JP2006050537A - Piezoelectric resonator - Google Patents

Piezoelectric resonator Download PDF

Info

Publication number
JP2006050537A
JP2006050537A JP2005051975A JP2005051975A JP2006050537A JP 2006050537 A JP2006050537 A JP 2006050537A JP 2005051975 A JP2005051975 A JP 2005051975A JP 2005051975 A JP2005051975 A JP 2005051975A JP 2006050537 A JP2006050537 A JP 2006050537A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric
sealing
piezoelectric resonator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051975A
Other languages
Japanese (ja)
Inventor
Junji Furue
純司 古江
Masato Murahashi
昌人 村橋
Yuji Hata
裕二 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005051975A priority Critical patent/JP2006050537A/en
Publication of JP2006050537A publication Critical patent/JP2006050537A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor built-in type piezoelectric resonator improved in thinness, smallness, and reliability. <P>SOLUTION: The piezoelectric resonator has a pair of vibration electrodes to be each bonded on one of both main surfaces of a piezoelectric substrate opposing to each other, and a pair of sealing substrates to be each mounted via a frame surrounding an opposing area in which an electrostatic capacitor is formed on one of the substrates, wherein one of the sealing substrates is made of ceramic material having specific inductive capacity of 200 to 5,000 while the other is made of a resin material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧電共振子、特に発振回路やフィルタ回路などに用いられる、静電容量を内蔵したタイプの圧電共振子に関する。   The present invention relates to a piezoelectric resonator, and more particularly to a piezoelectric resonator of a type having a built-in capacitance used for an oscillation circuit, a filter circuit, and the like.

従来の容量内蔵型圧電共振子としては、例えば図8に示す構造のものが知られている(例えば、特許文献1参照。)。   As a conventional capacitor built-in type piezoelectric resonator, for example, one having a structure shown in FIG. 8 is known (see, for example, Patent Document 1).

図8(a)は、上下面の中央部に振動電極102を有する圧電基板101の上下面に、圧電基板101の振動電極102と対向する位置に振動空間形成用の凹部105を有するコンデンサ基板103を封止材104で接合することにより、圧電基板101とコンデンサ基板103との間に密閉した振動空間を形成して成る容量内蔵型圧電共振子の断面図である。   FIG. 8A shows a capacitor substrate 103 having a concave portion 105 for forming a vibration space on the upper and lower surfaces of the piezoelectric substrate 101 having the vibration electrode 102 at the center of the upper and lower surfaces at a position facing the vibration electrode 102 of the piezoelectric substrate 101. 1 is a cross-sectional view of a built-in capacitor type piezoelectric resonator formed by forming a sealed vibration space between a piezoelectric substrate 101 and a capacitor substrate 103 by bonding them together with a sealing material 104. FIG.

この構造は、振動空間の面積および高さがコンデンサ基板103の凹部105の面積および深さによりあらかじめ決定されており、また、封止材104の厚みを薄くすることができる。よって、振動電極102と封止材104及びコンデンサ基板103との距離を保つことができるため、振動電極102への接触による振動のダンピングを有効に防止でき、信頼性に優れるという特徴を有する。   In this structure, the area and height of the vibration space are determined in advance by the area and depth of the recess 105 of the capacitor substrate 103, and the thickness of the sealing material 104 can be reduced. Therefore, since the distance between the vibration electrode 102 and the sealing material 104 and the capacitor substrate 103 can be maintained, damping of vibration due to contact with the vibration electrode 102 can be effectively prevented, and the reliability is excellent.

また、図8(b)は、上下面の中央部に振動電極102を有する圧電基板101の上下面に、振動電極102を取り囲む封止材104を介して、密閉した振動空間を形成するように平板状のコンデンサ基板103を接合して成る容量内蔵型圧電共振子の断面図である。   In FIG. 8B, a sealed vibration space is formed on the upper and lower surfaces of the piezoelectric substrate 101 having the vibration electrode 102 at the center of the upper and lower surfaces via a sealing material 104 surrounding the vibration electrode 102. 3 is a cross-sectional view of a built-in capacitor type piezoelectric resonator formed by bonding a flat capacitor substrate 103. FIG.

この構造は、未硬化の封止材104を圧電基板101の上下面に振動電極102の振動領域を取り囲むように塗布し、その後その上にコンデンサ基板103を載置し、しかる後に封止材104を硬化させることにより製作される。この構造の製品は、振動空間の高さを封止材104の厚みとすることができるので低背化が可能であり、また、コンデンサ基板103の中央部に凹部を形成する必要もないので工数を低減できるという特徴を有する。   In this structure, an uncured sealing material 104 is applied to the upper and lower surfaces of the piezoelectric substrate 101 so as to surround the vibration region of the vibration electrode 102, and then the capacitor substrate 103 is placed thereon, and then the sealing material 104. It is manufactured by curing. The product of this structure can be reduced in height because the height of the vibration space can be made the thickness of the sealing material 104, and it is not necessary to form a recess in the central portion of the capacitor substrate 103, thereby man-hours. It can be reduced.

尚、どちらの構造においても、圧電体セラミックからなる圧電基板101とその上下面に形成された振動電極102とで圧電共振素子が形成されており、誘電体セラミックからなるコンデンサ基板103と、容量形成電極106と、外部端子電極107、108、109とで、圧電共振素子と共に発振回路等で使用される静電容量が形成されている。
特開平3−247010号公報 (図1)
In either structure, a piezoelectric resonant element is formed by the piezoelectric substrate 101 made of piezoelectric ceramic and the vibrating electrodes 102 formed on the upper and lower surfaces thereof, and the capacitor substrate 103 made of dielectric ceramic and the capacitance formation The electrode 106 and the external terminal electrodes 107, 108, 109 form a capacitance used in an oscillation circuit or the like together with the piezoelectric resonance element.
JP-A-3-247010 (FIG. 1)

しかしながら図8(a)に断面図で示す構造の製品においては、あらかじめコンデンサ基板103に凹部105を形成する必要があり、その為の余分な工程を必要とするという課題を有していた。また、弾性及び靭性に劣るセラミックをカケやクラックを発生させることなく薄く加工することは困難であるため、コンデンサ基板103の厚みが厚くなり、よって容量内蔵型圧電共振子の全体厚みも厚くなり、昨今の電子部品の軽薄短小化の要求に十分答えることができないという課題も有していた。   However, in the product having the structure shown in the cross-sectional view of FIG. 8A, it is necessary to form the recess 105 in the capacitor substrate 103 in advance, and there is a problem that an extra process is required. Further, since it is difficult to thinly process a ceramic having poor elasticity and toughness without causing cracks or cracks, the thickness of the capacitor substrate 103 is increased, and thus the overall thickness of the built-in capacitor type piezoelectric resonator is also increased. There was also a problem that it was not possible to fully respond to the recent demands for lighter, thinner and smaller electronic components.

