JP2006052418A - METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY - Google Patents

METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY Download PDF

Info

Publication number
JP2006052418A
JP2006052418A JP2004232587A JP2004232587A JP2006052418A JP 2006052418 A JP2006052418 A JP 2006052418A JP 2004232587 A JP2004232587 A JP 2004232587A JP 2004232587 A JP2004232587 A JP 2004232587A JP 2006052418 A JP2006052418 A JP 2006052418A
Authority
JP
Japan
Prior art keywords
titanium alloy
hydrogen
alloy
plastic working
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232587A
Other languages
Japanese (ja)
Other versions
JP4402541B2 (en
Inventor
Hirobumi Yoshimura
博文 吉村
Jun Nakahigashi
潤 中東
Hiroyuki Horimura
弘幸 堀村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGYO KAGAKU KENKYUSHO
Honda Motor Co Ltd
Original Assignee
NIPPON SANGYO KAGAKU KENKYUSHO
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGYO KAGAKU KENKYUSHO, Honda Motor Co Ltd filed Critical NIPPON SANGYO KAGAKU KENKYUSHO
Priority to JP2004232587A priority Critical patent/JP4402541B2/en
Publication of JP2006052418A publication Critical patent/JP2006052418A/en
Application granted granted Critical
Publication of JP4402541B2 publication Critical patent/JP4402541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an α+β type titanium alloy with a reduced number of forming steps. <P>SOLUTION: This manufacturing method comprises: a hydrogen absorption step of making the α+β type titanium alloy absorb hydrogen by holding the alloy in high-temperature hydrogen gas; a solution heat treatment step of subjecting the titanium alloy having absorbed hydrogen to solution heat treatment which heats the titanium alloy to the β-transformation temperature or higher, and then quenches it; a hot plastic working step of plastic-working the solution-treated titanium alloy with a hot working rate of 15% or higher per one time, for a plurality of times to refine crystals, so that the titanium alloy may not cause crack; and a dehydrogenation step of removing hydrogen from the titanium alloy after having been plastic-worked, by immediately holding it in a high temperature and vacuum atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、α+β型チタン合金組織の微細化技術に関する。   The present invention relates to a technique for refining an α + β type titanium alloy structure.

金属材料の中で、チタン合金は機械的性質に優れ且つ軽量であることから種々の用途に供されている。ただし、通常の加工方法では結晶の粒径が大きくなり、機械強度が低下することから、その対策として水素処理技術が開発された(例えば、特許文献1参照。)。
特開2002−88456公報(段落番号[0010]、請求項1)
Among metal materials, titanium alloys have excellent mechanical properties and are lightweight, and thus are used for various applications. However, since the crystal grain size is increased and the mechanical strength is reduced in a normal processing method, a hydrogen treatment technique has been developed as a countermeasure (for example, see Patent Document 1).
JP 2002-88456 A (paragraph number [0010], claim 1)

特許文献1は、その段落番号[0010]「本発明法においては、水素の添加によりβ変態点が低下して、従来よりも低温域での熱間加工が可能となる。」の記載から明らかなように、熱間塑性加工をより低温域で実施することで、結晶の粗大化が抑制でき、結果として塑性加工後の結晶微細化が達成でき、結晶が微細であれば機械的性質を高めることができるというものである。
なお、塑性加工とは、圧延成形および鍛造成形を含む。
Patent Document 1 is clear from the description of paragraph [0010], “In the method of the present invention, the β transformation point is lowered by the addition of hydrogen, and hot working in a lower temperature range is possible than before”. Thus, by carrying out hot plastic working in a lower temperature range, it is possible to suppress the coarsening of the crystal, and as a result, crystal refinement after plastic working can be achieved. If the crystal is fine, the mechanical properties are enhanced. It can be done.
The plastic working includes rolling forming and forging forming.

そして、特許文献1の請求項1に「α+β型チタン合金に重量%にて水素を0.2〜1.0%添加した材料を、650〜850℃の温度にて加工率70%超の加工を行い、その後真空中で550〜680℃にて水素を除去する・・・略・・・」と発明の要旨が記載されている。そして、実施例ではα+β型チタン合金は、Ti−6Al−4V合金(段落番号[0016]第2行)が明示されている。   Further, claim 1 of Patent Document 1 states that “a material obtained by adding 0.2 to 1.0% of hydrogen by weight% to an α + β type titanium alloy at a temperature of 650 to 850 ° C. with a processing rate exceeding 70%. After that, the hydrogen is removed at 550 to 680 ° C. in vacuum. In the examples, Ti-6Al-4V alloy (paragraph number [0016] second line) is clearly shown as the α + β type titanium alloy.

本発明者らは、特許文献1の発明内容を確認するために実験を行った。その内容を次の表に示す。   The present inventors conducted an experiment to confirm the contents of the invention of Patent Document 1. The contents are shown in the following table.

Figure 2006052418
Figure 2006052418

材料はTi−6Al−4V合金であって、この合金に水素を0.5質量%吸蔵させ、750℃で塑性加工を実施した。   The material was a Ti-6Al-4V alloy, and 0.5 mass% of hydrogen was occluded in this alloy, and plastic working was performed at 750 ° C.

試験番号1では、1回(段)あたりの加工率を5%に設定し、総加工率が70%に到達するように熱間塑性加工を実施した。この総加工率を達成するための加工回数(段数)は24段であった。塑性加工後、脱水素処理を施し、材料の断面を調べたところ割れは認められなかった。   In test number 1, the processing rate per time (stage) was set to 5%, and hot plastic working was performed so that the total processing rate reached 70%. The number of machining steps (stages) to achieve this total machining rate was 24. After plastic working, dehydrogenation treatment was performed, and when a cross section of the material was examined, no cracks were observed.

試験番号2では、1回(段)あたりの加工率を10%に設定し、総加工率が70%に到達するように熱間塑性加工を実施した。この総加工率を達成するための加工回数(段数)は12段であった。塑性加工後、脱水素処理を施し、材料の断面を調べたところ割れは認められなかった。   In test number 2, the processing rate per time (stage) was set to 10%, and hot plastic working was performed so that the total processing rate reached 70%. The number of times of machining (number of stages) for achieving this total machining rate was 12 stages. After plastic working, dehydrogenation treatment was performed, and when a cross section of the material was examined, no cracks were observed.

試験番号3では、1回(段)あたりの加工率を15%に設定し、総加工率が70%に到達するように熱間塑性加工を実施した。この総加工率を達成するための加工回数(段数)は8段であった。塑性加工途中で目視で確認できる割れが発生し、不合格であった。   In test number 3, the processing rate per time (stage) was set to 15%, and the hot plastic working was performed so that the total processing rate reached 70%. The number of times of machining (number of stages) for achieving this total machining rate was 8 stages. The crack which can be visually confirmed in the middle of plastic working occurred, and it failed.

以上の実験から、1回の加工率は10%が上限であり、この10%で必要段数は12段であった。
現在、常用されている多段熱間圧延機は10段が上限である。加工率10%では12段、加工率5%であれば24段が必要であるため、新規に専用設備を用意する必要がある。
From the above experiment, the upper limit of the processing rate per process is 10%, and the required number of steps is 12 at 10%.
Currently, the upper limit of a multi-stage hot rolling mill that is commonly used is 10 stages. Since 12 steps are required at a processing rate of 10% and 24 steps are required at a processing rate of 5%, it is necessary to newly prepare dedicated equipment.

10段を超える超多段熱間圧延機に変えるとすれば設備費用が倍増する。また、一度圧延機を通った素材を、再び加熱して別の圧延機に通すためには、やはり新規な専用設備が必要となる。   If it is changed to a super multi-stage hot rolling mill exceeding 10 stages, the equipment cost is doubled. In addition, in order to heat the material once passed through the rolling mill and pass it through another rolling mill, a new dedicated facility is still necessary.

本発明は、α+β型チタン合金において、加工回数を減少させることができる製造方法を提供することを課題とする。   This invention makes it a subject to provide the manufacturing method which can reduce the frequency | count of a process in an alpha + beta type titanium alloy.

上記課題を解決するために本発明者らは、種々の検討を行い、その過程で次の知見を得た。
そもそもチタン合金の水素処理は、チタン合金に水素を吸蔵させた後に熱間で塑性加工処理を行い、合金中に歪みを導入することによって水素化物を均一微細に析出させ、再結晶による微細組織形成の核とすることで、結晶粒の微細化を図ることを目的とする。
In order to solve the above problems, the present inventors have made various studies and obtained the following knowledge in the process.
In the first place, the hydrogen treatment of titanium alloys is performed by hot plastic processing after the titanium alloy occludes hydrogen, and by introducing strain into the alloy, the hydride precipitates uniformly and finely, and the microstructure is formed by recrystallization. The purpose of this is to make the crystal grains finer.

ところで、合金品質の向上を目的に添加したAlは、添加量が過大であるとチタン水素化物を生成しやすくする。このチタン水素化物は延性を低下させ、加工率を上げると割れを誘発する。このことが従来、1回の加工率を10%に留めざるを得ない理由の一つである。   By the way, Al added for the purpose of improving the alloy quality makes it easy to produce titanium hydride if the added amount is excessive. This titanium hydride reduces ductility and induces cracking when the processing rate is increased. This is one of the reasons why the processing rate of one time has been limited to 10%.

この知見から、割れの発生を抑え、加工率を高める手法としてAlの添加量を削減することが有効であることに想到した。
具体的には、Alを半減し、Vをほぼ半減し、2.5〜3.5質量%のアルミニウムと2.0〜3.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金を出発材料とする。
From this knowledge, it was conceived that it is effective to reduce the addition amount of Al as a technique for suppressing the occurrence of cracking and increasing the processing rate.
Specifically, Ti-3Al-2., Which is obtained by halving Al, substantially halving V, and adding 2.5 to 3.5 mass% aluminum and 2.0 to 3.0 mass% vanadium. A 5V alloy is used as a starting material.

出発材料の組成が変われば、この組成により適合した処理条件を見つける必要がある。そこで、処理条件を検討する。
次表は水素吸蔵と組織の関係を調べた試験の内容と結果を示す。
If the composition of the starting material changes, it is necessary to find processing conditions that are more suitable for this composition. Therefore, the processing conditions are examined.
The following table shows the contents and results of a test that investigated the relationship between hydrogen storage and structure.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2.5V合金、塑性加工開始温度は(β変態−100=580℃)、1回の加工率は15%、総加工率は80%とした。   In any case, the material was a Ti-3Al-2.5V alloy, the plastic processing start temperature was (β transformation−100 = 580 ° C.), the processing rate per process was 15%, and the total processing rate was 80%.

