 3 from the introduction port 3A and is exhausted from the exhaust port 3B, so that the pressure in the chamber 3 is set to a predetermined pressure. Thereafter, an AC voltage is applied between the two current introduction terminals 14 and 15, and the current introduction terminal 14, the connection terminal 27, the center lead 25, the heater coil 24, the upper end hat 22, the cathode body 21, the lower end hat 23, A current for self-heating is supplied to the side lead 26, the connection terminal 28, and the current introduction terminal 15, and the cathode body 21 as the object to be processed is heated from the inside to about 600 ° C. by the self-heating of the heater coil 24, A reduction process is performed before the film formation process.

その後、導入口3Aから炭化水素系ガスと水素の混合ガスを送りつつ、排気口3Bより排気し、真空チャンバ3内の圧力を所定圧にした後、陰極体21を550℃に保ち、所定時間の成膜処理を行う。そして、放置後、マグネトロンカソード20を真空チャンバ3内より取り出す。こうすることにより、陰極体21の外側面に炭素繊維の膜が形成されたマグネトロンカソード20を得る。   Thereafter, while sending a mixed gas of hydrocarbon-based gas and hydrogen from the introduction port 3A, the exhaust gas is exhausted from the exhaust port 3B, the pressure in the vacuum chamber 3 is set to a predetermined pressure, and the cathode body 21 is kept at 550 ° C. for a predetermined time. The film forming process is performed. Then, after leaving, the magnetron cathode 20 is taken out from the vacuum chamber 3. By doing so, a magnetron cathode 20 having a carbon fiber film formed on the outer surface of the cathode body 21 is obtained.

このように、真空チャンバ3内に組立済のマグネトロンカソード20を配置し、陰極体21の内部に配したヒータコイル24に電流を流して、ヒータコイル24の自己発熱により陰極体21を加熱しながら、陰極体21の外側面に炭素繊維を成膜することにより、成膜面の膜厚を均一化することができ、個体のばらつきを小さくすることができる。また、組立済のカソード20に対し成膜処理できるので、成膜後のカソード20の取り扱いが容易となる。   In this way, the assembled magnetron cathode 20 is arranged in the vacuum chamber 3, and a current is passed through the heater coil 24 arranged inside the cathode body 21, while the cathode body 21 is heated by self-heating of the heater coil 24. By forming a carbon fiber film on the outer surface of the cathode body 21, the film thickness of the film formation surface can be made uniform, and individual variations can be reduced. In addition, since the film formation process can be performed on the assembled cathode 20, the cathode 20 after film formation can be easily handled.

次に成膜処理の実施例2を説明する。
成膜対象はマグネトロンカソード20の陰極体21である。被処理体である陰極体21は、ステンレス(SUS304)製のもので、直径4.2mm、高さ10.8mmの筒体であり、鉄を含んでいる。上側エンドハット22、下側エンドハット23、センターリード25、サイドリード26はモリブデン製であり、側管29、接続端子27、28はニッケル製、ステム30はアルミナ製、ヒータコイル24はタングステン製である。
Next, Example 2 of the film forming process will be described.
The film formation target is the cathode body 21 of the magnetron cathode 20. The cathode body 21 that is the object to be processed is made of stainless steel (SUS304), is a cylinder having a diameter of 4.2 mm and a height of 10.8 mm, and contains iron. The upper end hat 22, the lower end hat 23, the center lead 25, and the side lead 26 are made of molybdenum, the side tube 29, the connection terminals 27 and 28 are made of nickel, the stem 30 is made of alumina, and the heater coil 24 is made of tungsten. is there.

下側エンドハット23とサイドリード26、センターリード25とヒータコイル24、上側エンドハット22とヒータコイル24は、それぞれプラズマ溶接にて固定してある。 電子放出用の陰極体21とエンドハット22、23、ステム30と側管29、ステム30と接続端子27、28、リード25、26と接続端子27、28はそれぞれ銀ロウにて固定してある。   The lower end hat 23 and the side lead 26, the center lead 25 and the heater coil 24, and the upper end hat 22 and the heater coil 24 are fixed by plasma welding, respectively. Electrode emitting cathode body 21 and end hats 22 and 23, stem 30 and side tube 29, stem 30 and connection terminals 27 and 28, leads 25 and 26 and connection terminals 27 and 28 are fixed with silver solder, respectively. .

上記のように予め組み立てたマグネトロンカソード20を成膜装置の真空チャンバ3内に配置し、マグネトロンカソード20の接続端子27、28を、真空チャンバ3の電流導入端子14、15にそれぞれ接続する。   The magnetron cathode 20 assembled in advance as described above is disposed in the vacuum chamber 3 of the film forming apparatus, and the connection terminals 27 and 28 of the magnetron cathode 20 are connected to the current introduction terminals 14 and 15 of the vacuum chamber 3, respectively.