また、図8(b)に断面図で示す構造の製品においては、コンデンサ基板103に凹部105を形成する工程は不要になるが、コンデンサ基板103の厚みを薄くできないという問題は解消できなかった。すなわち、平板状の薄いセラミック基板を加工する際ワレやクラックが生じるため、歩留まり良く薄いセラミック基板を生産するのには限界があった。また、生産性向上のために集合基板にて一括して接着しその後各個片に分断しようとしても、大型の集合基板の加工には上述のワレやクラックに加えてソリが発生し、圧電基板との接着・封止が不完全になるという問題もあり、集合基板での一括処理にも限界があった。   Further, in the product having the structure shown in the cross-sectional view of FIG. 8B, the step of forming the recess 105 in the capacitor substrate 103 is unnecessary, but the problem that the thickness of the capacitor substrate 103 cannot be reduced cannot be solved. That is, cracks and cracks are generated when processing a flat thin ceramic substrate, and there is a limit to producing a thin ceramic substrate with a high yield. In addition, even when trying to bond together on a collective substrate and then divide into individual pieces to improve productivity, in addition to the cracks and cracks described above, warping occurs in the processing of a large collective substrate, and the piezoelectric substrate and There is also a problem that the bonding / sealing of the substrate becomes incomplete, and there is a limit to the batch processing on the collective substrate.

本発明は上記課題に鑑み案出されたものであり、その目的は、機械的強度を損なうことなく薄型化した容量内蔵型圧電共振子を提供することにある。   The present invention has been devised in view of the above problems, and an object of the present invention is to provide a capacitor built-in type piezoelectric resonator that is reduced in thickness without impairing mechanical strength.

本発明の圧電共振子は、圧電基板の両主面に、該圧電基板を介して一部が対向するように配置される一対の振動電極を被着させるとともに、該振動電極の対向領域を囲繞する枠体を介して一対の封止基板を取着させ、これら封止基板の一方に前記振動電極と電気的に接続される静電容量を形成してなる圧電共振子であって、
前記一対の封止基板は、その一方が200〜5000の比誘電率を有したセラミック材料から成り、他方が樹脂材料から成ることを特徴とするものである。
In the piezoelectric resonator of the present invention, a pair of vibration electrodes disposed so as to partially face each other through the piezoelectric substrate is attached to both main surfaces of the piezoelectric substrate, and the opposing region of the vibration electrode is surrounded. A piezoelectric resonator formed by attaching a pair of sealing substrates through a frame body, and forming a capacitance electrically connected to the vibration electrode on one of these sealing substrates,
One of the pair of sealing substrates is made of a ceramic material having a relative dielectric constant of 200 to 5000, and the other is made of a resin material.

また、本発明の圧電共振子は、前記圧電基板に対して前記一方の封止基板側で、該一方の封止基板と前記枠体との間に樹脂層が介在されているようにしても良い。   The piezoelectric resonator of the present invention may be configured such that a resin layer is interposed between the one sealing substrate and the frame on the one sealing substrate side with respect to the piezoelectric substrate. good.

更に、本発明の圧電共振子は、前記他方の封止基板と前記樹脂層とが同一材料から成り、且つ、略等しい厚みに設定されているようにしても良い。   Furthermore, the piezoelectric resonator of the present invention may be configured such that the other sealing substrate and the resin layer are made of the same material and have substantially the same thickness.

また更に、本発明の圧電共振子は、前記他方の封止基板の内部にガラス繊維が埋設されているようにしても良い。   Furthermore, in the piezoelectric resonator of the present invention, glass fibers may be embedded in the other sealing substrate.

更にまた、本発明の圧電共振子は、前記他方の封止基板に使用される樹脂材料と前記枠体とが同系の樹脂材料から成るようにしても良い。   Furthermore, in the piezoelectric resonator of the present invention, the resin material used for the other sealing substrate and the frame may be made of a similar resin material.

また更に、本発明の圧電共振子は、前記一対の封止基板のうち他方の封止基板側が実装面とされるようにしても良い。   Furthermore, in the piezoelectric resonator of the present invention, the other sealing substrate side of the pair of sealing substrates may be a mounting surface.

本発明の圧電共振子は、圧電基板の両主面に、該圧電基板を介して一部が対向するように配置される一対の振動電極を被着させるとともに、該振動電極の対向領域を囲繞する枠体を介して一対の封止基板を取着させ、これら封止基板の一方に前記振動電極と電気的に接続される静電容量を形成しており、且つ、前記一対の封止基板の一方が200〜5000の比誘電率を有したセラミック材料から成り、他方が樹脂材料から成るようにしている。よって、一方の封止基板に強誘電体セラミック基板を用いることにより、大きな静電容量の形成を容易にすると共に、外部からの応力等に対する強度を向上させて圧電基板に加わる応力を低減し、信頼性に優れた圧電共振子とすることが出来る。また、他方の封止基板はワレやクラックの心配がない樹脂基板で形成しているので薄型化でき、圧電共振子全体の厚みも薄型化できる。更に、振動空間形成のための凹部加工といった煩雑な工程が必要なく、製造工程の簡略化が可能となる。   In the piezoelectric resonator of the present invention, a pair of vibration electrodes disposed so as to partially face each other through the piezoelectric substrate is attached to both main surfaces of the piezoelectric substrate, and the opposing region of the vibration electrode is surrounded. A pair of sealing substrates are attached via a frame body, and a capacitance that is electrically connected to the vibration electrode is formed on one of the sealing substrates, and the pair of sealing substrates One of these is made of a ceramic material having a relative dielectric constant of 200 to 5000, and the other is made of a resin material. Therefore, by using a ferroelectric ceramic substrate as one sealing substrate, the formation of a large capacitance is facilitated, the strength against external stress and the like is improved, and the stress applied to the piezoelectric substrate is reduced, A piezoelectric resonator having excellent reliability can be obtained. Further, since the other sealing substrate is formed of a resin substrate that is free from cracks and cracks, the thickness can be reduced, and the entire thickness of the piezoelectric resonator can also be reduced. Furthermore, a complicated process such as recess processing for forming a vibration space is not necessary, and the manufacturing process can be simplified.

また、本発明の圧電共振子は、前記圧電基板に対して前記一方の封止基板側で、該一方の封止基板と前記枠体との間に樹脂層が介在されるようにしても良く、その場合は、前記圧電基板及び前記一方の封止基板の表面の平坦度の不足などにより、前記枠体を介した両者の接着強度が低下するという問題を有効に防止することができる。   In the piezoelectric resonator of the present invention, a resin layer may be interposed between the one sealing substrate and the frame on the one sealing substrate side with respect to the piezoelectric substrate. In this case, it is possible to effectively prevent a problem that the adhesive strength between the piezoelectric substrate and the one sealing substrate is lowered due to insufficient flatness of the surfaces of the piezoelectric substrate and the one sealing substrate.