試験番号4では、比較対象のため水素を吸蔵させなかった。処理後の組織を調べたところ、粒径は3〜5μmであり、微細化効果は無かった。なお、平均粒径が1μmを超えると粗大、1μm未満を微細と判定する。
試験番号5は、水素を0.2質量%吸蔵させた。処理後の組織を調べたところ、良好な微細化が確認できた。
In test number 4, hydrogen was not occluded for comparison. When the structure after the treatment was examined, the particle diameter was 3 to 5 μm, and there was no effect of miniaturization. When the average particle size exceeds 1 μm, it is determined that the coarse particle size is less than 1 μm.
Test No. 5 occluded 0.2% by mass of hydrogen. When the structure after the treatment was examined, it was confirmed that the fine structure was good.

試験番号6〜8は、水素を0.4質量%、0.6質量%、0.8質量%吸蔵させた。処理後の組織を調べたところ、良好な微細化が確認できた。
試験番号9は、水素を1.0質量%吸蔵させた。処理後の組織を調べたところ、微細化は得られたが均一性が得られなかった。
Test Nos. 6 to 8 occluded 0.4 mass%, 0.6 mass%, and 0.8 mass% of hydrogen. When the structure after the treatment was examined, it was confirmed that the fine structure was good.
Test No. 9 occluded 1.0 mass% of hydrogen. Examination of the treated structure revealed that it was refined but not uniform.

従って、Ti−3Al−2.5V合金で良好な微細化組織を得るには、水素吸蔵量は0.2〜0.8質量%に設定する必要がある。   Therefore, in order to obtain a fine microstructure with the Ti-3Al-2.5V alloy, the hydrogen storage amount needs to be set to 0.2 to 0.8 mass%.

次に塑性加工開始温度を検討したので、その内容と結果を次表に示す。   Next, since the plastic processing start temperature was examined, the contents and results are shown in the following table.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2.5V合金、水素吸蔵は0.5質量%、1回の加工率は15%、総加工率は80%とした。   In any case, the material was Ti-3Al-2.5V alloy, the hydrogen storage was 0.5% by mass, the processing rate at one time was 15%, and the total processing rate was 80%.

試験番号10では、塑性加工開始温度をβ−290(390℃)として塑性加工を実施した。低温であるため延性が低下する。この状態で塑性加工したため割れが発生した。
試験番号11〜13では、塑性加工開始温度を高めて、それぞれβ−225(455℃)、β−100(580℃)、β−50(630℃)として塑性加工を実施した。割れは発生しなかった。その他の処理を施し組織を調べたところ、良好な微細化が確認できた。
試験番号14では、塑性加工開始温度をβ+50(730℃)として塑性加工を実施した。β変態点以上で塑性加工を開始したため異常な組織となった。
In test number 10, the plastic working was carried out at a plastic working start temperature of β-290 (390 ° C.). The ductility decreases because of the low temperature. Cracking occurred because of plastic working in this state.
In Test Nos. 11 to 13, the plastic working start temperature was increased, and plastic working was performed as β-225 (455 ° C.), β-100 (580 ° C.), and β-50 (630 ° C.), respectively. No cracking occurred. When other structures were applied and the structure was examined, it was confirmed that the structure was fine.
In test number 14, the plastic working was performed at a plastic working start temperature of β + 50 (730 ° C.). Since the plastic working was started above the β transformation point, the structure became abnormal.

従って、Ti−3Al−2.5V合金で割れが無く、良好な微細化組織を得るには、塑性加工開始温度は、(β変態点−225℃)以上(β変態点−50℃)以下に設定する必要がある。   Therefore, in order to obtain a fine microstructure without cracking in the Ti-3Al-2.5V alloy, the plastic working start temperature is (β transformation point −225 ° C.) or more and (β transformation point −50 ° C.) or less. Must be set.

次に1回の加工率を検討したので、その内容と結果を次表に示す。
なお、1回の加工率は、(塑性加工量/直前の厚さ)で定義する。例えば、直前(塑性加工前)の厚さが90mm、塑性加工後の厚さが81mmであれば、塑性加工量は9mm(=90−81)、加工率は10%(=9/90)となる。直前の厚さは、一定値ではなく、回が進むに連れて小さくなる。
Next, since the processing rate of one time was examined, the contents and results are shown in the following table.
In addition, the processing rate of 1 time is defined by (the amount of plastic processing / the thickness immediately before). For example, if the thickness immediately before (before plastic processing) is 90 mm and the thickness after plastic processing is 81 mm, the amount of plastic processing is 9 mm (= 90-81), and the processing rate is 10% (= 9/90). Become. The immediately preceding thickness is not a constant value and decreases as the turn proceeds.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2.5V合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=580℃)、総加工率は70%とした。   In any case, the material was Ti-3Al-2.5V alloy, the hydrogen occlusion was 0.5% by mass, the plastic processing start temperature was (β transformation−100 = 580 ° C.), and the total processing rate was 70%.

試験番号15では、1回の加工率を10%に設定して塑性加工を実施した。割れは発生しなかったが、加工回数は12段になり、10段を超えているので工業的な生産性の確保は困難である。
試験番号16では、1回の加工率を15%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は8段で10段以下に収まった。
試験番号17では、1回の加工率を20%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は6段で10段以下に収まった。
試験番号18では、1回の加工率を25%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は5段で10段以下に収まった。
試験番号19では、1回の加工率を30%に設定して塑性加工を実施したところ、割れが発生した。
In test number 15, plastic working was carried out with the rate of processing at one time set to 10%. Although cracking did not occur, the number of machining operations was 12 steps, and since it exceeded 10 steps, it was difficult to ensure industrial productivity.
In test number 16, plastic working was carried out with the processing rate per time set to 15%. No cracking occurred. The number of machining operations was 8 steps, which was less than 10 steps.
In Test No. 17, plastic working was performed with the processing rate per time set to 20%. No cracking occurred. The number of machining operations was 6 steps, which was less than 10 steps.
In test number 18, plastic working was carried out with the rate of one process set at 25%. No cracking occurred. The number of machining operations was 5 steps, which was less than 10 steps.
In Test No. 19, cracking occurred when plastic processing was performed with the processing rate per process set to 30%.

従って、Ti−3Al−2.5V合金で割れが無く、加工回数を少なくするには、1回の加工率は15%〜25%に設定する必要がある。   Therefore, the Ti-3Al-2.5V alloy is free from cracks, and in order to reduce the number of times of processing, it is necessary to set the processing rate of one time to 15% to 25%.

次に総加工率を検討したので、その内容と結果を次表に示す。なお、総加工率は、(総塑性加工量/最初の厚さ)で定義する。例えば、最初の厚さが100mm、複数回の塑性加工を実施した後の厚さが26mmであれば、塑性加工量は74mm(=100−26)、総加工率は74%(=74/100)となる。最初の厚さは塑性加工開始前の厚さであるから、一定である。   Next, since the total processing rate was examined, the contents and results are shown in the following table. The total processing rate is defined by (total plastic processing amount / initial thickness). For example, if the initial thickness is 100 mm and the thickness after a plurality of plastic workings is 26 mm, the plastic working amount is 74 mm (= 100−26) and the total working rate is 74% (= 74/100). ) Since the initial thickness is the thickness before plastic processing starts, it is constant.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2.5V合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=580℃)、1回の加工率は15%とした。   In any case, the material was Ti-3Al-2.5V alloy, the hydrogen storage was 0.5% by mass, the plastic processing start temperature was (β transformation−100 = 580 ° C.), and the processing rate at one time was 15%.

試験番号20では、総加工率を50%に設定して塑性加工を実施した。塑性加工不十分のため十分な微細化が得られなかった。
試験番号21では、総加工率を60%に設定して塑性加工を実施した。良好な微細化が得られた。
試験番号22、23では、総加工率を70%、80%に設定して塑性加工を実施した。良好な微細化が得られた。
In test number 20, plastic working was performed with the total working rate set to 50%. A sufficient miniaturization could not be obtained due to insufficient plastic working.
In test number 21, plastic working was performed with the total working rate set to 60%. Good miniaturization was obtained.
In test numbers 22 and 23, plastic working was performed with the total working rate set to 70% and 80%. Good miniaturization was obtained.

従って、Ti−3Al−2.5V合金で良好な微細化組織を得るには、総加工率は60%以上にする必要がある。   Therefore, in order to obtain a good microstructure with the Ti-3Al-2.5V alloy, the total processing rate needs to be 60% or more.

以上をまとめると請求項1に係る発明は、α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
準備するα+β型チタン合金は、チタンに2.5〜3.5質量%のアルミニウムと2.0〜3.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金であり、
水素吸蔵処理工程では、チタン合金に0.2〜0.8質量%の水素を吸蔵させ、
熱間塑性加工工程では、塑性加工開始温度は(β変態点−225℃)以上(β変態点−50℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも60%に設定して複数回の塑性加工を実施することを特徴とする。
In summary, the invention according to claim 1 provides an α + β-type titanium alloy, a hydrogen storage treatment step of storing hydrogen by holding the titanium alloy in a high-temperature hydrogen gas, and titanium storing the hydrogen. A solution treatment process in which the alloy is heated to the β transformation point or higher and then rapidly cooled, and a hot plastic working process in which the crystal is refined by hot plastic processing of the titanium alloy after the treatment. And a dehydrogenation process for removing hydrogen by holding the titanium alloy after plastic working at a high temperature in a vacuum,
The α + β type titanium alloy to be prepared is a Ti-3Al-2.5V alloy obtained by adding 2.5 to 3.5 mass% aluminum and 2.0 to 3.0 mass% vanadium to titanium,
In the hydrogen storage treatment step, 0.2 to 0.8 mass% of hydrogen is stored in the titanium alloy,
In the hot plastic working step, the plastic working start temperature is set to (β transformation point−225 ° C.) or more and (β transformation point−50 ° C.) or less, and is defined as (plastic working amount / previous thickness). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 60%, and the plastic processing is performed a plurality of times.