次に、真空チャンバ3内に水素と窒素の混合還元ガスを導入口3Aから導入しつつ、排気口3Bより排気し、真空チャンバ1内の圧力を約1気圧にする。その後、2つの電流導入端子14、15間にヒータ用電源32から交流電圧を印加し、電流導入端子14、接続端子27、センターリード25、ヒータコイル24、上側エンドハット22、陰極体21、下側エンドハット23、サイドリード26、接続端子28、電流導入端子15の経路で自己発熱のための電流を流し、内側面から被処理体である陰極体21を約600℃にして成膜処理前の還元処理を行う。   Next, a mixed reducing gas of hydrogen and nitrogen is introduced into the vacuum chamber 3 from the introduction port 3A and is exhausted from the exhaust port 3B so that the pressure in the vacuum chamber 1 is about 1 atm. Thereafter, an AC voltage is applied between the two current introduction terminals 14 and 15 from the heater power supply 32, and the current introduction terminal 14, connection terminal 27, center lead 25, heater coil 24, upper end hat 22, cathode body 21, lower A current for self-heating is caused to flow through the path of the side end hat 23, the side lead 26, the connection terminal 28, and the current introduction terminal 15, and the cathode body 21 as the object to be processed is set to about 600 ° C. from the inner surface before the film formation process. The reduction process is performed.

その後、導入口3Aから炭化水素系ガスと水素の混合ガスを送りつつ、排気口3Bより排気し、真空チャンバ3内の圧力を1気圧にした後、陰極体21を550℃に保ち、45分間の成膜処理を行った。そして、放置し、カソード20を冷却した後、取り出した。電子顕微鏡にて陰極体21の表面を観察したところ、被処理面上に直径0.05〜0.3μmの炭素繊維を確認した。炭素繊維の膜厚は数μmあり、カソード20の軸方向にわたり均一であった。また、モリブデンであるエンドハット22、23、リード25、26などの部位に炭素繊維の付着は見られなかった。   Thereafter, while sending a mixed gas of hydrocarbon-based gas and hydrogen from the introduction port 3A, the exhaust gas is exhausted from the exhaust port 3B, and the pressure in the vacuum chamber 3 is set to 1 atm. Then, the cathode body 21 is kept at 550 ° C. for 45 minutes. The film forming process was performed. Then, the cathode 20 was cooled and then taken out. When the surface of the cathode body 21 was observed with an electron microscope, carbon fibers having a diameter of 0.05 to 0.3 μm were confirmed on the surface to be processed. The film thickness of the carbon fiber was several μm and was uniform over the axial direction of the cathode 20. Also, no carbon fiber was found attached to the parts such as molybdenum end hats 22 and 23 and leads 25 and 26.

なお、図7の実施の形態では、1つの真空チャンバ3に2つ(より複数でも可)のマグネトロンカソード20を設置して成膜処理を行う場合を述べたが、単一のマグネトロンカソード20を処理してもよい。その場合、図9に示すように、真空チャンバ33の底面に開口33aを設け、その開口33aにシール部材35を介してマグネトロンカソード20の側管29のフランジ部を被せて行ってもよい。つまり、マグネトロンカソード20の全部を真空チャンバ33内に入れるのではなく、必要最小限の部分だけを入れて処理を行うのである。そうした場合は、真空チャンバ33の容積が小さくて済むため、処理コストの削減が図れる。   In the embodiment of FIG. 7, the case where two (or more) magnetron cathodes 20 are installed in one vacuum chamber 3 to perform the film forming process has been described. It may be processed. In this case, as shown in FIG. 9, an opening 33 a may be provided on the bottom surface of the vacuum chamber 33, and the opening 33 a may be covered with the flange portion of the side tube 29 of the magnetron cathode 20 via the seal member 35. In other words, the entire magnetron cathode 20 is not put into the vacuum chamber 33, but only the minimum necessary portion is put into the process. In such a case, since the volume of the vacuum chamber 33 can be small, the processing cost can be reduced.