更に、本発明の圧電共振子は、前記他方の封止基板と前記樹脂層とを同一材料から成し、且つ、略等しい厚みに設定しても良く、その場合は、前記圧電基板の上下面に加わる応力の不均一を有効に低減することができる。   Furthermore, in the piezoelectric resonator of the present invention, the other sealing substrate and the resin layer may be made of the same material and set to substantially the same thickness. It is possible to effectively reduce the non-uniformity of stress applied to the.

また更に、本発明の圧電共振子は、前記他方の封止基板の内部にガラス繊維が埋設されているようにしても良く、その場合は、前記他方の封止基板の熱変形を低減できるため、前記他方の封止基板の変形による前記圧電基板への接触を有効に防止でき、前記枠体の厚みを更に薄くすることが可能となる。   Furthermore, in the piezoelectric resonator of the present invention, glass fiber may be embedded in the other sealing substrate, and in that case, thermal deformation of the other sealing substrate can be reduced. The contact with the piezoelectric substrate due to the deformation of the other sealing substrate can be effectively prevented, and the thickness of the frame can be further reduced.

更にまた、本発明の圧電共振子は、前記他方の封止基板に使用される樹脂材料と前記枠体とが同系の樹脂材料から成るようにしても良く、その場合は、前記他方の封止基板と前記枠体とのなじみがよくなり、両者の接合強度を向上させることが可能となる。   Furthermore, in the piezoelectric resonator of the present invention, the resin material used for the other sealing substrate and the frame may be made of a similar resin material. The familiarity between the substrate and the frame is improved, and the bonding strength between the two can be improved.

また更に、本発明の圧電共振子は、前記一対の封止基板のうち他方の封止基板側が実装面となるようにしても良く、その場合は、柔らかくて変形しやすい樹脂材料からなる他方の封止基板側で実装基板に実装されることになるので、実装時に実装基板との熱膨張係数や弾性率の違いによって発生する応力を他方の封止基板の変形によって吸収し、実装面付近のクラック等の発生を有効に抑制することができる。   Furthermore, the piezoelectric resonator of the present invention may be configured such that the other sealing substrate side of the pair of sealing substrates becomes a mounting surface, and in that case, the other is made of a soft and easily deformable resin material. Since it is mounted on the mounting substrate on the sealing substrate side, the stress generated by the difference in thermal expansion coefficient and elastic modulus with the mounting substrate at the time of mounting is absorbed by deformation of the other sealing substrate, and near the mounting surface Generation | occurrence | production of a crack etc. can be suppressed effectively.

以下、本発明の圧電共振子を添付の図面に基づいて詳細に説明する。   Hereinafter, a piezoelectric resonator of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の圧電共振子の一例を模式的に示す外観斜視図であり、図2は、そのA―A線断面図であり、図3は分解斜視図である。   FIG. 1 is an external perspective view schematically showing an example of the piezoelectric resonator of the present invention, FIG. 2 is a sectional view taken along line AA, and FIG. 3 is an exploded perspective view.

図において、圧電共振子1は圧電基板21の上下面を、一方の封止基板31と他方の封止基板41とで、枠体51a及び51bによって振動空間61a及び61bを形成しつつ挟持した構造とされている。圧電基板21の上下面には、圧電基板21を挟んで一部が互いに対向するように振動電極22aと22bとが被着され、特定の周波数で共振する作用をなす圧電共振素子20が構成されている。また、封止基板31の上下面には内部電極32a、32b、及び、外部端子電極33a、33b、33cが形成されており、外部端子電極33aと33cとの間に静電容量c1が、外部端子電極33bと33cとの間に静電容量c2がそれぞれ形成されたコンデンサ素子30が構成されている。そして、振動電極22aと内部電極32aと外部端子電極33aとが外部接続電極71aによって接続され、また、振動電極22bと内部電極32bと外部端子電極33bとが外部接続電極71bによって接続され、更に、外部端子電極33cが外部接続電極71cに接続されることによって、圧電共振素子20とコンデンサ素子30とが電気的に接続されて、図4に示す等価回路で表される容量内蔵型圧電共振子1が構成されている。   In the figure, the piezoelectric resonator 1 has a structure in which the upper and lower surfaces of a piezoelectric substrate 21 are sandwiched between one sealing substrate 31 and the other sealing substrate 41 while forming vibration spaces 61a and 61b by frame bodies 51a and 51b. It is said that. Vibrating electrodes 22a and 22b are attached to the upper and lower surfaces of the piezoelectric substrate 21 so as to partially face each other with the piezoelectric substrate 21 interposed therebetween, and the piezoelectric resonant element 20 is configured to resonate at a specific frequency. ing. In addition, internal electrodes 32a and 32b and external terminal electrodes 33a, 33b, and 33c are formed on the upper and lower surfaces of the sealing substrate 31, and a capacitance c1 is connected between the external terminal electrodes 33a and 33c. A capacitor element 30 is formed in which a capacitance c2 is formed between the terminal electrodes 33b and 33c. The vibration electrode 22a, the internal electrode 32a, and the external terminal electrode 33a are connected by the external connection electrode 71a, the vibration electrode 22b, the internal electrode 32b, and the external terminal electrode 33b are connected by the external connection electrode 71b. By connecting the external terminal electrode 33c to the external connection electrode 71c, the piezoelectric resonant element 20 and the capacitor element 30 are electrically connected, and the built-in capacitive piezoelectric resonator 1 represented by the equivalent circuit shown in FIG. Is configured.

圧電基板21は、チタン酸ジルコン酸鉛(PZT)やチタン酸鉛(PT)等の圧電セラミック材料や、水晶(SiO)やニオブ酸リチウム(LiNbO)等の圧電単結晶材料から成る、縦・横の長さが数mm×数mm、厚みが数10μm〜数mmの四角形状の基板である。尚、圧電基板21がセラミック材料から成る場合は、原料粉末にバインダを加えてプレスする方法、或いは、原料粉末を水,分散剤とともにボールミルを用いて混合及び乾燥し、バインダ,溶剤,可塑剤等を加えてドクターブレード法により成型する方法などによってシートとし、1100〜1400℃のピーク温度で数10分〜数時間焼成して基板を形成した後、例えば、厚み方向に60〜150℃の温度にて3〜15kV/mmの電圧をかけて分極処理を施すことによって所望の圧電特性を付与する。また、圧電基板21が圧電単結晶材料から成る場合は、圧電基板21となる圧電単結晶材料のインゴット(母材)を所定の結晶方向となるように切断することにより、所望の圧電特性を有する圧電基板21を得ることができる。 The piezoelectric substrate 21 is composed of a piezoelectric ceramic material such as lead zirconate titanate (PZT) or lead titanate (PT), or a piezoelectric single crystal material such as quartz (SiO 2 ) or lithium niobate (LiNbO 3 ). A rectangular substrate having a horizontal length of several mm × several mm and a thickness of several tens of μm to several mm. When the piezoelectric substrate 21 is made of a ceramic material, the raw material powder is pressed by adding a binder, or the raw material powder is mixed and dried by using a ball mill together with water and a dispersant, and the binder, solvent, plasticizer, etc. To form a sheet by a method such as molding by the doctor blade method, and after baking at a peak temperature of 1100 to 1400 ° C. for several tens of minutes to several hours to form a substrate, for example, to a temperature of 60 to 150 ° C. in the thickness direction A desired piezoelectric characteristic is imparted by applying a polarization treatment by applying a voltage of 3 to 15 kV / mm. When the piezoelectric substrate 21 is made of a piezoelectric single crystal material, the piezoelectric substrate 21 has desired piezoelectric characteristics by cutting an ingot (base material) of the piezoelectric single crystal material that becomes the piezoelectric substrate 21 in a predetermined crystal direction. The piezoelectric substrate 21 can be obtained.