以上、Ti−3Al−2.5V合金を出発材料とした例を述べた。次に、出発材料をTi−3Al−2V−0.1S合金とした場合の例を述べる。   In the above, the example which used the Ti-3Al-2.5V alloy as the starting material was described. Next, an example in which the starting material is a Ti-3Al-2V-0.1S alloy will be described.

すなわち、Alを半減し、Vをほぼ半減し、2.7〜3.5質量%のアルミニウムと1.6〜3.4質量%のバナジウムを添加し、0.05〜0.20質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金を出発材料とする。   That is, Al is halved, V is almost halved, 2.7 to 3.5 mass% aluminum and 1.6 to 3.4 mass% vanadium are added, and 0.05 to 0.20 mass% A Ti-3Al-2V-0.1S alloy to which sulfur is added is used as a starting material.

出発材料の組成が変われば、この組成により適合した処理条件を見つける必要がある。そこで、処理条件を検討する。
次表は水素吸蔵と組織の関係を調べた試験の内容と結果を示す。
If the composition of the starting material changes, it is necessary to find processing conditions that are more suitable for this composition. Therefore, the processing conditions are examined.
The following table shows the contents and results of a test that investigated the relationship between hydrogen storage and structure.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2V−0.1S合金、塑性加工開始温度は(β変態−100=600℃)、1回の加工率は15%、総加工率は80%とした。   In all cases, the material was a Ti-3Al-2V-0.1S alloy, the plastic processing start temperature was (β transformation−100 = 600 ° C.), the processing rate per process was 15%, and the total processing rate was 80%.

試験番号24では、比較対象のため水素を吸蔵させなかった。処理後の組織を調べたところ、粒径は3〜5μmであり、微細化効果は無かった。なお、平均粒径が1μmを超えると粗大、1μm未満を微細と判定する。
試験番号25〜27は、水素を0.2質量%、0.4質量%、0.6質量%吸蔵させた。処理後の組織を調べたところ、良好な微細化が確認できた。
In test number 24, hydrogen was not occluded for comparison. When the structure after the treatment was examined, the particle diameter was 3 to 5 μm, and there was no effect of miniaturization. When the average particle size exceeds 1 μm, it is determined that the coarse particle size is less than 1 μm.
Test numbers 25 to 27 occluded 0.2 mass%, 0.4 mass%, and 0.6 mass% of hydrogen. When the structure after the treatment was examined, it was confirmed that the fine structure was good.

試験番号28は、水素を0.7質量%吸蔵させた。総加工率が40%で、割れが発生した。処理後の組織を調べたところ、微細化は得られたが均一性が得られなかった。
試験番号29は、水素を1.0質量%吸蔵させた。総加工率が20%で、割れが発生した。処理後の組織を調べたところ、微細化は得られたが均一性が得られなかった。
Test No. 28 occluded 0.7% by mass of hydrogen. Cracks occurred at a total processing rate of 40%. Examination of the treated structure revealed that it was refined but not uniform.
Test No. 29 occluded 1.0 mass% of hydrogen. Cracks occurred at a total processing rate of 20%. Examination of the treated structure revealed that it was refined but not uniform.

従って、Ti−3Al−2V−0.1S合金で良好な微細化組織を得るには、水素吸蔵量は0.2〜0.6質量%に設定する必要がある。   Therefore, in order to obtain a fine microstructure with the Ti-3Al-2V-0.1S alloy, the hydrogen storage amount needs to be set to 0.2 to 0.6 mass%.

次に塑性加工開始温度を検討したので、その内容と結果を次表に示す。   Next, since the plastic processing start temperature was examined, the contents and results are shown in the following table.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2V−0.1S合金、水素吸蔵は0.5質量%、1回の加工率は15%、総加工率は80%とした。   In any case, the material was a Ti-3Al-2V-0.1S alloy, the hydrogen storage was 0.5% by mass, the processing rate at one time was 15%, and the total processing rate was 80%.

試験番号30では、塑性加工開始温度をβ−150(550℃)として塑性加工を実施した。低温であるため延性が低下する。この状態で塑性加工したため割れが発生した。
試験番号31〜33では、塑性加工開始温度を高めて、それぞれβ−125(575℃)、β−100(600℃)、β−50(650℃)として塑性加工を実施した。割れは発生しなかった。その他の処理を施し組織を調べたところ、良好な微細化が確認できた。
試験番号34では、塑性加工開始温度をβ+50(750℃)として塑性加工を実施した。β変態点以上で塑性加工を開始したため異常な組織となった。
In test number 30, the plastic working was carried out at a plastic working start temperature of β-150 (550 ° C.). The ductility decreases because of the low temperature. Cracking occurred because of plastic working in this state.
In Test Nos. 31 to 33, the plastic working start temperature was raised, and plastic working was performed as β-125 (575 ° C.), β-100 (600 ° C.), and β-50 (650 ° C.), respectively. No cracking occurred. When other structures were applied and the structure was examined, it was confirmed that the structure was fine.
In test number 34, the plastic working was performed at a plastic working start temperature of β + 50 (750 ° C.). Since the plastic working was started above the β transformation point, the structure became abnormal.

従って、Ti−3Al−2V−0.1S合金で割れが無く、良好な微細化組織を得るには、塑性加工開始温度は、(β変態点−125℃)以上(β変態点−50℃)以下に設定する必要がある。   Therefore, in order to obtain a fine microstructure without cracks in the Ti-3Al-2V-0.1S alloy, the plastic working start temperature is (β transformation point −125 ° C.) or more (β transformation point −50 ° C.). Must be set to:

次に1回の加工率を検討したので、その内容と結果を次表に示す。
なお、1回の加工率は、(塑性加工量/直前の厚さ)で定義する。例えば、直前(塑性加工前)の厚さが90mm、塑性加工後の厚さが81mmであれば、塑性加工量は9mm(=90−81)、加工率は10%(=9/90)となる。直前の厚さは、一定値ではなく、回が進むに連れて小さくなる。
Next, since the processing rate of one time was examined, the contents and results are shown in the following table.
In addition, the processing rate of 1 time is defined by (the amount of plastic processing / the thickness immediately before). For example, if the thickness immediately before (before plastic processing) is 90 mm and the thickness after plastic processing is 81 mm, the amount of plastic processing is 9 mm (= 90-81), and the processing rate is 10% (= 9/90). Become. The immediately preceding thickness is not a constant value and decreases as the turn proceeds.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2V−0.1S合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=600℃)、総加工率は70%とした。   In any case, the material was Ti-3Al-2V-0.1S alloy, the hydrogen storage was 0.5 mass%, the plastic processing start temperature was (β transformation−100 = 600 ° C.), and the total processing rate was 70%.

試験番号35では、1回の加工率を10%に設定して塑性加工を実施した。割れは発生しなかったが、加工回数は12段になり、10段を超えているので工業的な生産性の確保は困難である。
試験番号36では、1回の加工率を15%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は8段で10段以下に収まった。
試験番号37では、1回の加工率を20%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は6段で10段以下に収まった。
試験番号38では、1回の加工率を25%に設定して塑性加工を実施したところ、割れが発生した。
In test number 35, the plastic working was performed with the processing rate per time set to 10%. Although cracking did not occur, the number of machining operations was 12 steps, and since it exceeded 10 steps, it was difficult to ensure industrial productivity.
In the test number 36, the plastic working was performed by setting the processing rate at one time to 15%. No cracking occurred. The number of machining operations was 8 steps, which was less than 10 steps.
In test number 37, the plastic working was carried out with the rate of processing at one time set to 20%. No cracking occurred. The number of machining operations was 6 steps, which was less than 10 steps.
In Test No. 38, cracking occurred when plastic processing was performed with the processing rate of one time set at 25%.

従って、Ti−3Al−2V−0.1S合金で割れが無く、加工回数を少なくするには、1回の加工率は15%〜20%に設定する必要がある。   Therefore, the Ti-3Al-2V-0.1S alloy is free from cracks, and in order to reduce the number of times of processing, it is necessary to set the processing rate of one time to 15% to 20%.

次に総加工率を検討したので、その内容と結果を次表に示す。なお、総加工率は、(総塑性加工量/最初の厚さ)で定義する。例えば、最初の厚さが100mm、複数回の塑性加工を実施した後の厚さが26mmであれば、塑性加工量は74mm(=100−26)、総加工率は74%(=74/100)となる。最初の厚さは塑性加工開始前の厚さであるから、一定である。   Next, since the total processing rate was examined, the contents and results are shown in the following table. The total processing rate is defined by (total plastic processing amount / initial thickness). For example, if the initial thickness is 100 mm and the thickness after a plurality of plastic workings is 26 mm, the plastic working amount is 74 mm (= 100−26) and the total working rate is 74% (= 74/100). ) Since the initial thickness is the thickness before plastic processing starts, it is constant.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−3Al−2V−0.1S合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=600℃)、1回の加工率は15%とした。   In any case, the material is Ti-3Al-2V-0.1S alloy, the hydrogen storage is 0.5 mass%, the plastic processing start temperature is (β transformation−100 = 600 ° C.), and the one-time processing rate is 15%. .

試験番号39では、総加工率を40%に設定して塑性加工を実施した。塑性加工不十分のため十分な微細化が得られなかった。
試験番号40では、総加工率を60%に設定して塑性加工を実施した。塑性加工不十分のため十分な微細化が得られなかった。
試験番号41、42では、総加工率を70%、80%に設定して塑性加工を実施した。良好な微細化が得られた。
In test number 39, plastic working was performed with the total working rate set to 40%. A sufficient miniaturization could not be obtained due to insufficient plastic working.
In test number 40, the total working rate was set to 60% and plastic working was performed. A sufficient miniaturization could not be obtained due to insufficient plastic working.
In test numbers 41 and 42, the plastic working was performed with the total working rate set to 70% and 80%. Good miniaturization was obtained.

従って、Ti−3Al−2V−0.1S合金で良好な微細化組織を得るには、総加工率は70%以上にする必要がある。   Therefore, in order to obtain a good microstructure with the Ti-3Al-2V-0.1S alloy, the total processing rate needs to be 70% or more.