本発明の第1の実施の形態の方法の実施に用いる熱CVD成膜装置の断面図である。It is sectional drawing of the thermal CVD film-forming apparatus used for implementation of the method of the 1st Embodiment of this invention. 同成膜装置の治具を変形させた例を示す断面図である。It is sectional drawing which shows the example which deform | transformed the jig | tool of the film-forming apparatus. 複数の被処理体を同時に処理する場合の治具の例を示す断面図である。It is sectional drawing which shows the example of the jig | tool in the case of processing a several to-be-processed object simultaneously. 治具無しの従来の成膜装置の断面図である。It is sectional drawing of the conventional film-forming apparatus without a jig | tool. 治具無しで成膜した場合の膜厚分布を示す模式断面図である。It is a schematic cross section which shows the film thickness distribution at the time of forming into a film without a jig | tool. 治具有りの場合(a)と治具無しの場合(b)の膜厚分布を比較する特性図である。It is a characteristic view which compares the film thickness distribution of the case (a) with a jig, and the case (b) without a jig. 本発明の第2の実施の形態の方法を実施している状態を示す断面図である。It is sectional drawing which shows the state which is implementing the method of the 2nd Embodiment of this invention. 図7におけるマグネトロンカソードの詳細図である。FIG. 8 is a detailed view of the magnetron cathode in FIG. 7. マグネトロンカソードを1個だけ成膜処理する場合の装置簡素化の例を示す断面図である。It is sectional drawing which shows the example of an apparatus simplification in the case of film-forming processing of only one magnetron cathode.

符号の説明Explanation of symbols

1 被処理体
2、12 治具
3、33 真空チャンバ
4 ヒータ
5 ステージ
20 マグネトロンカソード
21 陰極体(被処理体)
24 ヒータコイル
DESCRIPTION OF SYMBOLS 1 To-be-processed object 2, 12 Jig 3, 33 Vacuum chamber 4 Heater 5 Stage 20 Magnetron cathode 21 Cathode body (to-be-processed object)
24 heater coil

Claims (8)

筒状の被処理体の外側面に熱CVD法により炭素繊維を成膜するにあたり、成膜装置の真空チャンバ内に軸線を立てた状態で配置される前記筒状の被処理体の内部に、該被処理体の内側面から被処理体に対して熱を伝える加熱体を挿入した状態で成膜処理を行うことを特徴とする炭素繊維の成膜方法。   In forming a carbon fiber film on the outer surface of the cylindrical object by thermal CVD, inside the cylindrical object to be disposed with the axis lined up in the vacuum chamber of the film forming apparatus, A film forming method for carbon fiber, characterized in that a film forming process is performed in a state where a heating body for transferring heat to an object to be processed is inserted from an inner surface of the object to be processed. 前記加熱体として、前記被処理体より熱伝導率の高い材料で構成され且つ下面が成膜装置のステージの上面に密着すると共に外周面が前記筒状の被処理体の内側面に密着する治具を被処理体の内部に挿入し、ステージからの熱で前記被処理体を加熱しながら成膜処理を行うことを特徴とする請求項1に記載の炭素繊維の成膜方法。   The heating body is made of a material having higher thermal conductivity than the object to be processed, and the lower surface is in close contact with the upper surface of the stage of the film forming apparatus and the outer peripheral surface is in close contact with the inner side surface of the cylindrical object to be processed. The carbon fiber film forming method according to claim 1, wherein a film is formed by inserting a tool into the object to be processed and heating the object to be processed with heat from a stage. 前記治具が、下端面を前記ステージの上面に密着させる柱体として形成されていることを特徴とする請求項2に記載の炭素繊維の成膜方法。   The carbon fiber film forming method according to claim 2, wherein the jig is formed as a column body in which a lower end surface is brought into close contact with an upper surface of the stage. 前記治具が、鍔部の底面を前記ステージの上面に密着させ、鍔部の上面に被処理体の下端を載せるシルクハット型断面の柱状体として形成されていることを特徴とする請求項2に記載の炭素繊維の成膜方法。   3. The jig is formed as a columnar body having a top-hat cross section in which a bottom surface of a collar portion is brought into close contact with an upper surface of the stage, and a lower end of an object to be processed is placed on the top surface of the collar portion. The method for forming a carbon fiber described in 1. 前記治具が、前記被処理体よりも熱膨張率の大きい材料で構成されていることを特徴とする請求項2〜4のいずれかに記載の炭素繊維の成膜方法。   The carbon fiber film forming method according to claim 2, wherein the jig is made of a material having a larger coefficient of thermal expansion than the object to be processed. 前記筒状の被処理体としての中空筒状の陰極体を有し、且つ、その内部に前記加熱体としてのヒータコイルを配したマグネトロンカソードを成膜装置の真空チャンバ内に配置し、前記ヒータコイルに電流を流してヒータコイルを自己発熱させることで、前記陰極体をその内側面から加熱して、被処理体である陰極体の外側面に成膜処理を施すことを特徴とする請求項1に記載の炭素繊維の成膜方法。   A magnetron cathode having a hollow cylindrical cathode body as the cylindrical object to be processed and having a heater coil as the heating body disposed therein is disposed in a vacuum chamber of a film forming apparatus, and the heater The current is applied to the coil to cause the heater coil to self-heat, whereby the cathode body is heated from its inner side surface, and a film forming process is performed on the outer side surface of the cathode body as the object to be processed. 2. The carbon fiber deposition method according to 1. 請求項2〜5のいずれかに記載の成膜方法を実施するための成膜装置であって、
真空排気が可能な真空チャンバと、該真空チャンバ内の底部に配置され上面に被処理体が載置されるステージと、該ステージを加熱するヒータと、前記真空チャンバ内に炭素繊維の成膜に必要な処理ガスを供給する処理ガス供給系と、前記ステージの上面に自身の下面を密着させて立設され且つ自身の外周面を筒状の被処理体の内側面に密着させた状態で被処理体の内部に挿入される高熱伝導材料製の円柱状の治具と、を具備することを特徴とする炭素繊維の成膜装置。
A film forming apparatus for carrying out the film forming method according to claim 2,
A vacuum chamber that can be evacuated, a stage that is disposed at the bottom of the vacuum chamber and on which an object to be processed is placed, a heater that heats the stage, and a film formation of carbon fiber in the vacuum chamber A processing gas supply system for supplying a necessary processing gas; and a standing state in which the lower surface of the stage is in close contact with the upper surface of the stage and the outer peripheral surface of the stage is in close contact with the inner surface of the cylindrical object to be processed. A carbon fiber film forming apparatus comprising: a cylindrical jig made of a high thermal conductivity material inserted into a treatment body.
請求項6に記載の成膜方法の実施により、陰極体の外面に炭素繊維膜が生成されたことを特徴とする冷陰極型のマグネトロンカソード。   A cold cathode type magnetron cathode, wherein a carbon fiber film is formed on the outer surface of the cathode body by performing the film forming method according to claim 6.
JP2004233028A 2004-08-10 2004-08-10 Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method Pending JP2006052422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233028A JP2006052422A (en) 2004-08-10 2004-08-10 Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233028A JP2006052422A (en) 2004-08-10 2004-08-10 Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method

Publications (1)

Publication Number Publication Date
JP2006052422A true JP2006052422A (en) 2006-02-23

Family

ID=36030084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233028A Pending JP2006052422A (en) 2004-08-10 2004-08-10 Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method

Country Status (1)

Country Link
JP (1) JP2006052422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013181A (en) * 2019-04-18 2019-07-16 碳翁(北京)科技有限公司 A kind of multi-functional roasting plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013181A (en) * 2019-04-18 2019-07-16 碳翁(北京)科技有限公司 A kind of multi-functional roasting plant

Similar Documents

Publication Publication Date Title
KR20190032077A (en) Remote plasma-based atomic layer deposition system
JP2006196677A (en) Plasma processing device, and semiconductor element manufactured by the same
JP4644347B2 (en) Method for forming graphite nanofiber thin film by thermal CVD
US5007373A (en) Spiral hollow cathode
JP4185483B2 (en) Plasma processing equipment
US7842135B2 (en) Equipment innovations for nano-technology aquipment, especially for plasma growth chambers of carbon nanotube and nanowire
JP6672557B2 (en) Apparatus and method for applying a carbon layer
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
JP5030850B2 (en) Plasma processing equipment
JP2006306704A (en) Method of forming carbon film and carbon film
JP2006052422A (en) Film deposition method for carbon fiber, film deposition system and magnetron cathode produced by the method
JP2011060944A (en) Heat conductor including carbon nanotube and method of manufacturing the same, and heat treatment apparatus including the heat conductor
JP2008075122A (en) Plasma cvd apparatus and plasma cvd method
KR20080079263A (en) Differentiated-temperature reaction chamber
JP4881504B2 (en) Selective formation method of graphite nanofiber thin film by thermal CVD method
US11410869B1 (en) Electrostatic chuck with differentiated ceramics
CN115014084A (en) Sintering furnace and method for preparing tantalum carbide coating on surface of graphite substrate
JP4353601B2 (en) Plasma CVD equipment
JP4781662B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
JP2005255492A (en) Apparatus and method of manufacturing carbon nano-structure
JPWO2005038080A1 (en) NOZZLE WITH NANO-SIZE HEATER, ITS MANUFACTURING METHOD, AND MICRO THIN FILM
JP2008293967A (en) Electron source and method of manufacturing electron source
CN105658841B (en) Surface processing equipment and surface treatment method
JP4714328B2 (en) Method for controlling the diameter of graphite nanofibers
JP4387330B2 (en) Material feeder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A7424