また、圧電基板21の上下面の中央部付近には、一対の振動電極22a,22bが形成されている。一対の振動電極22a,22bは、圧電基板21と一体となって圧電共振子や圧電振動子,圧電フィルタ等の素子を形成するものであり、金、銀、銅、クロム、ニッケル、錫、鉛、アルミニウム等の良導電性の金属で、真空蒸着などのPVD法やスパッタリング法、或いは厚膜印刷法による塗布及び焼き付けなどにより形成される。尚、圧電基板21にセラミック材料と密着性のよいクロム(Cr)等の金属をあらかじめ被着させておき、その上に上記金属を被着させてもよい。   A pair of vibrating electrodes 22 a and 22 b are formed near the center of the upper and lower surfaces of the piezoelectric substrate 21. The pair of vibration electrodes 22a and 22b are integrated with the piezoelectric substrate 21 to form elements such as a piezoelectric resonator, a piezoelectric vibrator, and a piezoelectric filter, and are gold, silver, copper, chromium, nickel, tin, and lead. It is a highly conductive metal such as aluminum, and is formed by coating and baking by a PVD method such as vacuum deposition, a sputtering method, or a thick film printing method. Alternatively, a metal such as chromium (Cr) having good adhesion to the ceramic material may be deposited on the piezoelectric substrate 21 in advance, and the metal may be deposited thereon.

振動電極22の形状は、縦・横方向の長さが数10μm〜数mmの円形状や四角形状などであり、共振特性やその他所望の電気特性によってその大きさや位置が決められる。また、振動電極22は、その厚みが数μm〜数10μmであり、共振周波数等により決められる。さらに振動電極22は、圧電基板21の上面または下面に複数の電極が形成された、すなわち分割電極であってもよい。尚、このような振動電極22はその一部が圧電基板21の外周に向かって引出されており、例えば、振動電極22aは外部接続電極71aを介して外部端子電極33aと、振動電極22bは外部接続電極71bを介して外部端子電極33bとそれぞれ電気的に接続される。   The shape of the vibrating electrode 22 is a circular shape or a quadrangular shape with a length in the vertical and horizontal directions of several tens of μm to several mm, and its size and position are determined by resonance characteristics and other desired electrical characteristics. The vibrating electrode 22 has a thickness of several μm to several tens of μm, and is determined by a resonance frequency or the like. Furthermore, the vibration electrode 22 may be a divided electrode in which a plurality of electrodes are formed on the upper surface or the lower surface of the piezoelectric substrate 21. A part of the vibration electrode 22 is drawn toward the outer periphery of the piezoelectric substrate 21. For example, the vibration electrode 22a is connected to the external terminal electrode 33a via the external connection electrode 71a, and the vibration electrode 22b is connected to the outside. Each is electrically connected to the external terminal electrode 33b via the connection electrode 71b.

そして、一対の振動電極22が被着されている圧電基板21の上下両面には、振動電極22a、22bの対向領域を囲繞する一対の枠体51a,51bを介して一対の封止基板31、41が接着されている。   And on the upper and lower surfaces of the piezoelectric substrate 21 to which the pair of vibration electrodes 22 are attached, a pair of sealing substrates 31, via a pair of frame bodies 51a and 51b surrounding the opposing regions of the vibration electrodes 22a and 22b, 41 is adhered.

封止基板31は、枠体51aと共に振動空間61aを形成すると共に、外力から圧電基板21を保護する機能を有し、チタン酸ジルコン酸鉛(PZT)やチタン酸鉛(PT)、チタン酸バリウム(BT)などの強誘電体セラミック材料から成る、縦・横の長さが数mm×数mm、厚みが数10μm〜数mmの四角形状の基板である。この封止基板31は、原料粉末にバインダを加えてプレスする方法、或いは、原料粉末を水,分散剤とともにボールミルを用いて混合及び乾燥し、バインダ,溶剤,可塑剤等を加えてドクターブレード法により成型する方法などによってシートを作成し、そのシートを1100〜1400℃のピーク温度で数10分〜数時間焼成することにより形成される。ここで、封止基板31の材料をチタン酸ジルコン酸鉛(PZT)やチタン酸鉛(PT)、チタン酸バリウム(BT)などの強誘電体セラミック材料とすることで、封止基板31の比誘電率を大きくできるため、充分な大きさの静電容量を有するコンデンサ素子30を構成できる。尚、封止基板31の比誘電率としては200〜5000とすることが望ましい。   The sealing substrate 31 forms a vibration space 61a together with the frame 51a and has a function of protecting the piezoelectric substrate 21 from an external force. Lead zirconate titanate (PZT), lead titanate (PT), and barium titanate. This is a rectangular substrate made of a ferroelectric ceramic material such as (BT) and having a length and width of several mm × several mm and a thickness of several tens of μm to several mm. This sealing substrate 31 is a method of pressing a raw material powder by adding a binder, or mixing and drying the raw material powder together with water and a dispersant using a ball mill, and adding a binder, a solvent, a plasticizer, etc., and a doctor blade method. The sheet is formed by a method such as molding by baking, and the sheet is fired at a peak temperature of 1100 to 1400 ° C. for several tens of minutes to several hours. Here, the material of the sealing substrate 31 is a ferroelectric ceramic material such as lead zirconate titanate (PZT), lead titanate (PT), or barium titanate (BT), so that the ratio of the sealing substrate 31 can be increased. Since the dielectric constant can be increased, the capacitor element 30 having a sufficiently large capacitance can be configured. Note that the relative dielectric constant of the sealing substrate 31 is desirably 200 to 5000.

封止基板31の上下面には、内部電極32a、32b及び外部端子電極33a、33b、33cが形成されている。内部電極32及び外部端子電極33は、封止基板31と共に、外部端子電極33aと33cとの間に静電容量c1を、外部端子電極33bと33cとの間に静電容量c2をそれぞれ形成してコンデンサ素子30を構成するためのものであり、振動電極22と同様の材料及び方法で形成される。外部端子電極33は、更に圧電共振子1が搭載される基板との機械的及び電気的な接続に利用され、その表面にはNi―Snメッキが施されている。   Internal electrodes 32a, 32b and external terminal electrodes 33a, 33b, 33c are formed on the upper and lower surfaces of the sealing substrate 31. The internal electrode 32 and the external terminal electrode 33 together with the sealing substrate 31 form a capacitance c1 between the external terminal electrodes 33a and 33c and a capacitance c2 between the external terminal electrodes 33b and 33c, respectively. The capacitor element 30 is formed by the same material and method as those of the vibrating electrode 22. The external terminal electrode 33 is further used for mechanical and electrical connection with a substrate on which the piezoelectric resonator 1 is mounted, and the surface thereof is Ni-Sn plated.