以上をまとめると請求項2に係る発明は、α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
準備するα+β型チタン合金は、チタンに2.7〜3.5質量%のアルミニウムと1.6〜3.4質量%のバナジウムと0.05〜0.20質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金であり、
水素吸蔵処理工程では、チタン合金に0.2〜0.6質量%の水素を吸蔵させ、
熱間塑性加工工程では、塑性加工開始温度は(β変態点−125℃)以上(β変態点−50℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも70%に設定して複数回の塑性加工を実施することを特徴とする。
In summary, the invention according to claim 2 provides an α + β-type titanium alloy, a hydrogen storage treatment step of storing hydrogen by holding the titanium alloy in a high-temperature hydrogen gas, and titanium storing the hydrogen. A solution treatment process in which the alloy is heated to the β transformation point or higher and then rapidly cooled, and a hot plastic working process in which the crystal is refined by hot plastic processing of the titanium alloy after the treatment. And a dehydrogenation process for removing hydrogen by holding the titanium alloy after plastic working at a high temperature in a vacuum,
The α + β type titanium alloy to be prepared is obtained by adding 2.7 to 3.5 mass% aluminum, 1.6 to 3.4 mass% vanadium, and 0.05 to 0.20 mass% sulfur to titanium. Ti-3Al-2V-0.1S alloy,
In the hydrogen storage process, 0.2 to 0.6 mass% of hydrogen is stored in the titanium alloy,
In the hot plastic working process, the plastic working start temperature is set to (β transformation point−125 ° C.) or more and (β transformation point−50 ° C.) or less, and is defined as (plastic working amount / previous thickness). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 70%.

本発明では水素化物を形成しない元素であるAlの添加量を減ずることで、熱間塑性加工時のチタン水素化物の析出を抑制し、素材の脆化を防ぎ、結果として割れの発生を抑制した。一方で特に室温近傍の温度域においてTi−3Al−2.5V合金などを代替可能な廉価な合金としてTi−Fe−O系同じくTi−Fe−O−N系の合金が検討されている。これらの主な強化元素はO又はOとNであり、これらの元素は素材強化の寄与率が大きいので、添加量が少なくても十分な強度を達成できる。なお、NはOと同様な効果を有するので、Ti−Fe−O系とTi−Fe−O−N系の合金は、同等のものである。   In the present invention, by reducing the amount of Al, which is an element that does not form a hydride, the precipitation of titanium hydride during hot plastic working is suppressed, embrittlement of the material is prevented, and the occurrence of cracks is consequently suppressed. . On the other hand, Ti-Fe-O alloys and Ti-Fe-O-N alloys have been studied as inexpensive alloys that can replace Ti-3Al-2.5V alloys and the like particularly in the temperature range near room temperature. These main strengthening elements are O or O and N, and since these elements have a large contribution rate of material strengthening, sufficient strength can be achieved even if the addition amount is small. Since N has the same effect as O, Ti—Fe—O and Ti—Fe—O—N alloys are equivalent.

添加量が少ないことは、水素化状態での塑性加工を考えた場合、優れた素材となることが期待される。
しかしながら水素処理は、α相単相素材ではその効果は無く、α+βの2相合金であることが必要である。Feは強力なβ安定化元素であるので、少量の添加で粒界にβ相を形成できる。
しかしながらFeはAlと同様に水素化物を形成しない元素であるので、過剰な添加はチタン水素化物の析出を促進するため好ましくない。適切な添加量を選べばTi−Fe−O系同じくTi−Fe−O−N系の合金は水素処理に好適な素材である可能性がある。
そこで、次に出発材料をTi−1Fe−0.3O合金とした例を述べる。
The small amount added is expected to be an excellent material when considering plastic working in a hydrogenated state.
However, the hydrogen treatment is not effective for α-phase single-phase materials, and it is necessary to use an α + β two-phase alloy. Since Fe is a strong β-stabilizing element, a β phase can be formed at the grain boundary with a small amount of addition.
However, since Fe is an element that does not form a hydride like Al, excessive addition is not preferable because it promotes precipitation of titanium hydride. If an appropriate addition amount is selected, a Ti—Fe—O alloy as well as a Ti—Fe—O—N alloy may be a suitable material for hydrogen treatment.
Therefore, an example in which the starting material is a Ti-1Fe-0.3O alloy will be described next.

すなわち、0.7〜2.3質量%の鉄と、0.2〜0.7質量%の酸素を添加してなるTi−1Fe−0.3O合金を出発材料とする。   That is, a Ti-1Fe-0.3O alloy obtained by adding 0.7 to 2.3 mass% of iron and 0.2 to 0.7 mass% of oxygen is used as a starting material.

出発材料の組成が変われば、この組成により適合した処理条件を見つける必要がある。そこで、処理条件を検討する。
次表は水素吸蔵と組織の関係を調べた試験の内容と結果を示す。
If the composition of the starting material changes, it is necessary to find processing conditions that are more suitable for this composition. Therefore, the processing conditions are examined.
The following table shows the contents and results of a test that investigated the relationship between hydrogen storage and structure.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−1Fe−0.3O合金、塑性加工開始温度は(β変態−100=590℃)、1回の加工率は15%、総加工率は80%とした。   In any case, the material was a Ti-1Fe-0.3O alloy, the plastic processing start temperature was (β transformation−100 = 590 ° C.), the processing rate at one time was 15%, and the total processing rate was 80%.

試験番号43では、比較対象のため水素を吸蔵させなかった。処理後の組織を調べたところ、粒径は3〜5μmであり、微細化効果は無かった。なお、平均粒径が1μmを超えると粗大、1μm未満を微細と判定する。
試験番号44では、水素を0.3質量%吸蔵させた。処理後の組織を調べたところ、不均一な組織であった。
In test number 43, hydrogen was not occluded for comparison. When the structure after the treatment was examined, the particle diameter was 3 to 5 μm, and there was no effect of miniaturization. When the average particle size exceeds 1 μm, it is determined that the coarse particle size is less than 1 μm.
In Test No. 44, 0.3% by mass of hydrogen was occluded. When the treated tissue was examined, it was a heterogeneous tissue.

試験番号45〜47は、水素を0.4質量%、0.6質量%、0.8質量%吸蔵させた。処理後の組織を調べたところ、良好な微細化が確認できた。
試験番号48は、水素を1.0質量%吸蔵させた。処理後の組織を調べたところ、微細化は得られたが均一性が得られなかった。
Test Nos. 45 to 47 occluded 0.4 mass%, 0.6 mass%, and 0.8 mass% of hydrogen. When the structure after the treatment was examined, it was confirmed that the fine structure was good.
Test No. 48 occluded 1.0 mass% of hydrogen. Examination of the treated structure revealed that it was refined but not uniform.

従って、Ti−1Fe−0.3O合金で良好な微細化組織を得るには、水素吸蔵量は0.4〜0.8質量%に設定する必要がある。   Therefore, in order to obtain a good refined structure with the Ti-1Fe-0.3O alloy, the hydrogen storage amount needs to be set to 0.4 to 0.8 mass%.

次に塑性加工開始温度を検討したので、その内容と結果を次表に示す。   Next, since the plastic processing start temperature was examined, the contents and results are shown in the following table.

Figure 2006052418
Figure 2006052418

材料はTi−1Fe−0.3O合金、水素吸蔵は0.5質量%、1回の加工率は15%、総加工率は40、80%とした。   The material was Ti-1Fe-0.3O alloy, the hydrogen occlusion was 0.5% by mass, the processing rate at one time was 15%, and the total processing rate was 40, 80%.

試験番号49では、塑性加工開始温度をβ−300(390℃)として塑性加工を実施した。低温であるため延性が低下し、総加工率は40%で、割れが発生した。
試験番号50〜52では、塑性加工開始温度を高めて、それぞれβ−275(415℃)、β−200(490℃)、β−75(615℃)として塑性加工を実施した。割れは発生しなかった。その他の処理を施し組織を調べたところ、良好な微細化が確認できた。
試験番号53では、塑性加工開始温度をβ−50(640℃)として塑性加工を実施した。不均一な組織となった。
In test number 49, the plastic working was performed at a plastic working start temperature of β-300 (390 ° C.). Since the temperature was low, the ductility decreased, the total processing rate was 40%, and cracking occurred.
In test numbers 50 to 52, the plastic working start temperature was increased, and plastic working was performed as β-275 (415 ° C.), β-200 (490 ° C.), and β-75 (615 ° C.), respectively. No cracking occurred. When other structures were applied and the structure was examined, it was confirmed that the structure was fine.
In test number 53, the plastic working was performed at a plastic working start temperature of β-50 (640 ° C.). It became a heterogeneous structure.

従って、Ti−1Fe−0.3O合金で割れが無く、良好な微細化組織を得るには、塑性加工開始温度は、(β変態点−275℃)以上(β変態点−75℃)以下に設定する必要がある。   Therefore, in order to obtain a fine microstructure without cracks in the Ti-1Fe-0.3O alloy, the plastic working start temperature is (β transformation point −275 ° C.) or more and (β transformation point −75 ° C.) or less. Must be set.

次に1回の加工率を検討したので、その内容と結果を次表に示す。
なお、1回の加工率は、(塑性加工量/直前の厚さ)で定義する。例えば、直前(塑性加工前)の厚さが90mm、塑性加工後の厚さが81mmであれば、塑性加工量は9mm(=90−81)、加工率は10%(=9/90)となる。直前の厚さは、一定値ではなく、回が進むに連れて小さくなる。
Next, since the processing rate of one time was examined, the contents and results are shown in the following table.
In addition, the processing rate of 1 time is defined by (the amount of plastic processing / the thickness immediately before). For example, if the thickness immediately before (before plastic processing) is 90 mm and the thickness after plastic processing is 81 mm, the amount of plastic processing is 9 mm (= 90-81), and the processing rate is 10% (= 9/90). Become. The immediately preceding thickness is not a constant value and decreases as the turn proceeds.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−1Fe−0.3O合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=590℃)、総加工率は70%とした。   In any case, the material was Ti-1Fe-0.3O alloy, the hydrogen storage was 0.5% by mass, the plastic processing start temperature was (β transformation−100 = 590 ° C.), and the total processing rate was 70%.

試験番号54では、1回の加工率を10%に設定して塑性加工を実施した。割れは発生しなかったが、加工回数は12段になり、10段を超えているので工業的な生産性の確保は困難である。
試験番号55では、1回の加工率を15%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は8段で10段以下に収まった。
試験番号56では、1回の加工率を20%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は6段で10段以下に収まった。
試験番号57では、1回の加工率を25%に設定して塑性加工を実施した。割れは発生しなかった。加工回数は5段で10段以下に収まった。
試験番号58では、1回の加工率を30%に設定して塑性加工を実施したところ、割れが発生した。
In the test number 54, the plastic working was performed with the processing rate per time set to 10%. Although cracking did not occur, the number of machining operations was 12 steps, and since it exceeded 10 steps, it was difficult to ensure industrial productivity.
In test number 55, the plastic working was performed with the processing rate per time set to 15%. No cracking occurred. The number of machining operations was 8 steps, which was less than 10 steps.
In test number 56, the plastic working was carried out with the rate of processing at one time set to 20%. No cracking occurred. The number of machining operations was 6 steps, which was less than 10 steps.
In the test number 57, the plastic working was performed with the processing rate of one time set to 25%. No cracking occurred. The number of machining operations was 5 steps, which was less than 10 steps.
In Test No. 58, when plastic working was performed with the processing rate per time set to 30%, cracks occurred.

従って、Ti−1Fe−0.3O合金で割れが無く、加工回数を少なくするには、1回の加工率は15%〜25%に設定する必要がある。   Therefore, the Ti-1Fe-0.3O alloy is free from cracks, and in order to reduce the number of times of processing, it is necessary to set the processing rate of one time to 15% to 25%.

次に総加工率を検討したので、その内容と結果を次表に示す。なお、総加工率は、(総塑性加工量/最初の厚さ)で定義する。例えば、最初の厚さが100mm、複数回の塑性加工を実施した後の厚さが26mmであれば、塑性加工量は74mm(=100−26)、総加工率は74%(=74/100)となる。最初の厚さは塑性加工開始前の厚さであるから、一定である。   Next, since the total processing rate was examined, the contents and results are shown in the following table. The total processing rate is defined by (total plastic processing amount / initial thickness). For example, if the initial thickness is 100 mm and the thickness after a plurality of plastic workings is 26 mm, the plastic working amount is 74 mm (= 100−26) and the total working rate is 74% (= 74/100). ) Since the initial thickness is the thickness before plastic processing starts, it is constant.

Figure 2006052418
Figure 2006052418

何れも、材料はTi−1Fe−0.3O合金、水素吸蔵は0.5質量%、塑性加工開始温度は(β変態−100=590℃)、1回の加工率は15%とした。   In any case, the material was Ti-1Fe-0.3O alloy, the hydrogen occlusion was 0.5% by mass, the plastic processing start temperature was (β transformation-100 = 590 ° C.), and the processing rate at one time was 15%.

試験番号59では、総加工率を40%に設定して塑性加工を実施した。塑性加工不十分のため十分な微細化が得られなく不均一組織となった。
試験番号60では、総加工率を60%に設定して塑性加工を実施した。塑性加工不十分のため十分な微細化が得られなく不均一組織となった。
試験番号61、62では、総加工率を70%、80%に設定して塑性加工を実施した。良好な微細化が得られた。
In test number 59, plastic working was performed with the total working rate set to 40%. Due to inadequate plastic working, sufficient fineness could not be obtained, resulting in a non-uniform structure.
In test number 60, plastic working was performed with the total working rate set to 60%. Due to inadequate plastic working, sufficient fineness could not be obtained, resulting in a non-uniform structure.
In test numbers 61 and 62, plastic working was performed with the total working rate set to 70% and 80%. Good miniaturization was obtained.

従って、Ti−1Fe−0.3O合金で良好な微細化組織を得るには、総加工率は70%以上にする必要がある。   Therefore, in order to obtain a fine microstructure with the Ti-1Fe-0.3O alloy, the total processing rate needs to be 70% or more.

以上をまとめると請求項3に係る発明は、α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
準備するα+β型チタン合金は、チタンに0.7〜2.3質量%の鉄と0.2〜0.7質量%の酸素を添加してなるTi−1Fe−0.3O合金であり、
水素吸蔵処理工程では、チタン合金に0.4〜0.8質量%の水素を吸蔵させ、
熱間塑性加工工程では、塑性加工開始温度は(β変態点−275℃)以上(β変態点−75℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも70%に設定して複数回の塑性加工を実施することを特徴とする。
In summary, the invention according to claim 3 provides an α + β-type titanium alloy, a hydrogen occlusion treatment step in which hydrogen is occluded by holding the titanium alloy in high-temperature hydrogen gas, and titanium in which hydrogen is occluded. A solution treatment process in which the alloy is heated to the β transformation point or higher and then rapidly cooled, and a hot plastic working process in which the crystal is refined by hot plastic processing of the titanium alloy after the treatment. And a dehydrogenation process for removing hydrogen by holding the titanium alloy after plastic working at a high temperature in a vacuum,
The α + β type titanium alloy to be prepared is a Ti-1Fe-0.3O alloy obtained by adding 0.7 to 2.3 mass% of iron and 0.2 to 0.7 mass% of oxygen to titanium,
In the hydrogen storage treatment step, 0.4 to 0.8% by mass of hydrogen is stored in the titanium alloy,
In the hot plastic working process, the plastic working start temperature is set to (β transformation point −275 ° C.) or more and (β transformation point −75 ° C.) or less, and is defined as (plastic working amount / previous thickness). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 70%.

請求項1に係る発明では、Alの添加量を従来のほぼ半分にしたので、吸蔵した水素が水素化物として析出することを抑制し、1回の加工率を15%以上に高めることができ、この結果、加工回数を減少し、加工時間の短縮化を達成し、生産性の向上を図ることができる。
水素吸蔵量は、0.2質量%未満では水素化の効果が期待できずに結晶粒が微細化できない。また、0.8質量%を超えると均一な組織が得られなかった。そこで、水素吸蔵量を0.2〜0.8質量%に設定することで、良好な微細化組織を得る。
In the invention according to claim 1, since the addition amount of Al is almost halved compared to the conventional amount, it is possible to suppress the occluded hydrogen from being precipitated as a hydride, and to increase the processing rate per time to 15% or more, As a result, the number of machining operations can be reduced, the machining time can be shortened, and productivity can be improved.
If the hydrogen storage amount is less than 0.2% by mass, the effect of hydrogenation cannot be expected and the crystal grains cannot be refined. Moreover, when it exceeded 0.8 mass%, the uniform structure | tissue was not obtained. Therefore, a good microstructure is obtained by setting the hydrogen storage amount to 0.2 to 0.8 mass%.

塑性加工開始温度を(β変態点−225℃)以上(β変態点−50℃)以下に設定することで、割れが無く、良好な微細化組織を得ることができる。
1回の加工率を、15%以上にすることで、加工回数を少なくし、生産性を高めることができる。
総加工率を、60%以上にすることで、良好な微細化組織を得ることができる。
By setting the plastic processing start temperature to (β transformation point −225 ° C.) or more and (β transformation point −50 ° C.) or less, there is no crack, and a good refined structure can be obtained.
By making the processing rate of 1 time 15% or more, the number of processings can be reduced and productivity can be increased.
By setting the total processing rate to 60% or more, a good microstructure can be obtained.

従って、請求項1によれば、α+β型チタン合金において、割れが発生する心配が無く、良好な微細化組織を得ることができる上に、加工回数を減少させることができる製造方法を提供することができる。   Therefore, according to the first aspect of the present invention, there is provided a manufacturing method capable of reducing the number of processings in addition to being able to obtain a favorable refined structure without fear of cracking in an α + β type titanium alloy. Can do.

請求項2に係る発明では、Alの添加量を従来のほぼ半分にしたので、吸蔵した水素が水素化物として析出することを抑制し、1回の加工率を15%以上に高めることができ、この結果、加工回数を減少し、加工時間の短縮化を達成し、生産性の向上を図ることができる。
水素吸蔵量は、0.2質量%未満では水素化の効果が期待できずに結晶粒が微細化できない。また、0.6質量%を超えると均一な組織が得られなかった。そこで、水素吸蔵量を0.2〜0.6質量%に設定することで、良好な微細化組織を得る。
In the invention according to claim 2, since the addition amount of Al is almost half that of the conventional one, it is possible to suppress the occluded hydrogen from being precipitated as a hydride, and to increase the processing rate per time to 15% or more, As a result, the number of machining operations can be reduced, the machining time can be shortened, and productivity can be improved.
If the hydrogen storage amount is less than 0.2% by mass, the effect of hydrogenation cannot be expected and the crystal grains cannot be refined. Moreover, when it exceeded 0.6 mass%, the uniform structure | tissue was not obtained. Therefore, a good microstructure is obtained by setting the hydrogen storage amount to 0.2 to 0.6 mass%.

塑性加工開始温度を(β変態点−125℃)以上(β変態点−50℃)以下に設定することで、割れが無く、良好な微細化組織を得ることができる。
1回の加工率を、15%以上にすることで、加工回数を少なくし、生産性を高めることができる。
総加工率を、70%以上にすることで、良好な微細化組織を得ることができる。
By setting the plastic working start temperature to (β transformation point −125 ° C.) or more and (β transformation point −50 ° C.) or less, there is no crack and a good refined structure can be obtained.
By making the processing rate of 1 time 15% or more, the number of processings can be reduced and productivity can be increased.
By setting the total processing rate to 70% or more, a good microstructure can be obtained.

従って、請求項2によれば、α+β型チタン合金において、割れが発生する心配が無く、良好な微細化組織を得ることができる上に、加工回数を減少させることができる製造方法を提供することができる。   Therefore, according to claim 2, in the α + β type titanium alloy, there is no fear of occurrence of cracks, and a good refined structure can be obtained, and a manufacturing method capable of reducing the number of processings is provided. Can do.

請求項3に係る発明では、鉄がβ変態点を低下させるが、酸素がβ変態点を上昇させるために、これらの元素の添加量を適量に調整し、各処理条件を設定することで、1回の加工率を15%以上に高めることができ、この結果、加工回数を減少し、加工時間の短縮化を達成し、生産性の向上を図ることができる。
水素吸蔵量は、0.4質量%未満では水素化の効果が期待できずに結晶粒が微細化できない。また、0.8質量%を超えると均一な組織が得られなかった。そこで、水素吸蔵量を0.4〜0.8質量%に設定することで、良好な微細化組織を得る。
In the invention according to claim 3, iron lowers the β transformation point, but oxygen raises the β transformation point, so that the addition amount of these elements is adjusted to an appropriate amount, and each processing condition is set, The processing rate of one time can be increased to 15% or more. As a result, the number of processings can be reduced, the processing time can be shortened, and productivity can be improved.
If the hydrogen storage amount is less than 0.4% by mass, the effect of hydrogenation cannot be expected and the crystal grains cannot be refined. Moreover, when it exceeded 0.8 mass%, the uniform structure | tissue was not obtained. Therefore, a good microstructure is obtained by setting the hydrogen storage amount to 0.4 to 0.8 mass%.