封止基板41は、枠体51bと共に振動空間61bを形成し、圧電基板21上面の振動領域を保護する機能を有し、その縦・横の長さは圧電基板21の縦・横の長さと略同一であり、厚みは材料により異なるが数10μm〜数mmである。このような封止基板41の材料としてはポリブチレンテレフタレート(PBT)等のエンジニアリングプラスチックや、液晶ポリマーやエポキシ系樹脂等の耐熱性樹脂が使用できるが、ガラス繊維を含有したポリイミド樹脂やエポキシ樹脂を用いることにより、封止基板41の熱変形を抑制し、容易に振動空間を形成することができる。ガラス繊維の含有量が30〜80%のポリイミド樹脂シートやエポキシ樹脂シートなどが好適に使用され、その場合は、100Pa以下の真空中にて0.2MPa〜5MPaの圧力を加えながら180℃〜200℃の温度で40分〜90分保持して硬化させると良好に接合できる。発明者の実験によれば、ガラス繊維含有量が32%のポリイミド樹脂を使用した場合、封止基板接合時の加熱による変形(たわみ)を、ガラス繊維を含有しないポリイミド樹脂の40%に低減することができた。   The sealing substrate 41 forms a vibration space 61b together with the frame 51b, and has a function of protecting the vibration region on the upper surface of the piezoelectric substrate 21. The vertical and horizontal lengths thereof are the same as the vertical and horizontal lengths of the piezoelectric substrate 21. Although it is substantially the same, the thickness varies depending on the material, but is several tens of μm to several mm. As a material for such a sealing substrate 41, engineering plastics such as polybutylene terephthalate (PBT), and heat-resistant resins such as liquid crystal polymers and epoxy resins can be used. Polyimide resins and epoxy resins containing glass fibers can be used. By using, the thermal deformation of the sealing substrate 41 can be suppressed, and the vibration space can be easily formed. A polyimide resin sheet or an epoxy resin sheet having a glass fiber content of 30 to 80% is preferably used. In that case, 180 ° C. to 200 ° C. while applying a pressure of 0.2 MPa to 5 MPa in a vacuum of 100 Pa or less. Good bonding can be achieved by curing at a temperature of 40 ° C. for 40 minutes to 90 minutes. According to the inventor's experiment, when a polyimide resin having a glass fiber content of 32% is used, deformation (deflection) due to heating at the time of sealing substrate bonding is reduced to 40% of the polyimide resin not containing glass fiber. I was able to.

枠体51a、51bは、圧電基板21と封止基板31及び41とを接着するとともに、振動空間61a及び61bを形成する機能を有する。枠体51は、エポキシ系樹脂等の熱硬化性樹脂などからなり、例えば、厚膜印刷により塗布し、80℃〜200℃で乾燥硬化することによって形成される。エポキシ系樹脂は緻密な3次元網目構造を有していることから気密性に優れており、振動空間を長期にわたって気密に密閉することができる。   The frame bodies 51a and 51b have a function of bonding the piezoelectric substrate 21 and the sealing substrates 31 and 41 and forming the vibration spaces 61a and 61b. The frame 51 is made of a thermosetting resin such as an epoxy resin, and is formed by, for example, applying by thick film printing and drying and curing at 80 ° C. to 200 ° C. Since the epoxy resin has a dense three-dimensional network structure, it is excellent in airtightness, and the vibration space can be hermetically sealed over a long period of time.

また、枠体51の粘度や熱膨張係数を調節するために、枠体51は酸化珪素等のセラミックスから成るフィラーを含有してもよい。また、枠体51の高さは、振動電極22と封止基板31及び41との間隔が5μm〜100μmとなるように設定するのが好ましく、振動電極22と封止基板31及び41との間隔が20μm〜60μmとなるような高さが更に好ましい。振動電極22と封止基板31及び41との間隔が20μm未満となると、圧電共振子に不要な外力が加わった際に封止基板31または41が撓んで振動電極22と接触し、振動電極22の振動をダンピングする危険性があり、60μmを超えると圧電共振子の厚みが不要に厚いものとなってしまい、薄型化することが困難となる傾向がある。   Moreover, in order to adjust the viscosity and thermal expansion coefficient of the frame 51, the frame 51 may contain a filler made of ceramics such as silicon oxide. The height of the frame body 51 is preferably set so that the distance between the vibration electrode 22 and the sealing substrates 31 and 41 is 5 μm to 100 μm, and the distance between the vibration electrode 22 and the sealing substrates 31 and 41. Is more preferably 20 μm to 60 μm. When the distance between the vibration electrode 22 and the sealing substrates 31 and 41 is less than 20 μm, when an unnecessary external force is applied to the piezoelectric resonator, the sealing substrate 31 or 41 bends and comes into contact with the vibration electrode 22. If the thickness exceeds 60 μm, the thickness of the piezoelectric resonator becomes unnecessarily thick, and it tends to be difficult to reduce the thickness.

尚、一対の枠体51が同一材料から成る場合は、枠体51を塗布する工程を統一できるので工数が削減でき、製造原価を低減することができる。また、振動空間61の形成を真空中で行ない、振動電極22を真空封入してもよく、その場合は、振動電極22の酸化腐食が防止され、より信頼性の優れた圧電共振子とすることができる。   In addition, when a pair of frame 51 consists of the same material, since the process of apply | coating the frame 51 can be unified, a man-hour can be reduced and manufacturing cost can be reduced. Alternatively, the vibration space 61 may be formed in a vacuum and the vibration electrode 22 may be sealed in a vacuum. In this case, the vibration corrosion of the vibration electrode 22 is prevented, and a more reliable piezoelectric resonator is obtained. Can do.

そして、圧電共振子1の側面には、振動電極22aと内部電極32aと外部端子電極33aとを電気的に接続する外部接続電極71a、振動電極22bと内部電極32bと外部端子電極33bとを電気的に接続する外部接続電極71b、及び、外部端子電極33cと接続される外部接続電極71cが形成されている。外部接続電極は、金、銀、銅、クロム、ニッケル、錫、鉛、アルミニウム等の良導電性の金属を、真空蒸着などのPVD法やスパッタリング法で被着させるか、或いは、導電性エポキシ樹脂を厚膜印刷などによって塗布し、80℃〜250℃で硬化させて形成させて形成し、所望により、その表面にNi―Snなどのメッキが施される。   On the side surface of the piezoelectric resonator 1, the external connection electrode 71a that electrically connects the vibration electrode 22a, the internal electrode 32a, and the external terminal electrode 33a, and the vibration electrode 22b, the internal electrode 32b, and the external terminal electrode 33b are electrically connected. The external connection electrode 71b connected to the external terminal electrode 33c and the external connection electrode 71c connected to the external terminal electrode 33c are formed. The external connection electrode is made by depositing a highly conductive metal such as gold, silver, copper, chromium, nickel, tin, lead, or aluminum by PVD or sputtering such as vacuum deposition, or conductive epoxy resin. Is applied by thick film printing or the like, cured at 80 ° C. to 250 ° C. and formed, and if desired, the surface is plated with Ni—Sn or the like.

上述した実施形態によれば、一方の封止基板31がチタン酸ジルコン酸鉛(PZT)やチタン酸鉛(PT)、チタン酸バリウム(BT)などの強誘電体セラミック材料から成り、他方の封止基板41が樹脂材料から成る。よって、封止基板31に強誘電体セラミック基板を用いることにより、大きな静電容量の形成を容易にすると共に、外部からの応力等に対する強度を向上させて圧電基板に加わる応力を低減し、信頼性に優れた圧電共振子とすることが出来る。また、封止基板41はワレやクラックの心配がない樹脂基板で形成しているので薄型化でき、圧電共振子全体の厚みも薄型化できる。   According to the embodiment described above, one sealing substrate 31 is made of a ferroelectric ceramic material such as lead zirconate titanate (PZT), lead titanate (PT), or barium titanate (BT), and the other sealing substrate 31 is sealed. The stop substrate 41 is made of a resin material. Therefore, the use of a ferroelectric ceramic substrate for the sealing substrate 31 facilitates the formation of a large capacitance, improves the strength against external stress, etc., and reduces the stress applied to the piezoelectric substrate. Piezoelectric resonators with excellent properties can be obtained. In addition, since the sealing substrate 41 is formed of a resin substrate that is free from cracks and cracks, the sealing substrate 41 can be thinned, and the entire thickness of the piezoelectric resonator can be thinned.

封止基板41を封止基板31と同様のセラミック基板としていたときには、セラミックの構造欠陥等の強度的問題によって、その厚みは150μmが限界であったが、封止基板41をガラス繊維を含有した樹脂基板とすることによって、その厚みを28μmまで薄型化することができ、その分だけ圧電共振子1を薄型化することができた。   When the sealing substrate 41 was a ceramic substrate similar to the sealing substrate 31, its thickness was limited to 150 μm due to strength problems such as structural defects of the ceramic, but the sealing substrate 41 contained glass fibers. By using a resin substrate, the thickness could be reduced to 28 μm, and the piezoelectric resonator 1 could be reduced by that much.

また、上述した実施形態によれば、封止基板41は、エポキシ系樹脂シート又はポリイミド系樹脂シートからなり、ガラス繊維を含有している。このため、枠体51を介しての加熱接着工程においても、封止基板41の熱による変形はほとんど発生しない。従って、圧電基板21の中央部付近における変形(だれ)によって封止基板41が圧電基板21側に倒れ込んで振動電極22に接触するのを抑制できるので、枠体51の厚みを極力薄くすることができ、より薄型の圧電共振子1とすることができる。   Moreover, according to embodiment mentioned above, the sealing substrate 41 consists of an epoxy-type resin sheet or a polyimide-type resin sheet, and contains glass fiber. For this reason, even in the heat bonding step through the frame 51, the sealing substrate 41 hardly deforms due to heat. Accordingly, the deformation (sagging) in the vicinity of the central portion of the piezoelectric substrate 21 can suppress the sealing substrate 41 from falling to the piezoelectric substrate 21 side and coming into contact with the vibration electrode 22, so that the thickness of the frame 51 can be made as thin as possible. Thus, a thinner piezoelectric resonator 1 can be obtained.

更に、上述した実施形態によれば、セラミックからなる封止基板31側にて実装基板に接続・固定されることになるため、実装強度が確保され、実装後の衝撃や振動に対しても充分な信頼性が確保される。   Further, according to the above-described embodiment, the ceramic substrate is connected and fixed to the mounting substrate on the sealing substrate 31 side, so that mounting strength is ensured and sufficient for shock and vibration after mounting. Reliable.

また更に、上述した実施形態によれば、封止基板31の外部端子電極33aと33cとの間に静電容量c1を、外部端子電極33bと33cとの間に静電容量c2をそれぞれ形成している。これにより、発振回路などで使用される2つの静電容量は圧電基板と実装基板との間に形成されることになり、余分な配線を介することなく外部端子電極に接続される結果、不要な浮遊容量の発生がなく安定した発振を実現できる。   Furthermore, according to the above-described embodiment, the capacitance c1 is formed between the external terminal electrodes 33a and 33c of the sealing substrate 31, and the capacitance c2 is formed between the external terminal electrodes 33b and 33c. ing. As a result, the two electrostatic capacitances used in the oscillation circuit and the like are formed between the piezoelectric substrate and the mounting substrate, and are unnecessary as a result of being connected to the external terminal electrode without an extra wiring. Stable oscillation can be realized without stray capacitance.

図5は本発明の別の実施形態に係る圧電共振子を模式的に示す分解斜視図である。   FIG. 5 is an exploded perspective view schematically showing a piezoelectric resonator according to another embodiment of the present invention.

本実施形態の特徴は、枠体51aと封止基板31との間に樹脂層81が挿入されていることである。枠体51の厚みが薄い場合、圧電基板21及び封止基板31の表面の平坦度が不足すると、それを枠体51の厚みで補うことが困難となり、圧電基板21と封止基板31との枠体51を介した接着強度が低下する問題が発生する場合があるが、変形し易く適度な厚みを有する樹脂層81を枠体51aと封止基板31との間に挿入することによって有効に防止することができる。   A feature of this embodiment is that a resin layer 81 is inserted between the frame 51 a and the sealing substrate 31. When the thickness of the frame 51 is thin, if the flatness of the surfaces of the piezoelectric substrate 21 and the sealing substrate 31 is insufficient, it is difficult to compensate for this with the thickness of the frame 51. There may be a problem that the adhesive strength through the frame 51 is lowered, but it is effective by inserting a resin layer 81 that is easily deformed and has an appropriate thickness between the frame 51 a and the sealing substrate 31. Can be prevented.

樹脂層81の縦・横の長さは圧電基板21及び封止基板31の縦・横の長さと略同一であり、厚みは材料により異なるが数10μm〜数mmであり、材料としては封止基板41と同様に、ポリイミド樹脂やエポキシ樹脂等の耐熱性樹脂が使用できるが、ガラス繊維を含有したポリイミド樹脂やエポキシ樹脂を用いることによって熱変形を抑制し、容易に振動空間を形成することができるため、例えば、ガラス繊維の含有量が30〜80%のポリイミド樹脂シートやエポキシ樹脂シートなどが好適に使用される。   The vertical and horizontal lengths of the resin layer 81 are substantially the same as the vertical and horizontal lengths of the piezoelectric substrate 21 and the sealing substrate 31, and the thickness varies depending on the material, but is several tens of μm to several mm. As with the substrate 41, a heat-resistant resin such as a polyimide resin or an epoxy resin can be used. However, by using a polyimide resin or an epoxy resin containing glass fiber, thermal deformation can be suppressed and a vibration space can be easily formed. Therefore, for example, a polyimide resin sheet or an epoxy resin sheet having a glass fiber content of 30 to 80% is preferably used.

ここで、封止基板41と樹脂層81とを同一材料とし、且つ、略等しい厚みとすることにより、圧電基板21の上下面に加わる応力の不均一を低減することができる。   Here, when the sealing substrate 41 and the resin layer 81 are made of the same material and have substantially the same thickness, uneven stress applied to the upper and lower surfaces of the piezoelectric substrate 21 can be reduced.

尚、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更,改良が可能である。   The present invention is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the gist of the present invention.

例えば、上述した実施例においては、枠体51をエポキシ系樹脂等の熱硬化性樹脂などとし、厚膜印刷により塗布するようにしたが、封止基板41や樹脂層81と同様に、ガラス繊維を含有したポリイミド樹脂やエポキシ樹脂などとしても良い。その場合は、ガラス繊維を含有した樹脂シートの中央部に振動空間を確保するための開口を形成したものを使用して加熱圧着すれば良く、例えば、100Pa以下の真空中にて0.2MPa〜5MPaの圧力を加えながら180℃〜200℃の温度で40分〜90分保持して硬化させると良好に接合できる。   For example, in the above-described embodiment, the frame 51 is made of a thermosetting resin such as an epoxy resin and is applied by thick film printing. However, as with the sealing substrate 41 and the resin layer 81, glass fiber is used. It is good also as a polyimide resin, an epoxy resin, etc. which contain. In that case, what is necessary is just to thermocompression-bond using what formed the opening for ensuring a vibration space in the center part of the resin sheet containing glass fiber, for example, 0.2 MPa-in 100 Pa or less of vacuum Good bonding can be achieved by holding and curing at a temperature of 180 ° C. to 200 ° C. for 40 minutes to 90 minutes while applying a pressure of 5 MPa.

ここで、枠体51bと封止基板41とを同系の樹脂材料とすることにより、両者のなじみが良くなり接合強度を向上させることが可能となる。   Here, by using the same resin material for the frame 51b and the sealing substrate 41, the familiarity between the two improves, and the bonding strength can be improved.

また、上述した実施形態の圧電共振子においては、セラミックからなる一方の封止基板31側にて実装基板に接続・固定されるようにしたが、図6及び図7に示すように、樹脂材料からなる他方の封止基板41側を実装基板に接続・固定される実装面としても構わない。   Further, in the piezoelectric resonator of the above-described embodiment, it is connected to and fixed to the mounting substrate on the side of the one sealing substrate 31 made of ceramic. However, as shown in FIGS. The other sealing substrate 41 side made of may be used as a mounting surface connected and fixed to the mounting substrate.

図6は、本発明の圧電共振子の変形例を示す外観斜視図であり、図7はそのB―B’線断面図である。   FIG. 6 is an external perspective view showing a modified example of the piezoelectric resonator of the present invention, and FIG. 7 is a cross-sectional view taken along the line B-B ′.

本変形例の圧電共振子1においては、他方の封止基板41の下面に、実装基板への接続・固定に使用する第2外部端子電極91a、91b、91cを形成している。そして、第2外部端子電極91aは外部接続電極71aによって振動電極22aと内部電極32aと外部端子電極33aとに接続され、また、第2外部端子電極92bは外部接続電極71bによって振動電極22bと内部電極32bと外部端子電極33bとに接続され、更に、外部接続電極91cは外部接続電極71cによって外部端子電極33cと接続されている。   In the piezoelectric resonator 1 of the present modification, second external terminal electrodes 91a, 91b, 91c used for connection / fixation to the mounting substrate are formed on the lower surface of the other sealing substrate 41. The second external terminal electrode 91a is connected to the vibration electrode 22a, the internal electrode 32a, and the external terminal electrode 33a by the external connection electrode 71a, and the second external terminal electrode 92b is connected to the vibration electrode 22b and the internal by the external connection electrode 71b. The external connection electrode 91c is connected to the external terminal electrode 33c by the external connection electrode 71c. The external connection electrode 91c is connected to the electrode 32b and the external terminal electrode 33b.

尚、第2外部端子電極91a、91b、91cは、外部端子電極31a、31b、31cと同様の材料及び形成法にて形成される。   The second external terminal electrodes 91a, 91b, 91c are formed by the same material and forming method as the external terminal electrodes 31a, 31b, 31c.

本変形例の圧電共振子1においては、柔らかくて変形しやすい樹脂材料からなる他方の封止基板41側を実装基板へ実装する実装面とすることによって、実装時に実装基板との熱膨張係数や弾性率の違いによって発生する応力を他方の封止基板41の変形によって吸収し、実装面付近のクラック等の発生を有効に抑制することができる。   In the piezoelectric resonator 1 of this modification, the other sealing substrate 41 side made of a soft and easily deformable resin material is used as a mounting surface for mounting on the mounting substrate, so that the thermal expansion coefficient with the mounting substrate during mounting can be reduced. The stress generated by the difference in elastic modulus is absorbed by the deformation of the other sealing substrate 41, and the occurrence of cracks and the like near the mounting surface can be effectively suppressed.

本発明の圧電共振子の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the piezoelectric resonator of this invention. 図1のA―A’線断面図である。FIG. 2 is a sectional view taken along line A-A ′ of FIG. 1. 本発明の圧電共振子を模式的に示す分解斜視図である。1 is an exploded perspective view schematically showing a piezoelectric resonator of the present invention. 本発明の圧電共振子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the piezoelectric resonator of this invention. 本発明の別の形態の圧電共振子を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically the piezoelectric resonator of another form of this invention. 本発明の圧電共振子の変形例を模式的に示す外観斜視図である。It is an external appearance perspective view which shows typically the modification of the piezoelectric resonator of this invention. 図6のB―B’線断面図である。FIG. 7 is a sectional view taken along line B-B ′ in FIG. 6. 従来の圧電共振子を模式的に示す断面図である。It is sectional drawing which shows the conventional piezoelectric resonator typically.

符号の説明Explanation of symbols

1・・・・・・・・・・・・・・圧電共振子
21・・・・・・・・・・・・・圧電基板
22a,22b・・・・・・・・振動電極
31,41・・・・・・・・・・封止基板
32a、32b・・・・・・・・内部電極
33a、33b、33c・・・・外部端子電極
51a、51b・・・・・・・・枠体
61a、61b・・・・・・・・振動空間
71a、71b、71c・・・・外部接続電極
81・・・・・・・・・・・・・樹脂層
91a、91b、91c・・・第2外部端子電極
DESCRIPTION OF SYMBOLS 1 ..... Piezoelectric resonator 21 ........ Piezoelectric substrate 22a, 22b ........ Vibration electrode 31, 41 ..... Sealing substrates 32a, 32b ..... Internal electrodes 33a, 33b, 33c ... External terminal electrodes 51a, 51b ... Frame Body 61a, 61b ... vibration space 71a, 71b, 71c ... external connection electrode 81 ... resin layer 91a, 91b, 91c ... Second external terminal electrode

Claims (6)

圧電基板の両主面に、該圧電基板を介して一部が対向するように配置される一対の振動電極を被着させるとともに、該振動電極の対向領域を囲繞する枠体を介して一対の封止基板を取着させ、これら封止基板の一方に前記振動電極と電気的に接続される静電容量を形成してなる圧電共振子であって、
前記一対の封止基板は、その一方が200〜5000の比誘電率を有したセラミック材料から成り、他方が樹脂材料から成ることを特徴とする圧電共振子。
A pair of vibration electrodes, which are arranged so as to partially face each other through the piezoelectric substrate, are attached to both main surfaces of the piezoelectric substrate, and a pair of vibration electrodes is disposed via a frame surrounding the opposed region of the vibration electrode. A piezoelectric resonator formed by attaching a sealing substrate and forming a capacitance electrically connected to the vibration electrode on one of these sealing substrates,
One of the pair of sealing substrates is made of a ceramic material having a relative dielectric constant of 200 to 5000, and the other is made of a resin material.
前記圧電基板に対して一方の封止基板側で、該一方の封止基板と前記枠体との間に樹脂層が介在されていることを特徴とすることを特徴とする請求項1に記載の圧電共振子。 2. The resin layer according to claim 1, wherein a resin layer is interposed between the one sealing substrate and the frame on the one sealing substrate side with respect to the piezoelectric substrate. Piezoelectric resonator. 前記他方の封止基板と前記樹脂層とが同一材料から成り、且つ、略等しい厚みに設定されていることを特徴とする請求項2に記載の圧電共振子。 3. The piezoelectric resonator according to claim 2, wherein the other sealing substrate and the resin layer are made of the same material and have substantially the same thickness. 前記他方の封止基板の内部にガラス繊維が埋設されていることを特徴とする請求項1乃至請求項3のいずれかに記載の圧電共振子。 The piezoelectric resonator according to any one of claims 1 to 3, wherein a glass fiber is embedded in the other sealing substrate. 前記他方の封止基板に使用される樹脂材料と前記枠体とが同系の樹脂材料から成ることを特徴とする請求項1乃至請求項4のいずれかに記載の圧電共振子。 5. The piezoelectric resonator according to claim 1, wherein the resin material used for the other sealing substrate and the frame are made of a similar resin material. 6. 前記一対の封止基板のうち他方の封止基板側が実装面とされていることを特徴とする請求項1乃至請求項5のいずれかに記載の圧電共振子。 6. The piezoelectric resonator according to claim 1, wherein the other sealing substrate side of the pair of sealing substrates is a mounting surface.
JP2005051975A 2004-06-29 2005-02-25 Piezoelectric resonator Pending JP2006050537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051975A JP2006050537A (en) 2004-06-29 2005-02-25 Piezoelectric resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004191743 2004-06-29
JP2005051975A JP2006050537A (en) 2004-06-29 2005-02-25 Piezoelectric resonator

Publications (1)

Publication Number Publication Date
JP2006050537A true JP2006050537A (en) 2006-02-16

Family

ID=36028519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051975A Pending JP2006050537A (en) 2004-06-29 2005-02-25 Piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP2006050537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035276A (en) * 2006-07-28 2008-02-14 Kyocera Corp Method of manufacturing piezoelectric oscillator
JP2011511433A (en) * 2008-01-10 2011-04-07 エプコス アクチエンゲゼルシャフト Piezoelectric actuator unit
TWI469407B (en) * 2011-01-25 2015-01-11

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145366A (en) * 1991-11-18 1993-06-11 Tdk Corp Piezoelectric component
JPH06140868A (en) * 1992-10-28 1994-05-20 Murata Mfg Co Ltd Chip-shaped piezoelectric resonator
JP2001102892A (en) * 1999-09-30 2001-04-13 Murata Mfg Co Ltd Piezoelectric resonant component and production thereof
JP2001177369A (en) * 1999-12-20 2001-06-29 Murata Mfg Co Ltd Piezoelectric resonator and piezoelectric oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145366A (en) * 1991-11-18 1993-06-11 Tdk Corp Piezoelectric component
JPH06140868A (en) * 1992-10-28 1994-05-20 Murata Mfg Co Ltd Chip-shaped piezoelectric resonator
JP2001102892A (en) * 1999-09-30 2001-04-13 Murata Mfg Co Ltd Piezoelectric resonant component and production thereof
JP2001177369A (en) * 1999-12-20 2001-06-29 Murata Mfg Co Ltd Piezoelectric resonator and piezoelectric oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035276A (en) * 2006-07-28 2008-02-14 Kyocera Corp Method of manufacturing piezoelectric oscillator
JP2011511433A (en) * 2008-01-10 2011-04-07 エプコス アクチエンゲゼルシャフト Piezoelectric actuator unit
TWI469407B (en) * 2011-01-25 2015-01-11

Similar Documents

Publication Publication Date Title
CN101099410B (en) Piezoelectric sounding body
US7893600B2 (en) Piezoelectric resonator
CN104821798B (en) Electronic Packaging and MEMS package
US20040183407A1 (en) Piezoelectric electroacoustic transducer
JP3794292B2 (en) Piezoelectric electroacoustic transducer and manufacturing method thereof
US20100207696A1 (en) Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and oscillator
CN108140723B (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator, and method for manufacturing piezoelectric element
EP2940864B1 (en) Piezoelectric component
JP2006050537A (en) Piezoelectric resonator
JPWO2006080341A1 (en) Piezoelectric oscillation element and piezoelectric oscillation component using the same
JP5709415B2 (en) Piezoelectric electronic components
CN113037245A (en) Quartz resonator based on piezoelectric thin film transduction and electronic equipment
JPWO2007026397A1 (en) Piezoelectric resonance element and piezoelectric resonance device using the same
JP5121646B2 (en) Piezoelectric resonator
JP6015010B2 (en) Vibration element, vibrator, oscillator and electronic equipment
WO2006059416A1 (en) Composite material vibrator
JP2007227751A (en) Electronic part, and its process for fabrication
JP7161709B2 (en) Electronic device and its manufacturing method
KR100697851B1 (en) A thickness shear mode vibrator and resonator thereby
JP2008244838A (en) Method for manufacturing piezoelectric resonance component
JP5031486B2 (en) Electronic components
JP2006187000A (en) Shear-mode vibrating element utilizing mass load effect and piezoelectric resonator utilizing the same
JP4693387B2 (en) Piezoelectric parts
WO2021210214A1 (en) Piezoelectric vibrator and method for manufacturing same
JP2001127577A (en) Piezoelectric vibrator component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130