塑性加工開始温度を(β変態点−275℃)以上(β変態点−75℃)以下に設定することで、割れが無く、良好な微細化組織を得ることができる。
1回の加工率を、15%以上にすることで、加工回数を少なくし、生産性を高めることができる。
総加工率を、70%以上にすることで、良好な微細化組織を得ることができる。
By setting the plastic working start temperature to (β transformation point −275 ° C.) or more and (β transformation point −75 ° C.) or less, there is no crack and a good microstructure can be obtained.
By making the processing rate of 1 time 15% or more, the number of processings can be reduced and productivity can be increased.
By setting the total processing rate to 70% or more, a good microstructure can be obtained.

従って、請求項3によれば、α+β型チタン合金において、割れが発生する心配が無く、良好な微細化組織を得ることができる上に、加工回数を減少させることができる製造方法を提供することができる。   Therefore, according to claim 3, in the α + β type titanium alloy, there is no fear of occurrence of cracks, and a good refined structure can be obtained, and a manufacturing method capable of reducing the number of processings is provided. Can do.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明のα+β型チタン合金の製造方法のための温度曲線図であり、横軸は時間、横軸の下に工程、縦軸は温度を示す。
水素吸蔵処理工程では、α+β型チタン合金を高温の水素ガス中に保持することで水素を吸蔵させる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a temperature curve diagram for the method for producing an α + β type titanium alloy of the present invention, where the horizontal axis represents time, the process is shown below the horizontal axis, and the vertical axis represents temperature.
In the hydrogen storage process, hydrogen is stored by holding the α + β type titanium alloy in high-temperature hydrogen gas.

溶体化処理工程では、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する。
熱間塑性加工工程では、溶体化処理後のチタン合金を熱間で塑性加工して結晶を微細化する。
脱水素処理工程では、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する。
In the solution treatment step, the titanium alloy in which hydrogen is occluded is heated to the β transformation point or higher, and then rapidly cooled to perform solution treatment.
In the hot plastic working process, the titanium alloy after the solution treatment is plastic processed hot to refine the crystal.
In the dehydrogenation process, the titanium alloy after plastic working is kept at high temperature and under vacuum to remove hydrogen.

水素処理を伴わない通常の製造方法では、溶体化処理工程及び熱間塑性加工工程の2工程からなる。これでは、結晶の微細化が望めないので、本発明では水素処理を行う。このままでは残留水素が合金を脆化させるため、塑性加工後に速やかに水素を除去し、その不都合を解消する。そのために、本発明方法は4工程からなる。   A normal manufacturing method not involving hydrogen treatment includes two steps, a solution treatment step and a hot plastic working step. In this case, since the crystal cannot be refined, hydrogen treatment is performed in the present invention. In this state, the residual hydrogen causes the alloy to become brittle, so that the hydrogen is quickly removed after the plastic working to eliminate the disadvantage. For this purpose, the method of the present invention comprises four steps.

図2は水素吸蔵量とβ変態点との相関グラフであり、横軸はα+β型チタン合金に吸蔵させる水素吸蔵量、縦軸はβ変態点温度、曲線は比較例としてのTi−6Al−4V合金、実施例としてのTi−3Al−2.5V合金、Ti−3Al−2V−0.1S合金、Ti−1Fe−0.3O合金を示す。   FIG. 2 is a correlation graph between the hydrogen storage amount and the β transformation point, the horizontal axis is the hydrogen storage amount stored in the α + β type titanium alloy, the vertical axis is the β transformation point temperature, and the curve is Ti-6Al-4V as a comparative example. Alloys, Ti-3Al-2.5V alloy, Ti-3Al-2V-0.1S alloy and Ti-1Fe-0.3O alloy as examples are shown.

α+β型チタン合金に水素を吸蔵させると、水素の作用でβ変態点が低温側に変化することは知られていた。本発明者らは合金組成によってどの程度変化するかを知るために詳細に調べグラフ化した。   It has been known that when hydrogen is stored in an α + β type titanium alloy, the β transformation point is changed to a low temperature side by the action of hydrogen. In order to know how much the alloy composition varies depending on the alloy composition, the present inventors have investigated and graphed in detail.

すると、Ti−6Al−4V合金は緩やかに変化するが、実施例としてのTi−3Al−2.5V合金、Ti−3Al−2V−0.1S合金、Ti−1Fe−0.3O合金は、何れも水素吸蔵量に比例して急激に変化することが分かった。   Then, although Ti-6Al-4V alloy changes gradually, Ti-3Al-2.5V alloy, Ti-3Al-2V-0.1S alloy, and Ti-1Fe-0.3O alloy as examples It was also found that the change rapidly in proportion to the hydrogen storage amount.

そして、このグラフから次のことが言える。
先ず、横軸の0.5から直線を立ち上げると、Ti−6Al−4V合金のβ変態点は850℃、Ti−3Al−2.5V合金のβ変態点は680℃である。
And the following can be said from this graph.
First, when a straight line is raised from 0.5 on the horizontal axis, the β transformation point of the Ti-6Al-4V alloy is 850 ° C., and the β transformation point of the Ti-3Al-2.5V alloy is 680 ° C.

同じ水素吸蔵量0.5質量%で、両合金のβ変態点に170℃の差があり、且つ後者のTi−3Al−2.5V合金のβ変態点が680℃と低温である。β変態点に対応して塑性加工開始温度を決定するから、β変態点が低ければ、塑性加工開始温度を低温側に設定する。塑性加工開始温度が高い場合には、合金の表面に硬い酸化皮膜が多く発生し、塑性加工の際に塑性加工ロールに傷をつけるとともに、素材にも傷が入る虞が高くなる。この点、塑性加工温度を下げることができれば、酸化皮膜の発生を抑制することができ、素材の傷発生及び塑性加工ロールの傷発生を抑えることができる。   With the same hydrogen storage amount of 0.5% by mass, there is a difference of 170 ° C. between the β transformation points of both alloys, and the β transformation point of the latter Ti-3Al-2.5V alloy is as low as 680 ° C. Since the plastic working start temperature is determined corresponding to the β transformation point, if the β transformation point is low, the plastic working start temperature is set to the low temperature side. When the plastic processing start temperature is high, a lot of hard oxide film is generated on the surface of the alloy, and the plastic processing roll is damaged during the plastic processing, and the material is more likely to be damaged. In this respect, if the plastic working temperature can be lowered, the generation of an oxide film can be suppressed, and the generation of scratches on the raw material and the plastic processing roll can be suppressed.

この結果、従来のTi−6Al−4V合金よりも、本発明のTi−3Al−2.5V合金、Ti−3Al−2V−0.1S合金、Ti−1Fe−0.3O合金は、塑性加工ロールのロール研磨までの時間を延ばすことができ、塑性加工作業を中断する必要が少なくなるため、熱間塑性加工の生産性を大いに高めることができる。さらに加工後、製品とするために表面の酸化膜及び酸素拡散層を除去するが、この取り代を削除できるため、素材の歩留まりを大幅に向上することができる。   As a result, the Ti-3Al-2.5V alloy, Ti-3Al-2V-0.1S alloy, and Ti-1Fe-0.3O alloy of the present invention are more plastic working rolls than the conventional Ti-6Al-4V alloy. Therefore, it is possible to prolong the time until roll polishing and reduce the need for interrupting the plastic working operation, so that the productivity of hot plastic working can be greatly increased. Further, after processing, the oxide film and the oxygen diffusion layer on the surface are removed to make a product, but since this allowance can be eliminated, the yield of the material can be greatly improved.

また、縦軸の800℃から横線を引くと、Ti−3Al−2.5V合金の水素吸蔵量は0.25質量%、従来のTi−6Al−4V合金の水素吸蔵量は、1.0質量%になる。すなわち、Ti−6Al−4V合金で1.0質量%もの水素を吸蔵させる効果が、Ti−3Al−2.5V合金では0.25質量%の水素吸蔵で得ることができる。   Further, when a horizontal line is drawn from 800 ° C. on the vertical axis, the hydrogen storage amount of the Ti-3Al-2.5V alloy is 0.25 mass%, and the hydrogen storage amount of the conventional Ti-6Al-4V alloy is 1.0 mass. %become. That is, the effect of occluding as much as 1.0% by mass of hydrogen in the Ti-6Al-4V alloy can be obtained by 0.25% by mass of hydrogen in the Ti-3Al-2.5V alloy.

合金に水素を吸蔵させ、熱間塑性加工で塑性加工することで、合金を歪ませて水素化物を均一微細に析出させ、再結晶による微細組織形成の核とすることが、吸蔵水素の作用である。しかし、水素吸蔵量を増やすと合金が脆くなり、延性が低下する。
そこで、微細化作用が確保できるのであれば、水素吸蔵量は少量であることが望ましい。
この点、Ti−3Al−2.5V合金は吸蔵水素を少量化することができるので、好ましい合金であると言える。Ti−3Al−2V−0.1S合金、Ti−1Fe−0.3O合金も同様である。
By storing hydrogen in the alloy and plastic processing by hot plastic processing, the alloy is distorted to precipitate hydride uniformly and finely, and it becomes the nucleus of microstructure formation by recrystallization. is there. However, increasing the hydrogen storage amount makes the alloy brittle and reduces ductility.
Therefore, it is desirable that the hydrogen occlusion amount is small if a refinement effect can be ensured.
In this respect, the Ti-3Al-2.5V alloy can be said to be a preferable alloy because it can reduce the amount of occluded hydrogen. The same applies to Ti-3Al-2V-0.1S alloy and Ti-1Fe-0.3O alloy.

加えて、図1の水素吸蔵処理工程において、水素吸蔵量が少なければ、処理時間を短縮することができ、生産性を高めることができる。併せて、原料としての水素ガスの消費量を抑えることができるので、製造コストを下げることができる。   In addition, in the hydrogen storage process of FIG. 1, if the hydrogen storage amount is small, the processing time can be shortened and the productivity can be increased. In addition, since the consumption of hydrogen gas as a raw material can be suppressed, the manufacturing cost can be reduced.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
なお、実験条件は次の通りである。
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.
The experimental conditions are as follows.

・出発材料:
出発材料の成分:
チタンに3.1質量%のアルミニウムと2.4質量%のバナジウムを添加してなるTi−3Al−2.5V合金、
チタンに3.1質量%のアルミニウムと1.9質量%のバナジウムと0.12質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金、
チタンに1.1質量%の鉄と0.31質量%の酸素を添加してなるTi−1Fe−0.3O合金、
出発材料のサイズ:厚さ25mm×幅25mm×長さ100mmに機械加工してなるテストピース
・ Starting materials:
Starting material components:
Ti-3Al-2.5V alloy obtained by adding 3.1 mass% aluminum and 2.4 mass% vanadium to titanium,
Ti-3Al-2V-0.1S alloy obtained by adding 3.1% aluminum, 1.9% vanadium and 0.12% sulfur by mass to titanium,
Ti-1Fe-0.3O alloy obtained by adding 1.1 mass% iron and 0.31 mass% oxygen to titanium,
Starting material size: Test piece machined to 25mm thickness x 25mm width x 100mm length

・水素吸蔵処理工程:
真空熱処理炉にテストピースを収納し、真空排気したのち、加熱し、800℃水素ガス雰囲気で水素を吸蔵させる。水素吸蔵量は時間で管理し、時間が経過したら、加熱を止め、真空排気して炉から取り出す。
・ Hydrogen storage process:
The test piece is housed in a vacuum heat treatment furnace, evacuated, heated, and occluded hydrogen in an 800 ° C. hydrogen gas atmosphere. The amount of hydrogen occluded is controlled by time. When the time has elapsed, heating is stopped, the vacuum is exhausted, and the hydrogen is removed from the furnace.

・溶体化処理工程:
水素を吸蔵させたテストピースを炉に入れ、大気雰囲気でβ変態点+100℃まで加熱し、3600秒(1時間)保持してから、水槽へ移して急冷することで、溶体化処理を行う。
・ Solution treatment process:
The test piece in which hydrogen is occluded is placed in a furnace, heated to a β transformation point + 100 ° C. in an air atmosphere, held for 3600 seconds (1 hour), then transferred to a water bath and rapidly cooled to perform solution treatment.

・中間材料:溶体化処理済みのテストピースから、厚さ7mm×幅7mm×長さ50mmの第2次テストピースを切り出す。 Intermediate material: A secondary test piece having a thickness of 7 mm, a width of 7 mm, and a length of 50 mm is cut out from the solution-treated test piece.

・熱間塑性加工工程:
第2次テストピースを炉に入れて、塑性加工開始温度まで加熱する。そして、1回の加工率を15%として複数回の塑性加工を行う。塑性加工後の第3次テストピースから表面の酸化皮膜を除去する。
・ Hot plastic working process:
The second test piece is placed in a furnace and heated to the plastic processing start temperature. Then, the plastic processing is performed a plurality of times with a processing rate of one time being 15%. The oxide film on the surface is removed from the third test piece after plastic working.

・脱水素処理工程:
真空熱処理炉に第3次テストピースを収め、873℃の真空中で3600秒(1時間)保持することで、水素を除去する。保持時間が経過したら炉に入れたまま冷却する。
・ Dehydrogenation process:
The third test piece is placed in a vacuum heat treatment furnace and kept in vacuum at 873 ° C. for 3600 seconds (1 hour) to remove hydrogen. When the holding time has passed, cool it down in the furnace.

・顕微鏡観察:
以上の処理を終えたテストピースを切断し、切断面を金属顕微鏡で観察し、割れの有無、結晶粒が微細化しているか否か、結晶粒が均一に整列しているか否かを観察する。
・ Microscopic observation:
The test piece having been subjected to the above processing is cut, and the cut surface is observed with a metal microscope to observe the presence or absence of cracks, whether the crystal grains are miniaturized, and whether the crystal grains are uniformly aligned.

結果は、[課題を解決するための手段]に表形式で記載したので省略する。   The results are described in tabular form in [Means for Solving the Problems], and will be omitted.

なお、詳細は記載しないが、2.5質量%のアルミニウムと2.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金、3.5質量%のアルミニウムと3.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金についても同等の結果が得られた。
従って、本発明は、チタンに2.5〜3.5質量%のアルミニウムと2.0〜3.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金に適用できる。
Although not described in detail, a Ti-3Al-2.5V alloy obtained by adding 2.5 mass% aluminum and 2.0 mass% vanadium, 3.5 mass% aluminum, and 3.0 mass% The same result was obtained for the Ti-3Al-2.5V alloy obtained by adding the above vanadium.
Therefore, the present invention can be applied to a Ti-3Al-2.5V alloy obtained by adding 2.5 to 3.5 mass% aluminum and 2.0 to 3.0 mass% vanadium to titanium.

また、2.7質量%のアルミニウムと1.6質量%のバナジウムと0.05質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金、3.5質量%のアルミニウムと3.4質量%のバナジウムと0.20質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金についても同等の結果が得られた。
従って、本発明は、チタンに2.7〜3.5質量%のアルミニウムと1.6〜3.4質量%のバナジウムと0.05〜0.20質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金に適用できる。
Moreover, Ti-3Al-2V-0.1S alloy which added 2.7 mass% aluminum, 1.6 mass% vanadium, and 0.05 mass% sulfur, 3.5 mass% aluminum, and 3 An equivalent result was obtained for a Ti-3Al-2V-0.1S alloy obtained by adding 0.4% by mass of vanadium and 0.20% by mass of sulfur.
Therefore, the present invention provides Ti--, which is obtained by adding 2.7 to 3.5% by mass of aluminum, 1.6 to 3.4% by mass of vanadium and 0.05 to 0.20% by mass of sulfur to titanium. Applicable to 3Al-2V-0.1S alloy.

さらに、0.7質量%の鉄と0.2質量%の酸素を添加してなるTi−1Fe−0.3O合金、2.3質量%の鉄と0.7質量%の酸素を添加してなるTi−1Fe−0.3O合金についても同等の結果が得られた。
従って、本発明は、チタンに0.7〜2.3質量%の鉄と0.2〜0.7質量%の酸素を添加してなるTi−1Fe−0.3O合金に適用できる。
Further, a Ti-1Fe-0.3O alloy obtained by adding 0.7 mass% iron and 0.2 mass% oxygen, adding 2.3 mass% iron and 0.7 mass% oxygen. Similar results were obtained for the Ti-1Fe-0.3O alloy.
Therefore, the present invention can be applied to a Ti-1Fe-0.3O alloy obtained by adding 0.7 to 2.3 mass% of iron and 0.2 to 0.7 mass% of oxygen to titanium.

次に、機械的性質についての実験結果を以下に述べる。
Ti−3Al−2.5V合金、Ti−3Al−2V−0.1S合金及びTi−1Fe−3O合金について水素処理を行った素材と、水素処理のみ行わず、他の処理工程を行った素材について室温にて引張り試験を行った。
水素処理条件は、各合金とも同じ水素添加量:0.5%、溶体化温度:β変態点+100℃、塑性加工温度:β変態点−100℃、1回の塑性加工率:15%、総塑性加工率:80%、脱水素温度:600℃である。また、供試材の結晶粒径は、何れも水素処理材で0.5〜1μm、水素処理を行わなかった素材で3〜5μmである。
Next, experimental results on mechanical properties are described below.
About the raw material which performed the hydrogen treatment about the Ti-3Al-2.5V alloy, the Ti-3Al-2V-0.1S alloy, and the Ti-1Fe-3O alloy, and the raw material which performed other treatment processes without performing only the hydrogen treatment A tensile test was performed at room temperature.
The hydrogen treatment conditions are the same for each alloy: hydrogen addition amount: 0.5%, solution temperature: β transformation point + 100 ° C., plastic working temperature: β transformation point−100 ° C., single plastic working rate: 15%, total Plastic working rate: 80%, dehydrogenation temperature: 600 ° C. Moreover, the crystal grain diameters of the test materials are all 0.5 to 1 μm for the hydrogen-treated material and 3 to 5 μm for the material not subjected to the hydrogen treatment.

Ti−3Al−2.5V合金は、水素処理により0.2%耐力は626MPaから746MPaに約19%の向上が確認された。また伸びは両素材とも約20%であり高強度化による伸びの低下は見られなかった。
Ti−3Al−2V−0.1S合金は、水素処理により0.2%耐力は706MPaから863MPaに約22%の向上が確認された。また伸びは両素材とも約18%であり高強度化による伸びの低下は見られなかった。
It was confirmed that the Ti-3Al-2.5V alloy was improved by about 19% from 626 MPa to 746 MPa in 0.2% proof stress by hydrogen treatment. The elongation of both materials was about 20%, and no decrease in elongation was observed due to the increase in strength.
It was confirmed that the Ti-3Al-2V-0.1S alloy was improved by 0.2% in the 0.2% proof stress from 706 MPa to 863 MPa by hydrogen treatment. The elongation of both materials was about 18%, and no decrease in elongation was observed due to the increase in strength.

Ti−1Fe−3O合金は、水素処理により0.2%耐力は575MPaから627MPaに約9%の向上が確認された。また伸びは両素材とも約23%であり高強度化による伸びの低下は見られなかった。
本発明により高い生産性で微細化組織が得られ、その結果伸びの低下を伴わずに9〜22%という大幅な高強度化が達成された。
The Ti-1Fe-3O alloy was confirmed to have an approximately 9% improvement in 0.2% proof stress from 575 MPa to 627 MPa by hydrogen treatment. The elongation of both materials was about 23%, and no decrease in elongation was observed due to the increase in strength.
According to the present invention, a refined structure was obtained with high productivity, and as a result, a great increase in strength of 9 to 22% was achieved without a decrease in elongation.

尚、本発明の製造方法で製造されたα+β型チタン合金は、主に高強度、高靱性、高耐食性などを重視した用途に適用することに適している。   The α + β type titanium alloy manufactured by the manufacturing method of the present invention is suitable for application mainly to high strength, high toughness, high corrosion resistance and the like.

本発明のα+β型チタン合金の製造方法は、自動車部品などの構造部品の素材として用いるチタン合金の製造に好適である。   The method for producing an α + β type titanium alloy of the present invention is suitable for producing a titanium alloy used as a material for structural parts such as automobile parts.

本発明のα+β型チタン合金の製造方法のための温度曲線図である。It is a temperature curve figure for the manufacturing method of the alpha + beta type titanium alloy of this invention. 水素吸蔵量とβ変態点との相関グラフである。5 is a correlation graph between hydrogen storage amount and β transformation point.

Claims (3)

α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
前記準備するα+β型チタン合金は、チタンに2.5〜3.5質量%のアルミニウムと2.0〜3.0質量%のバナジウムを添加してなるTi−3Al−2.5V合金であり、
前記水素吸蔵処理工程では、チタン合金に0.2〜0.8質量%の水素を吸蔵させ、
前記熱間塑性加工工程では、塑性加工開始温度は(β変態点−225℃)以上(β変態点−50℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも60%に設定して複数回の塑性加工を実施することを特徴とするα+β型チタン合金の製造方法。
An α + β-type titanium alloy is prepared, and the titanium alloy is stored in a high-temperature hydrogen gas to store hydrogen, and the hydrogen-occluded titanium alloy is heated to the β transformation point or higher, and then A solution treatment process for solution treatment by rapid cooling, a hot plastic working process for finely processing crystals by hot plastic processing of the titanium alloy after this treatment, and a titanium alloy after plastic working at high temperature and vacuum In a method for producing an α + β type titanium alloy comprising a dehydrogenation treatment step of removing hydrogen by holding it underneath,
The α + β type titanium alloy to be prepared is a Ti-3Al-2.5V alloy obtained by adding 2.5 to 3.5 mass% aluminum and 2.0 to 3.0 mass% vanadium to titanium,
In the hydrogen storage treatment step, 0.2 to 0.8 mass% of hydrogen is stored in the titanium alloy,
In the hot plastic working step, the plastic working start temperature is set to (β transformation point −225 ° C.) or more (β transformation point −50 ° C.) and defined as (plastic working amount / thickness immediately before). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 60% to perform plastic processing a plurality of times. Type titanium alloy manufacturing method.
α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
前記準備するα+β型チタン合金は、チタンに2.7〜3.5質量%のアルミニウムと1.6〜3.4質量%のバナジウムと0.05〜0.20質量%の硫黄を添加してなるTi−3Al−2V−0.1S合金であり、
前記水素吸蔵処理工程では、チタン合金に0.2〜0.6質量%の水素を吸蔵させ、
前記熱間塑性加工工程では、塑性加工開始温度は(β変態点−125℃)以上(β変態点−50℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも70%に設定して複数回の塑性加工を実施することを特徴とするα+β型チタン合金の製造方法。
An α + β-type titanium alloy is prepared, and the titanium alloy is stored in a high-temperature hydrogen gas to store hydrogen, and the hydrogen-occluded titanium alloy is heated to the β transformation point or higher, and then A solution treatment process for solution treatment by rapid cooling, a hot plastic working process for finely processing crystals by hot plastic processing of the titanium alloy after this treatment, and a titanium alloy after plastic working at high temperature and vacuum In a method for producing an α + β type titanium alloy comprising a dehydrogenation treatment step of removing hydrogen by holding it underneath,
The α + β type titanium alloy to be prepared is prepared by adding 2.7 to 3.5 mass% aluminum, 1.6 to 3.4 mass% vanadium and 0.05 to 0.20 mass% sulfur to titanium. Ti-3Al-2V-0.1S alloy
In the hydrogen storage treatment step, 0.2 to 0.6 mass% of hydrogen is stored in the titanium alloy,
In the hot plastic working step, the plastic working start temperature is set to (β transformation point−125 ° C.) or more (β transformation point−50 ° C.) and defined as (plastic working amount / immediate thickness). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 70% to perform plastic processing a plurality of times. Type titanium alloy manufacturing method.
α+β型チタン合金を準備し、このチタン合金を高温の水素ガス中に保持することで水素を吸蔵させる水素吸蔵処理工程と、水素を吸蔵させたチタン合金をβ変態点以上に加熱し、次に急冷することで溶体化処理する溶体化処理工程と、この処理後のチタン合金を熱間で塑性加工して結晶を微細化する熱間塑性加工工程と、塑性加工後のチタン合金を高温、真空下に保持して水素を除去する脱水素処理工程とからなるα+β型チタン合金の製造方法において、
前記準備するα+β型チタン合金は、チタンに0.7〜2.3質量%の鉄と0.2〜0.7質量%の酸素を添加してなるTi−1Fe−0.3O合金であり、
前記水素吸蔵処理工程では、チタン合金に0.4〜0.8質量%の水素を吸蔵させ、
前記熱間塑性加工工程では、塑性加工開始温度は(β変態点−275℃)以上(β変態点−75℃)以下に設定し、(塑性加工量/直前の厚さ)で定義する1回の加工率は少なくとも15%に設定し、(総塑性加工量/最初の厚さ)で定義する総加工率は少なくとも70%に設定して複数回の塑性加工を実施することを特徴とするα+β型チタン合金の製造方法。
An α + β-type titanium alloy is prepared, and the titanium alloy is stored in a high-temperature hydrogen gas to store hydrogen, and the hydrogen-occluded titanium alloy is heated to the β transformation point or higher, and then A solution treatment process for solution treatment by rapid cooling, a hot plastic working process for finely processing crystals by hot plastic processing of the titanium alloy after this treatment, and a titanium alloy after plastic working at high temperature and vacuum In a method for producing an α + β type titanium alloy comprising a dehydrogenation treatment step of removing hydrogen by holding it underneath,
The α + β-type titanium alloy to be prepared is a Ti-1Fe-0.3O alloy obtained by adding 0.7 to 2.3 mass% iron and 0.2 to 0.7 mass% oxygen to titanium,
In the hydrogen storage treatment step, 0.4 to 0.8 mass% of hydrogen is stored in the titanium alloy,
In the hot plastic working step, the plastic working start temperature is set to (β transformation point −275 ° C.) or more and (β transformation point −75 ° C.) or less, and is defined as (plastic working amount / thickness immediately before). The processing rate is set to at least 15%, and the total processing rate defined by (total plastic processing amount / initial thickness) is set to at least 70% to perform plastic processing a plurality of times. Type titanium alloy manufacturing method.
JP2004232587A 2004-08-09 2004-08-09 Manufacturing method of α + β type titanium alloy Expired - Fee Related JP4402541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232587A JP4402541B2 (en) 2004-08-09 2004-08-09 Manufacturing method of α + β type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232587A JP4402541B2 (en) 2004-08-09 2004-08-09 Manufacturing method of α + β type titanium alloy

Publications (2)

Publication Number Publication Date
JP2006052418A true JP2006052418A (en) 2006-02-23
JP4402541B2 JP4402541B2 (en) 2010-01-20

Family

ID=36030080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232587A Expired - Fee Related JP4402541B2 (en) 2004-08-09 2004-08-09 Manufacturing method of α + β type titanium alloy

Country Status (1)

Country Link
JP (1) JP4402541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231627A (en) * 2013-05-29 2014-12-11 財団法人日本産業科学研究所 Titanium alloy, method of producing high-strength titanium alloy and method of working titanium alloy
WO2021038662A1 (en) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 Titanium material, titanium product obtained by processing titanium material and method for producing titanium material
CN113897565A (en) * 2020-06-22 2022-01-07 浙江给力工贸有限公司 Surface co-melting natural crystallization and physical coloring process for titanium metal product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231627A (en) * 2013-05-29 2014-12-11 財団法人日本産業科学研究所 Titanium alloy, method of producing high-strength titanium alloy and method of working titanium alloy
US10006114B2 (en) 2013-05-29 2018-06-26 Honda Motor Co., Ltd. Titanium alloy, method of manufacturing high-strength titanium alloy, and method of processing titanium alloy
WO2021038662A1 (en) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 Titanium material, titanium product obtained by processing titanium material and method for producing titanium material
JPWO2021038662A1 (en) * 2019-08-23 2021-03-04
CN114341391A (en) * 2019-08-23 2022-04-12 国立大学法人东京海洋大学 Titanium material, titanium product produced by processing the titanium material and method for producing the titanium material
JP7385941B2 (en) 2019-08-23 2023-11-24 国立大学法人東京海洋大学 Titanium material, titanium products processed from the titanium material, and method for manufacturing the titanium material
CN113897565A (en) * 2020-06-22 2022-01-07 浙江给力工贸有限公司 Surface co-melting natural crystallization and physical coloring process for titanium metal product

Also Published As

Publication number Publication date
JP4402541B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
TWI718763B (en) Titanium alloy wire and manufacturing method of titanium alloy wire
TWI617670B (en) Titanium material for hot rolling
CN109252061B (en) Preparation method of high-temperature, high-thermal-stability and high-fracture-toughness titanium alloy bar
WO2012032610A1 (en) Titanium material
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
CN110643911A (en) Thermal mechanical treatment method of eutectic high-entropy alloy
CN111074131B (en) Thermal mechanical treatment method of eutectic high-entropy alloy
JP2018510268A (en) Method for manufacturing titanium and titanium alloy articles
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP4402541B2 (en) Manufacturing method of α + β type titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP6065168B1 (en) Titanium sheet and manufacturing method thereof
JP6214217B2 (en) Method for producing titanium alloy
CN113549788A (en) Double-state high-strength plastic-zirconium alloy and preparation method thereof
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JP5382518B2 (en) Titanium material
JP4371201B2 (en) β-type titanium alloy and method for producing the same
JP2021028408A (en) Titanium alloy sheet, and exhaust system components for automobile
CN115627387B (en) High-strength TiZr-based alloy and preparation method thereof
CN117488118B (en) Preparation method of Hastelloy C-276 precise baseband for high-temperature superconductivity and Hastelloy C-276 precise baseband
JPH0116910B2 (en)
KR20230095259A (en) Method for manufacturing thin titanium plates with fine and equiaxed grains and thin titanium plates manufactured by using the same
CN117181838A (en) Preparation method of superplastic TiAl alloy plate with mixed lamellar microstructure
CN117248130A (en) Preparation method of quick strain hardening double-yield metastable beta titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees