JP2006049410A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2006049410A
JP2006049410A JP2004225181A JP2004225181A JP2006049410A JP 2006049410 A JP2006049410 A JP 2006049410A JP 2004225181 A JP2004225181 A JP 2004225181A JP 2004225181 A JP2004225181 A JP 2004225181A JP 2006049410 A JP2006049410 A JP 2006049410A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting diode
ceramic composite
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004225181A
Other languages
Japanese (ja)
Other versions
JP4428166B2 (en
Inventor
Shinichi Sakata
信一 坂田
Atsushi Mitani
敦志 三谷
Kazuhiro Fujii
一宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004225181A priority Critical patent/JP4428166B2/en
Publication of JP2006049410A publication Critical patent/JP2006049410A/en
Application granted granted Critical
Publication of JP4428166B2 publication Critical patent/JP4428166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode that can stably emit light generated by mixing stimulating light emitted from a light emitting element with a part of the stimulating light after converting the part to light having a different wavelength in omniazimuth direction, has a simple constitution, and is free from the deterioration of its structure and its light emitting characteristics caused by heat. <P>SOLUTION: This light emitting diode is composed of the light emitting element and a ceramic composite for optical conversion arranged around the light emitting element. The ceramic composite is a solidified body formed by continuously, three-dimensionally, and mutually entangling a single metal oxide and a composite metal oxide. The single metal oxide or the composite metal oxide contains a metallic element oxide which emits fluorescence. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、照射光の一部を、それとは異なる波長の光に変換すると共に、変換しなかった照射光と混合して、照射光とは色合いの異なる光に変換する発光ダイオードの構成に関する。   The present invention relates to a configuration of a light-emitting diode that converts part of irradiated light into light having a different wavelength and mixes it with irradiation light that has not been converted to light having a different hue from the irradiated light.

近年、青色発光ダイオードが実用化されたことを受け、このダイオードを発光源とする白色発光ダイオードの開発研究が盛んに行われている。白色発光ダイオードは既存の白色光源に比した消費電力の低さと、寿命の長さが大きな利点であるため、今後、需要が急速に拡大することが予測されている。青色発光ダイオードの青色光を白色光ヘ変換する方法として最も一般的に行なわれている方法は、例えば特許文献1に記載されているように、青色光を発光する発光素子の前面に、青色光の一部を吸収して青色と補色関係にある黄色光を発する蛍光体を含有するコーティング層と、光源の青色光とコーティング層からの黄色光を混色するためのモールド層とを設けることである。従来、コーティング層としては、セリウムで付活されたYAG(YAl12:Ce)粉末とエポキシ樹脂の混合物を発光素子に塗布したものが採用されている。 In recent years, blue light-emitting diodes have been put into practical use, and research and development of white light-emitting diodes using this diode as a light-emitting source have been actively conducted. White light emitting diodes are expected to grow rapidly in the future because they have the advantages of low power consumption and long life compared to existing white light sources. The most commonly performed method for converting blue light from a blue light emitting diode into white light is, for example, as described in Patent Document 1, with blue light on the front surface of a light emitting element that emits blue light. A coating layer containing a phosphor that absorbs a part of the light and emits yellow light complementary to blue, and a mold layer for mixing the blue light of the light source and the yellow light from the coating layer are provided. . Conventionally, a coating layer in which a mixture of YAG (Y 3 Al 5 O 12 : Ce) powder activated with cerium and an epoxy resin is applied to a light emitting element has been employed.

図3に従来の白色発光ダイオードの構成を示す。発光素子1はカップ状の金属の支持台2の上に固定されている。発光素子1の表面の電極は、導電性ワイヤー3によって電極4と結ばれている。また。発光素子1の上には蛍光体を含有するコーティング層6が塗布され、さらに、モールド層7で被われている。発光素子を固定している支持台の周辺部には、発光素子の光を前面に反射するための傾斜した反射面が設けられている。このような形状の発光ダイオードは前面に光を強く放出させる場合に適している。   FIG. 3 shows the configuration of a conventional white light emitting diode. The light emitting element 1 is fixed on a cup-shaped metal support 2. The electrode on the surface of the light emitting element 1 is connected to the electrode 4 by the conductive wire 3. Also. A coating layer 6 containing a phosphor is applied on the light emitting element 1 and is covered with a mold layer 7. An inclined reflecting surface for reflecting the light of the light emitting element to the front surface is provided on the periphery of the support base to which the light emitting element is fixed. The light emitting diode having such a shape is suitable for a case where light is strongly emitted to the front surface.

ところで、電灯のような照明機器では、特定の方向に光を放出するより、全方位に拡散する光の方が好ましい。なぜならば、光を拡散させることで柔らかな光を得ることが可能になるからである。このため、発光ダイオードにおいても電球のように光が全方向に拡散するものが望まれる。しかし、現在の発光ダイオードは前面に光を出すように作られており、全方位に光を拡散させるには、前述のような白色発光ダイオードの形態を変更する必要がある。   By the way, in a lighting device such as an electric lamp, light that diffuses in all directions is preferable to light emitted in a specific direction. This is because it is possible to obtain soft light by diffusing light. For this reason, a light-emitting diode that diffuses light in all directions like a light bulb is desired. However, current light emitting diodes are made to emit light to the front, and in order to diffuse light in all directions, it is necessary to change the form of the white light emitting diode as described above.

特開2000−208815号公報JP 2000-208815 A

しかし、従来の白色発光ダイオードの構成では、全方位に光を発することは難しい。なぜならば、金属製の支持台を用いるからである。最近、セラミック製の支持台が市場に出てきているが、セラミックの表面には光を反射するように金属の層が設けられており、金属製の支持台と同じように、前面方向だけに光を放出する構造になっている。全方位に白色光を放出する発光ダイオードを得るには従来の支持台に変えて、発光素子を固定でき、さらに、励起光を透過しながら、励起光の一部を吸収し黄色の蛍光の発光を行い、なおかつ熱を逃がすような支持台が必要である。特に発光素子の放熱は重要である。熱的に孤立した発光素子は電気を流すと温度が上昇し、発光が急速に低下する。さらには、素子周辺に存在する蛍光体粉末を含む樹脂層が溶融するという問題も生じる。熱を逃がすために最も適した材料は、熱伝導度の良い金属である。このため、発光ダイオードには広く金属のパッケージが採用されている。しかし、金属を利用すると、前述したように、光は前面方向のみに放出されてしまう。金属製の支持台を使用せずに透光性セラミックを利用して光の透過が可能なパッケージを作製し光を全方位に放出することを考えた場合、白色発光ダイオードでは、光の透過だけではなく、光を白色に変換する蛍光体と樹脂とを混合した層が必要であり、これを透光性パッケージと発光素子の間に配置すると、蛍光体粉末を含む樹脂層は熱伝導が非常に悪いので、前述の熱の問題が生じる。本発明の目的は、励起光を発光する発光素子と、該励起光の一部を波長の異なる光に変換し、前記励起光と前記波長変換された光とを混色した光を発する発光ダイオードであり、簡単な構成で、上記熱の問題を生じさせず、安定して、全方位に光を発する発光ダイオードを提供することである。特に、前記励起光が青色または紫色であり、混色された光が白色である、全方位に発光する発光ダイオードを提供することである。   However, it is difficult to emit light in all directions in the configuration of the conventional white light emitting diode. This is because a metal support is used. Recently, ceramic support bases have appeared on the market, but the ceramic surface is provided with a metal layer to reflect light, just like the metal support bases, only in the front direction. It has a structure that emits light. To obtain a light-emitting diode that emits white light in all directions, the light-emitting element can be fixed instead of the conventional support base. Further, while transmitting the excitation light, it absorbs part of the excitation light and emits yellow fluorescence. It is necessary to have a support base that performs heat and releases heat. In particular, heat dissipation of the light emitting element is important. A thermally isolated light-emitting element rises in temperature when electricity is applied, and light emission rapidly decreases. Furthermore, there also arises a problem that the resin layer containing the phosphor powder existing around the element is melted. The most suitable material for releasing heat is a metal having good thermal conductivity. For this reason, metal packages are widely used for light emitting diodes. However, when metal is used, light is emitted only in the front direction as described above. If a light-transmitting ceramic is used to produce a light-transmitting package without using a metal support, and light is emitted in all directions, white light-emitting diodes only transmit light. Rather, a layer that mixes phosphor and resin that converts light into white is necessary, and if this layer is placed between the light-transmitting package and the light-emitting element, the resin layer containing the phosphor powder has a very high thermal conductivity. The above-mentioned heat problem occurs. An object of the present invention is a light emitting element that emits excitation light, and a light emitting diode that converts a part of the excitation light into light having different wavelengths and emits light in which the excitation light and the wavelength-converted light are mixed. There is provided a light emitting diode that emits light in all directions stably with a simple configuration without causing the above-described heat problem. In particular, the present invention provides a light emitting diode that emits light in all directions, in which the excitation light is blue or purple and the mixed light is white.

本発明者らは、これまでに、光変換用セラミック複合材料を用いて白色発光ダイオードを作製する方法を提案してきたが、さらに、このセラミック複合材料が高い熱伝導率を有していることに着目し、全方位に光を放出する発光ダイオードの発明にいたった。本材料は、熱伝導率が高いことはもちろん、励起光の透過が可能で、励起光の一部を吸収し蛍光を放出し、効率的に励起光と蛍光の混合ができ、しかも、高い光透過に優れた材料であるために、本発明の発光ダイオードの構成が可能となった。   The present inventors have so far proposed a method for producing a white light-emitting diode using a ceramic composite material for light conversion. Furthermore, the ceramic composite material has a high thermal conductivity. Attention was paid to the invention of a light emitting diode that emits light in all directions. This material not only has high thermal conductivity, but also allows excitation light to pass through, absorbs a part of the excitation light, emits fluorescence, and efficiently mixes excitation light and fluorescence. Since the material is excellent in transmission, the configuration of the light emitting diode of the present invention is possible.

すなわち、本発明は、発光素子と該発光素子の全周に配置した光変換用セラミック複合体とからなる発光ダイオードであり、前記光変換用セラミック複合体は、単一金属酸化物と複合金属酸化物とが連続的にかつ3次元的に相互に絡み合って形成されている凝固体であって、前記単一金属酸化物または前記複合金属酸化物は、蛍光を発する金属元素酸化物を含有していることを特徴とする発光ダイオードに関する。   That is, the present invention is a light-emitting diode comprising a light-emitting element and a light-converting ceramic composite disposed all around the light-emitting element. The light-converting ceramic composite includes a single metal oxide and a composite metal oxide. A solid body formed continuously and three-dimensionally intertwined with each other, wherein the single metal oxide or the composite metal oxide contains a metal element oxide that emits fluorescence. The present invention relates to a light emitting diode.

本発明の好ましい実施形態は、前記複合金属酸化物がセリウムで付活されたYAG(YAl12:Ce)結晶であり、前記単一金属酸化物がα型酸化アルミニウム(Al)結晶であることを特徴とする発光ダイオードに関する。 In a preferred embodiment of the present invention, the composite metal oxide is YAG (Y 3 Al 5 O 12 : Ce) crystal activated with cerium, and the single metal oxide is α-type aluminum oxide (Al 2 O). 3 ) It relates to a light emitting diode characterized by being a crystal.

さらに、本発明の好ましい実施形態は、前記発光素子が青色または紫色光を発光し、前記発光ダイオードが擬似的に白色を発光することを特徴とする発光ダイオードに関する。   Furthermore, a preferred embodiment of the present invention relates to a light emitting diode, wherein the light emitting element emits blue or violet light, and the light emitting diode emits pseudo white light.

本発明によれば、熱による問題も無く、安定して、全方位に光を放出する白色発光ダイオードを構成することができ、従来の発光ダイオードの問題である指向性の強い光を改善し、電球のような全方位に広がる光を得ることができる。また、従来使用されていなかった方向の光を有効に活用し波長変換できることから、発光効率も高くなる。   According to the present invention, there is no problem due to heat, and a white light emitting diode that stably emits light in all directions can be configured, and the highly directional light that is a problem of the conventional light emitting diode is improved. Light that spreads in all directions like a light bulb can be obtained. In addition, since light in a direction not conventionally used can be effectively utilized and wavelength conversion can be performed, luminous efficiency is also increased.

本発明の発光ダイオードは、発光ダイオード素子と該発光ダイオード素子の全周、即ち、上面、側面および底面に配置した光変換用セラミック複合体とからなる。本発明に用いる光変換用セラミック複合体を構成するセラミック複合材料は、単一金属酸化物と複合金属酸化物とが連続的にかつ3次元的に相互に絡み合って形成されている凝固体であり、前記単一金属酸化物または前記複合金属酸化物は、蛍光を発する金属元素酸化物を含有している。このような凝固体は、原料金属酸化物を融解後、凝固して作られる複合材料である。単一金属酸化物とは、1種類の金属の酸化物であり、複合金属酸化物は、2種以上の金属の酸化物である。それぞれの酸化物は、好ましくは結晶状態となって、3次元的に相互に絡み合った構造をしている。本発明に係るセラミック複合材料は、単一金属酸化物と複合金属酸化物がそれそれ一種で構成されているものに限らず、2種類以上の単一金属酸化物や、2種類以上の複合金属酸化物が含まれていてもよい。このような単一金属酸化物としては、酸化アルミニウム(Al23)、酸化ジルコニウム(ZrO2)、酸化マグネシウム(MgO)、酸化シリコン(SiO2)、酸化チタン(TiO2)酸化バリウム(BaO)、酸化ベリリウム(BeO)、酸化カルシウム(CaO)、酸化クロミウム(Cr23)等の他、希土類元素酸化物(La23、Y23、CeO2、Pr611、Nd23、Sm23、Gd23、Eu23、Tb47、Dy23、Ho23、Er23、Tm23、Yb23、Lu23)が挙げられる。また、複合金属酸化物としては、LaAlO3、CeAlO3、PrAlO3、NdAlO3、SmAlO3、EuAlO3、GdAlO3、DyAlO3、ErAlO3、Yb4Al29、Y3Al512、Er3l512、Tb3Al512、11Al23・La23、11Al23・Nd23、3Dy23・5Al23、2Dy23・Al23、11Al23・Pr23、EuAl1118、2Gd23・Al23、11Al23・Sm23、Yb3Al512、CeAl1118、Er4Al29が挙げられる。 The light-emitting diode of the present invention comprises a light-emitting diode element and a ceramic composite for light conversion disposed on the entire circumference of the light-emitting diode element, that is, on the top surface, side surface, and bottom surface. The ceramic composite material constituting the ceramic composite for light conversion used in the present invention is a solidified body in which a single metal oxide and a composite metal oxide are continuously and three-dimensionally entangled with each other. The single metal oxide or the composite metal oxide contains a metal element oxide that emits fluorescence. Such a solidified body is a composite material made by melting and solidifying the raw metal oxide. A single metal oxide is an oxide of one kind of metal, and a composite metal oxide is an oxide of two or more kinds of metals. Each oxide is preferably in a crystalline state and has a three-dimensionally entangled structure. The ceramic composite material according to the present invention is not limited to a single metal oxide and a single composite metal oxide, but two or more single metal oxides or two or more composite metals. An oxide may be included. Such single metal oxides include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) barium oxide (BaO). ), Beryllium oxide (BeO), calcium oxide (CaO), chromium oxide (Cr 2 O 3 ) and the like, as well as rare earth element oxides (La 2 O 3 , Y 2 O 3 , CeO 2 , Pr 6 O 11 , Nd) 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , Eu 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ). Further, as the composite metal oxide, LaAlO 3 , CeAlO 3 , PrAlO 3 , NdAlO 3 , SmAlO 3 , EuAlO 3 , GdAlO 3 , DyAlO 3 , ErAlO 3 , Yb 4 Al 2 O 9 , Y 3 Al 5 O 12 , Er 3 A l5 O 12, Tb 3 Al 5 O 12, 11Al 2 O 3 · La 2 O 3, 11Al 2 O 3 · Nd 2 O 3, 3Dy 2 O 3 · 5Al 2 O 3, 2Dy 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Pr 2 O 3, EuAl 11 O 18, 2Gd 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Sm 2 O 3, Yb 3 Al 5 O 12, CeAl 11 O 18 Er 4 Al 2 O 9 .

これらの、光変換用セラミック複合材料の特に好ましい材料として、複合金属酸化物であるセリウムで付活されたYAG(YAl12:Ce)結晶と単一金属酸化物であるα型酸化アルミニウム(Al)結晶との組合せが挙げられる。YAG(YAl12:Ce)結晶とα型酸化アルミニウム(Al)結晶とからなる光変換用セラミック複合材料は、紫から青色の光を透過しながら、その一部を吸収し、黄色の蛍光を発するので、今後、成長が期待される白色発光ダイオードを簡単に形成できる。 Particularly preferable materials of these ceramic composite materials for light conversion are YAG (Y 3 Al 5 O 12 : Ce) crystal activated by cerium which is a composite metal oxide and α-type oxidation which is a single metal oxide. aluminum (Al 2 O 3) and a combination of the crystal. A ceramic composite material for light conversion composed of YAG (Y 3 Al 5 O 12 : Ce) crystal and α-type aluminum oxide (Al 2 O 3 ) crystal absorbs part of it while transmitting purple to blue light. In addition, since it emits yellow fluorescence, a white light emitting diode that is expected to grow in the future can be easily formed.

本発明に係る光変換用セラミック複合体は、上記の連続的にかつ三次元的に配列されて相互に絡み合って存在する凝固体を適切な形状に加工することによって得られる。   The ceramic composite for light conversion according to the present invention can be obtained by processing the solidified bodies that are continuously and three-dimensionally arranged and entangled with each other into an appropriate shape.

複合金属酸化物であるセリウムで付活されたYAG(YAl12:Ce)結晶と単一金属酸化物であるα型酸化アルミニウム(Al)結晶とからなる光変換用セラミック複合体を用いた発光ダイオードの光源である発光素子として青色または紫色光を発光するダイオード素子を用いることにより、前記発光ダイオードが擬似的に白色を発光することができる。 Ceramic for light conversion comprising YAG (Y 3 Al 5 O 12 : Ce) crystal activated by cerium which is a composite metal oxide and α-type aluminum oxide (Al 2 O 3 ) crystal which is a single metal oxide By using a diode element that emits blue or violet light as a light-emitting element that is a light source of a light-emitting diode using a composite, the light-emitting diode can emit pseudo white light.

本発明の発光ダイオードの一実施形態を図1に示す。本発明の発光ダイオードは、光変換用セラミック複合体5からなる支持台2上に発光素子1である発光ダイオード素子が設置されており、その支持台2上に発光素子1を覆うように光変換用セラミック複合体5を配置している。支持台2の側面には、発光素子1の電極と繋ぐための電極4が設けられている。電極4は光変換用セラミック複合体5に直接接着剤で固定されている。セラミック複合体5に取り付けられた電極4と発光素子1の電極とは導電性ワイヤー3で接続されている。発光素子1自身は市販の発光ダイオード素子を用いることができるが、YAG(YAl12:Ce)結晶とα型酸化アルミニウム(Al)結晶とからなるセラミック複合体と組み合わせて白色発光ダイオードを用いる場合は、GaInN系の発光ダイオード素子を用いることが好ましい。その場合、発光の波長は400nmから470nmの紫から青色までの光を利用することができる。本光変換用セラミック複合体を用いた場合、YAG蛍光体粉末では白色発光ダイオードを構成できない400nmから419nmまでの光でも白色発光ダイオードを構成できる。 One embodiment of the light emitting diode of the present invention is shown in FIG. In the light-emitting diode of the present invention, a light-emitting diode element, which is the light-emitting element 1, is installed on a support base 2 made of a ceramic composite 5 for light conversion. The ceramic composite 5 is disposed. An electrode 4 for connecting to the electrode of the light emitting element 1 is provided on the side surface of the support base 2. The electrode 4 is directly fixed to the ceramic composite 5 for light conversion with an adhesive. The electrode 4 attached to the ceramic composite 5 and the electrode of the light emitting element 1 are connected by a conductive wire 3. The light-emitting element 1 itself can be a commercially available light-emitting diode element, but is combined with a ceramic composite composed of a YAG (Y 3 Al 5 O 12 : Ce) crystal and an α-type aluminum oxide (Al 2 O 3 ) crystal. When using a white light emitting diode, it is preferable to use a GaInN-based light emitting diode element. In that case, light having a wavelength of light emission ranging from 400 nm to 470 nm from purple to blue can be used. When the present ceramic composite for light conversion is used, a white light emitting diode can be formed even with light from 400 nm to 419 nm, which cannot be formed with a YAG phosphor powder.

光変換用セラミック複合体を構成するセラミック複合材料は室温における熱伝導率が約21W/mKでセラミックス材料の中では非常に高い。この値は電子材料の基板として広く用いられているアルミナ基板(Al)の熱伝導率に匹敵する。本材料の体積の半分はAlであり、半分はYAGである。Al相が体積の半分しか存在しないにもかかわらず、高い熱伝導率を示すのは、本材料には、セラミック焼結体に存在する粒界や気泡が存在しないためであると考えられる。 The ceramic composite constituting the ceramic composite for light conversion has a thermal conductivity of about 21 W / mK at room temperature, which is very high among ceramic materials. This value is comparable to the thermal conductivity of an alumina substrate (Al 2 O 3 ) widely used as a substrate for electronic materials. Half of the volume of this material is Al 2 O 3 and half is YAG. Despite the fact that the Al 2 O 3 phase is only half of the volume, the high thermal conductivity is considered to be due to the absence of grain boundaries and bubbles present in the ceramic sintered body in this material. It is done.

本発明に係るセラミックス複合材料の強度は300MPa以上もあり発光ダイオードの外周を形成するのに十分な強度を有している。このため、この光変換用セラミックス複合材料が外部に露出した状態でも発光ダイオードを構成することができる。本材料は高い熱伝導特性を有し、励起光の透過、蛍光の発生、蛍光と励起光の混合の機能を併せ持ち、さらにそれが、そのまま、発光ダイオードの構造体になるという優れた特徴を有する。つまり、光変換用セラミックス複合体の支持台の上に発光素子を固定し、さらに、光変換用セラミックス複合体をかぶせるだけで白色発光ダイオードを構成することができる。このため、製造の大幅な簡略化がはかれる。もちろん、この発光ダイオードを樹脂で包み込んで使用することも可能である。また、必要に応じて光変換用セラミックス複合体の表面に直接、光の反射の大きな金属等の層を蒸着法や塗布法で形成し、光の取出し方向を制御することも可能である。   The ceramic composite material according to the present invention has a strength of 300 MPa or more, and is strong enough to form the outer periphery of the light emitting diode. For this reason, a light emitting diode can be comprised even if this ceramic composite material for light conversion is exposed outside. This material has high heat conduction characteristics, and has the excellent characteristics of transmitting light, generating fluorescence, and mixing fluorescence and excitation light, and that it becomes a light emitting diode structure as it is. . That is, a white light emitting diode can be formed by simply fixing a light emitting element on a support base of a ceramic composite for light conversion and then covering the ceramic composite for light conversion. This greatly simplifies manufacturing. Of course, it is also possible to use this light-emitting diode by wrapping it in resin. If necessary, it is also possible to form a layer of metal or the like having a large light reflection directly on the surface of the ceramic composite for light conversion by a vapor deposition method or a coating method to control the light extraction direction.

導電性ワイヤーとしては、ワイヤーボンダーの作業の上の観点から直径が10μm〜45μmであることが好ましく、材質は、金、銅、アルミニウム、白金等やそれらの合金が挙げられる。支持台の光変換用セラミックス複合体の側面に接着する電極としては、銅、アルミニウム、ニッケル、鉄入り銅、錫入り銅、りん青銅やそれらに金メッキ、銀メッキ名等のメッキを施した電極が挙げられる。   As a conductive wire, it is preferable that a diameter is 10 micrometers-45 micrometers from a viewpoint on the operation | work of a wire bonder, Gold, copper, aluminum, platinum, etc. and those alloys are mentioned as a material. As an electrode to be bonded to the side surface of the ceramic composite for light conversion of the support base, there are copper, aluminum, nickel, iron-containing copper, tin-containing copper, phosphor bronze and electrodes plated with gold plating, silver plating name, etc. Can be mentioned.

本発明によれば、発光素子の光とは異なる光を全方位に放出する発光ダイオードを構成することができ、従来の発光ダイオードの問題である指向性の強い光を改善し、電球のような全方位に広がる光を得ることができる。また、従来使用されていなかった方向の光を有効に活用し波長変換できることから、発光効率も高くなる。その意味では、発光ダイオードチップの上面と側面だけでも本発明に係る光変換用セラミック複合体を設置することにより、明るい発光ダイオードとすることができる。さらに、発光素子として、青色または紫色の光を発光する素子を用い、YAG(YAl12:Ce)結晶とα型酸化アルミニウム(Al)結晶とからなるセラミック複合体を用いれば、擬似的に白色光を全方位に放出する白色発光ダイオードを構成することができる。 According to the present invention, it is possible to configure a light emitting diode that emits light different from the light of the light emitting element in all directions, and to improve the light having a strong directivity that is a problem of the conventional light emitting diode. Light spreading in all directions can be obtained. In addition, since light in a direction not conventionally used can be effectively utilized and wavelength conversion can be performed, luminous efficiency is also increased. In that sense, a bright light emitting diode can be obtained by installing the ceramic composite for light conversion according to the present invention only on the upper surface and side surface of the light emitting diode chip. Further, as a light emitting element, an element emitting blue or violet light is used, and a ceramic composite composed of a YAG (Y 3 Al 5 O 12 : Ce) crystal and an α-type aluminum oxide (Al 2 O 3 ) crystal is used. For example, a white light emitting diode that emits pseudo white light in all directions can be configured.

本発明の発光ダイオードは、例えば次のようにして作製される。   The light emitting diode of the present invention is produced, for example, as follows.

発光素子の全周に配置する光変換用セラミック複合体は、原料金属酸化物を融解後、凝固して作られる複合材料の凝固体ブロックからダイヤモンドカッターのような切断機で小片を切り出して得ることができる。一部の光変換用セラミック複合体は、発光素子を固定する支持台として使用される。また、別に切り出した前記凝固体の小片は、超音波加工機によって、発光素子の入る穴をほり、支持台の上側に載せるセラミック複合体とする。作製した支持台には側面に電極をエポキシ樹脂などの接着剤を用いて固定する。   The ceramic composite for light conversion to be arranged on the entire circumference of the light-emitting element must be obtained by cutting small pieces with a cutting machine such as a diamond cutter from the solidified block of the composite material made by melting the raw metal oxide and solidifying it. Can do. Some ceramic composites for light conversion are used as a support base which fixes a light emitting element. Further, the small piece of the solidified body cut out separately is a ceramic composite that is placed on the upper side of the support base by removing a hole for the light emitting element by an ultrasonic processing machine. An electrode is fixed to the side surface of the prepared support using an adhesive such as an epoxy resin.

この光変換用セラミック複合体である支持台に、発光素子を固定する。固定する方法はシリコーン系の樹脂のような光透過に優れ、耐熱性、光安定性にも優れた接着材料や、エポキシ系の樹脂のような接着材も利用できる。また、銀ペーストのような金属を含む接着剤も利用できる。この場合、銀ペーストの部分で光は遮断されてしまうが、セラミック複合体の中で、光の散乱により、遮断され光が出なかった部分へ光が回り込むので問題無く利用することができる。支持台上に固定された発光素子と支持台側面に固定された電極は、ワイヤーボンダーを用いて導電性ワイヤーで結ばれる。次に、前述したように、発光素子の入る穴のあいたセラミック複合体を支持台の上部に設置する。設置の方法は、エポキシ樹脂、シリコーン樹脂などの接着剤を用いて固定する。この際に、くぼみ部分を樹脂で埋めても良い。このようにして、支持台の方向、つまり下側に発光素子より放出された光は、本セラミック複合体によって波長が変換され放射される。また、上側、側面にも同様に発光素子より放出された光は、波長変換されそれぞれに放射される。これにより、全周方向に光を放つ発光ダイオードを構成することができ、指向性の強い光を改善し、電球のような全方位に広がる光を得ることができる。また、従来使用されていなかった方向の光を有効に活用し波長変換でき、発光効率も高くなる。また、光変換用セラミック複合体の優れた熱伝導性、耐熱性のために、発光素子が高温になることも、光変換用セラミック複合体が熱により変質することもない。   The light emitting element is fixed to a support base that is this ceramic composite for light conversion. As the fixing method, an adhesive material excellent in light transmission like a silicone resin, excellent in heat resistance and light stability, and an adhesive material such as an epoxy resin can be used. An adhesive containing a metal such as silver paste can also be used. In this case, the light is blocked at the silver paste portion, but in the ceramic composite, light scatters to the portion where the light is blocked and no light is emitted, so that it can be used without any problem. The light emitting element fixed on the support base and the electrode fixed on the side surface of the support base are connected by a conductive wire using a wire bonder. Next, as described above, the ceramic composite having a hole for receiving the light emitting element is placed on the upper part of the support base. The method of installation is fixed using an adhesive such as an epoxy resin or a silicone resin. At this time, the recessed portion may be filled with resin. In this way, the light emitted from the light emitting element in the direction of the support base, that is, the lower side is converted in wavelength by the ceramic composite and radiated. Similarly, the light emitted from the light emitting element is also wavelength-converted and emitted to the upper and side surfaces. As a result, a light emitting diode that emits light in the entire circumferential direction can be configured, light with strong directivity can be improved, and light spreading in all directions like a light bulb can be obtained. In addition, the light in the direction not conventionally used can be effectively used to convert the wavelength, and the luminous efficiency is increased. Further, because of the excellent thermal conductivity and heat resistance of the ceramic composite for light conversion, the light emitting element does not become high temperature and the ceramic composite for light conversion is not altered by heat.

また、青色または紫色の光を発光する素子を用い、YAG(YAl12:Ce)結晶とα型酸化アルミニウム(Al)結晶とからなるセラミック複合体を用いれば、発光素子から発する紫色または青色の光は、本セラミック複合体によって白色光に変換され出てくる。また支持台の上部へ放出された紫色または青色の光も上に乗せられたこのセラミック複合体によって白色に変換される。このようにして全方位に光が放出する白色発光ダイオードを構成することができる。 In addition, if a ceramic composite composed of a YAG (Y 3 Al 5 O 12 : Ce) crystal and an α-type aluminum oxide (Al 2 O 3 ) crystal is used, a light emitting element is used. The purple or blue light emitted from the light is converted into white light by the ceramic composite. The purple or blue light emitted to the top of the support is also converted to white by this ceramic composite placed on top. In this way, a white light emitting diode that emits light in all directions can be configured.

このような上下面、および側面からの光を正確に色むらのない色に変えることは、流動性のある蛍光体粉末と樹脂を混練したペーストではきわめて難しい。ペーストの流動性のため、発光素子の垂直に立ち上がる面ではペーストが流れてしまうからである。本発明に係る光変換用セラミック複合体は、このような問題がないため、発光ダイオード素子の周囲に自由に設置することが可能である。   It is extremely difficult to accurately change the light from the upper and lower surfaces and the side surfaces to a color with no color unevenness in a paste obtained by kneading a fluid phosphor powder and a resin. This is because of the fluidity of the paste, the paste flows on the surface of the light emitting element that rises vertically. Since the ceramic composite for light conversion according to the present invention does not have such a problem, it can be freely installed around the light emitting diode element.

また、光変換用セラミック複合体の形態は光の放出の制御などで各種の形状が考えられる。その例を図2に示した。図2−(a)は発光素子に対し光変換用セラミック複体の厚みが均一になる様に超音波加工機によって円盤状に加工したものである。この形状のほうがより均一な光を得ることができる。また、図2−(b)、(c)は360°に広がる光ではあるが、上部に乗せた光変換用セラミック複合体の形状を制御することで、特定の方向に強く光を放出することができる。この場合も、従来使用されていなかった方向の光を有効に活用し波長変換できることから、発光効率も高くなる。   Various forms of the ceramic composite for light conversion are conceivable for controlling the emission of light. An example is shown in FIG. FIG. 2- (a) shows a disk shape processed by an ultrasonic machine so that the thickness of the light-converting ceramic composite is uniform with respect to the light emitting element. With this shape, more uniform light can be obtained. 2- (b) and (c) show light that spreads 360 °, but emits light strongly in a specific direction by controlling the shape of the ceramic composite for light conversion placed on top. Can do. Also in this case, since light in a direction that has not been used in the past can be effectively utilized and wavelength conversion can be performed, the light emission efficiency is also increased.

さらには特定方向に光を集中するために図2−(b)、(c)の側面にある斜めの部分には金属層のような光の反射部分をつけることも考えられるが、この場合には、360°の光を得ることはできないものの、この場合も、従来使用されていなかった方向の光を有効に活用し波長変換できることから、発光効率も高くなる。   Furthermore, in order to concentrate the light in a specific direction, it is conceivable to attach a light reflecting part such as a metal layer to the oblique part on the side surface of FIGS. 2- (b) and (c). Although it is impossible to obtain 360 ° light, in this case as well, light emission in a direction not conventionally used can be effectively utilized and wavelength conversion can be performed, so that the light emission efficiency is increased.

本発明のセラミックス複合材料は、原料金属酸化物を融解後、凝固して作られる。例えば、所定温度に保持したルツボに仕込んだ溶融物を、冷却温度を制御しながら冷却凝結させる簡単な方法で凝固体を得ることができるが、最も好ましいのは一方向凝固法によるものである。本発明のセラミックス複合材料は様々な結晶相の組合せが考えられるが、実施形態の説明としては、白色発光ダイオードを構成できる点で最も重要な組成系であるAl/YAG:Ce系を取り上げて説明する。その工程の概略は次である。 The ceramic composite material of the present invention is made by melting and solidifying a raw metal oxide. For example, a solidified body can be obtained by a simple method of cooling and condensing a melt charged in a crucible held at a predetermined temperature while controlling the cooling temperature, but the most preferable is the one-way solidification method. The ceramic composite material of the present invention can be combined with various crystal phases, but as an explanation of the embodiment, Al 2 O 3 / YAG: Ce, which is the most important composition system in that a white light emitting diode can be configured, is used. Take up and explain. The outline of the process is as follows.

α−AlとY、CeOを所望する成分比率の割合で混合して、混合粉末を調整する。最適な組成比はα−AlとYだけの場合にはモル比で82:18である。CeO2を添加する場合は最終的に生成するYAGに対するCeの置換量から逆算してAl、Y、CeOの成分比率を求める。混合方法については特別の制限はなく、乾式混合法及び湿式混合法のいずれも採用することができる。ついで、この混合粉末を公知の溶融炉、例えば、アーク溶融炉を用いて仕込み原料が溶解する温度に加熱して溶融させる。例えば、AlとYの場合、1,900〜2,000℃に加熱して溶解する。 α-Al 2 O 3 , Y 2 O 3 , and CeO 2 are mixed at a desired component ratio to prepare a mixed powder. The optimum composition ratio is 82:18 in molar ratio when only α-Al 2 O 3 and Y 2 O 3 are used. When CeO2 is added, the component ratio of Al 2 O 3 , Y 2 O 3 , and CeO 2 is determined by calculating backward from the amount of Ce substitution with respect to YAG that is finally produced. There is no particular limitation on the mixing method, and either a dry mixing method or a wet mixing method can be employed. Next, the mixed powder is melted by heating to a temperature at which the charged raw materials are melted using a known melting furnace, for example, an arc melting furnace. For example, in the case of Al 2 O 3 and Y 2 O 3, dissolved by heating to 1,900~2,000 ℃.

得られた溶融物は、そのままルツボに仕込み一方向凝固させるか、あるいは、一旦凝固させた後に粉砕し、粉砕物をルツボに仕込み、再度加熱・溶融させた後、融液の入ったルツボを溶融炉の加熱ゾーンから引き出し、一方向凝固を行う。融液の一方向凝固は常圧下でも可能であるが、結晶相の欠陥の少ない材料を得るためには、4000Pa以下の圧力下で行うのが好ましく、0.13Pa(10−3Torr)以下は更に好ましい。 The obtained melt is charged into a crucible as it is and solidified in one direction, or once solidified, and then pulverized. Pull out from the furnace heating zone and perform unidirectional solidification. Unidirectional solidification of the melt is possible even under normal pressure, but in order to obtain a material with few crystal phase defects, it is preferable to carry out under a pressure of 4000 Pa or less, and 0.13 Pa (10 −3 Torr) or less. Further preferred.

ルツボの加熱域からの引き出し速度、すなわち、融液の凝固速度は、融液組成及び溶融条件によって、適宜の値に設定することになるが、通常50mm/時間以下、好ましくは1〜20mm/時間である。   The drawing speed from the heating region of the crucible, that is, the solidification speed of the melt is set to an appropriate value depending on the melt composition and melting conditions, but is usually 50 mm / hour or less, preferably 1 to 20 mm / hour. It is.

一方向に凝固させる装置としては、垂直方向に設置された円筒状の容器内にルツボが上下方向に移動可能に収納されており、円筒状容器の中央部外側に加熱用の誘導コイルが取り付けられており、容器内空間を減圧にするための真空ポンプが設置されている、それ自体公知の装置を使用することができる。   As a device for coagulating in one direction, a crucible is accommodated in a vertically arranged cylindrical container so as to be movable in the vertical direction, and an induction coil for heating is attached to the outside of the central part of the cylindrical container. It is possible to use a device known per se, in which a vacuum pump for reducing the pressure inside the container is installed.

本発明の光変換用セラミック複合材料の少なくとも1つの相を構成する蛍光体は、金属酸化物あるいは複合酸化物に付活元素を添加して得ることができる。本発明の光変換用セラミック複合体に用いるセラミック複合材料は、少なくとも1つの構成相を蛍光体相にするが、基本的に、本願出願人(発明譲受人)が先に特開平7−149597号公報、特開平7−187893号公報、特開平8−81257号公報、特開平8−253389号公報、特開平8−253390号公報および特開平9−67194号公報並びにこれらに対応する米国出願(米国特許第5,569,547号、同第5,484,752号、同第5,902,763号)等に開示したセラミック複合材料と同様のものであることができ、これらの出願(特許)に開示した製造方法で製造できるものである。これらの出願あるいは特許の開示内容はここに参照して含めるものである。   The phosphor constituting at least one phase of the ceramic composite material for light conversion of the present invention can be obtained by adding an activating element to a metal oxide or composite oxide. The ceramic composite material used in the ceramic composite for light conversion of the present invention uses at least one constituent phase as a phosphor phase. Basically, the applicant of the present application (invention assignee) first disclosed Japanese Patent Application Laid-Open No. 7-149597. JP-A-7-187893, JP-A-8-81257, JP-A-8-253389, JP-A-8-253390, JP-A-9-67194, and corresponding US applications (US) No. 5,569,547, No. 5,484,752, No. 5,902,763) and the like, and these applications (patents) It can be manufactured by the manufacturing method disclosed in 1). The disclosures of these applications or patents are hereby incorporated by reference.

得られた凝固体より必要な形状のブロック、板、円板などの形状物を切出し、ある波長の光を、目的とする他の色相の光に変換するセラミックス複合材料基板に利用する。   A shaped object such as a block, a plate, or a disk having a necessary shape is cut out from the obtained solidified body and used for a ceramic composite material substrate that converts light of a certain wavelength into light of another desired hue.

以下では、具体的例を挙げ、本発明を更に詳しく説明する。   Below, a specific example is given and this invention is demonstrated in more detail.

(実施例1)
α−Al粉末(純度99.99%)0.8136モルとY粉末(純度99.999%)0.1756モル、CeO粉末(純度99.99%)0.0109モルを原料として用いた。これらの粉末をエタノール中、ボールミルによって16時間湿式混合した後、エバポレーターを用いてエタノールを脱媒して原料粉末を得た。原料粉末は、真空炉中で予備溶解し一方向凝固の原料とした。
Example 1
α-Al 2 O 3 powder (purity 99.99%) 0.8136 mol, Y 2 O 3 powder (purity 99.999%) 0.1756 mol, CeO 2 powder (purity 99.99%) 0.0109 mol Was used as a raw material. These powders were wet mixed in ethanol by a ball mill for 16 hours, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.

次に、この原料をそのままモリブデンルツボに仕込み、一方向凝固装置にセットし、1.33x10−3Pa(10−5Torr)の圧力下で原料を融解した。次に同一の雰囲気においてルツボを5mm/時間の速度で下降させ凝固体を得た。得られた凝固体は黄色を呈していた。電子顕微鏡による観察の結果、この凝固体にはコロニーや粒界相がなく、さらに気泡やボイドが存在しない均一な組織を有していることが分かった。インゴット中にはCeAl1118が観測されたが、その存在量は非常に少なかった。 Next, this raw material was directly charged into a molybdenum crucible and set in a unidirectional solidification apparatus, and the raw material was melted under a pressure of 1.33 × 10 −3 Pa (10 −5 Torr). Next, the crucible was lowered at a speed of 5 mm / hour in the same atmosphere to obtain a solidified body. The obtained solidified body was yellow. As a result of observation with an electron microscope, it was found that this solidified body had no colonies or grain boundary phases, and had a uniform structure free from bubbles and voids. CeAl 11 O 18 was observed in the ingot, but its abundance was very small.

本光変換用セラミックス複合材料の凝固体から、1.5mm×1.5mm、厚み0.5mmの小片を切出し光変換用セラミック複合体とし、これを支持台にした。この支持台の側面に電極をエポキシ系の接着剤で固定した。この上に、410nmの発光素子をシリコン樹脂系の接着剤で固定し、ワイヤーボンダーを用いて導電性ワイヤーで、支持台の側面に固定した電極と発光素子の表面に形成された電極を接合した。この際に、後から発光素子の上部にのせる光変換用セラミック複合体で導電性ワイヤーは変形するので、導電性ワイヤーにはやや余裕を持たせた。次に、上部用の光変換素子として、本光変換用セラミックス複合材料の凝固体から、1.5mm×1.5mm、厚み0.8mmの小片を切り出し光変換用セラミック複合体とした。この小片の中央部分に直径0.6mm、深さ0.3mmのくぼみを超音波加工機械よってあけ、発光素子を囲むための空間を設けた。これを、すでに作製した支持台の上に、エポキシ系の接着剤で固定し、図1に示すような発光ダイオードを作製した。この発光ダイオードは、発光素子の電極部分を除いて全部を光変換用セラミック複合体で被うタイプで、発光素子の下面で放出された光をも外に取り出すことができ、光が360°の方向に放出された。よって、電球のような拡散する光を得ることができた。   From this solidified body of the ceramic composite material for light conversion, a small piece having a size of 1.5 mm × 1.5 mm and a thickness of 0.5 mm was cut out to obtain a ceramic composite for light conversion, which was used as a support. The electrode was fixed to the side surface of the support with an epoxy adhesive. On top of this, a 410 nm light-emitting element was fixed with a silicon resin adhesive, and an electrode fixed on the side surface of the support base and an electrode formed on the surface of the light-emitting element were joined with a conductive wire using a wire bonder. . At this time, since the conductive wire is deformed by the ceramic composite for light conversion that is subsequently placed on the light emitting element, the conductive wire has some margin. Next, as a light conversion element for the upper part, a small piece of 1.5 mm × 1.5 mm and a thickness of 0.8 mm was cut out from the solidified body of the ceramic composite material for light conversion to obtain a ceramic composite for light conversion. An indentation having a diameter of 0.6 mm and a depth of 0.3 mm was opened in the central portion of the small piece by an ultrasonic processing machine to provide a space for surrounding the light emitting element. This was fixed on an already produced support base with an epoxy adhesive to produce a light emitting diode as shown in FIG. This light-emitting diode is a type in which all of the light-emitting element is covered with a ceramic composite for light conversion except for the electrode part of the light-emitting element, and the light emitted from the lower surface of the light-emitting element can also be taken out and the light is 360 °. Released in the direction. Therefore, diffused light like a light bulb could be obtained.

また、図3に示すような前面にのみ光を発する白色発光ダイオードに比較し、全周囲の光束の積分値を増加させることができ、明るい発光ダイオードとすることができた。さらに、図1に示す形状では光変換用セラミックス複合体をそのまま発光ダイオードの外周部に利用できるため、非常に簡単に発光ダイオードを作製することができた。また、蛍光体を含む樹脂ペーストを使用しないので作製が極めて簡単で、しかもペーストのような塗布むらとはまったく関係のない方法で発光ダイオードを作製することができた。   Further, compared with a white light emitting diode that emits light only on the front surface as shown in FIG. 3, the integral value of the luminous flux around the entire periphery can be increased, and a bright light emitting diode can be obtained. Furthermore, in the shape shown in FIG. 1, since the ceramic composite for light conversion can be used as it is for the outer peripheral portion of the light emitting diode, the light emitting diode can be manufactured very easily. In addition, since a resin paste containing a phosphor is not used, it is very easy to manufacture, and a light emitting diode can be manufactured by a method that has nothing to do with coating unevenness such as a paste.

本発明の発光ダイオードの一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the light emitting diode of this invention. 本発明の発光ダイオードの他の実施形態を示す模式的断面図である。It is typical sectional drawing which shows other embodiment of the light emitting diode of this invention. 従来の発光ダイオードの構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the conventional light emitting diode.

符号の説明Explanation of symbols

1 発光素子
2 支持台
3 導電性ワイヤー
4 電極
5 光変換用セラミック複合体
6 コーティング層
7 モールド層
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Support stand 3 Conductive wire 4 Electrode 5 Ceramic composite for light conversion 6 Coating layer 7 Mold layer

Claims (3)

発光素子と該発光素子の全周に配置した光変換用セラミック複合体とからなる発光ダイオードであり、前記光変換用セラミック複合体は、単一金属酸化物と複合金属酸化物とが連続的にかつ3次元的に相互に絡み合って形成されている凝固体であって、前記単一金属酸化物または前記複合金属酸化物は、蛍光を発する金属元素酸化物を含有していることを特徴とする発光ダイオード。   A light-emitting diode comprising a light-emitting element and a ceramic composite for light conversion disposed on the entire circumference of the light-emitting element, wherein the single ceramic oxide and the composite metal oxide are continuously formed in the ceramic composite for light conversion. And a solidified body formed by three-dimensionally entangled with each other, wherein the single metal oxide or the composite metal oxide contains a metal element oxide that emits fluorescence. Light emitting diode. 前記複合金属酸化物がセリウムで付活されたYAG(YAl12:Ce)結晶であり、前記単一金属酸化物がα型酸化アルミニウム(Al)結晶であることを特徴とする請求項1記載の発光ダイオード。 The composite metal oxide is a YAG (Y 3 Al 5 O 12 : Ce) crystal activated with cerium, and the single metal oxide is an α-type aluminum oxide (Al 2 O 3 ) crystal. The light emitting diode according to claim 1. 前記発光素子が青色または紫色光を発光し、前記発光ダイオードが擬似的に白色を発光することを特徴とする請求項2記載の発光ダイオード。   The light emitting diode according to claim 2, wherein the light emitting element emits blue or violet light, and the light emitting diode emits pseudo white light.
JP2004225181A 2004-08-02 2004-08-02 Light emitting diode Expired - Fee Related JP4428166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225181A JP4428166B2 (en) 2004-08-02 2004-08-02 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225181A JP4428166B2 (en) 2004-08-02 2004-08-02 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2006049410A true JP2006049410A (en) 2006-02-16
JP4428166B2 JP4428166B2 (en) 2010-03-10

Family

ID=36027645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225181A Expired - Fee Related JP4428166B2 (en) 2004-08-02 2004-08-02 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4428166B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119034A1 (en) 2008-03-26 2009-10-01 Panasonic Corporation Semiconductor light-emitting apparatus
JP2009535081A (en) * 2006-04-26 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light guide device with improved conversion element
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
JP2012060179A (en) * 2011-12-20 2012-03-22 Kyocera Corp Light emitting device and lighting system
JP2012528439A (en) * 2009-05-28 2012-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device having an envelope surrounding a light source
JP2014181288A (en) * 2013-03-19 2014-09-29 Stanley Electric Co Ltd Composite ceramic, wavelength conversion member, light-emitting device and method for producing composite ceramic
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535081A (en) * 2006-04-26 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light guide device with improved conversion element
US8684555B2 (en) 2006-04-26 2014-04-01 Koninklijke Philips N.V. Light emitting device with ceramic conversion material
US10111293B2 (en) 2006-04-26 2018-10-23 Philips Lighting Holding B.V. Method of illumination having light emitting device with ceramic conversion material
WO2009119034A1 (en) 2008-03-26 2009-10-01 Panasonic Corporation Semiconductor light-emitting apparatus
US8337032B2 (en) 2008-03-26 2012-12-25 Panasonic Corporation Semiconductor light-emitting apparatus
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit
JP2012528439A (en) * 2009-05-28 2012-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device having an envelope surrounding a light source
US9377167B2 (en) 2009-05-28 2016-06-28 Koninklijke Philips N.V. Illumination device with an envelope enclosing a light source
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
JP2012060179A (en) * 2011-12-20 2012-03-22 Kyocera Corp Light emitting device and lighting system
JP2014181288A (en) * 2013-03-19 2014-09-29 Stanley Electric Co Ltd Composite ceramic, wavelength conversion member, light-emitting device and method for producing composite ceramic

Also Published As

Publication number Publication date
JP4428166B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4582095B2 (en) Light converting structure and light emitting device using the same
JP4609319B2 (en) Ceramic composite material for light conversion and its use
TWI497747B (en) Semiconductor light emitting apparatus and light source apparatus using the same
JP7056553B2 (en) Fluorescent material, light emitting device, lighting device and image display device
JP4420021B2 (en) White light emitting diode device
JP5347354B2 (en) Fluorescent material molded body, method for manufacturing the same, and light emitting device
JP5575488B2 (en) Illumination system including a synthetic monolithic ceramic luminescence converter
CN109896852B (en) Complex phase fluorescent ceramic for blue light excited white light illumination, preparation method and light source device
JP6497544B2 (en) Crystallized glass phosphor and wavelength conversion member using the same
TW200929615A (en) Light source including reflective wavelength-converting layer
JP6897387B2 (en) Sintered phosphors, light emitting devices, lighting devices, image display devices and vehicle indicator lights
TW200424286A (en) Luminophors and optical device using the same
JP2005294185A (en) Light emitting device
TWI428309B (en) A ceramic composite for optical conversion and a light-emitting device using the ceramic composite
JP2006173433A (en) Light transforming ceramic compound, and light emitting device using the same
JP4428166B2 (en) Light emitting diode
CN108735877A (en) Wavelength convert component and Wavelength changing element and use their light-emitting device
TW201231435A (en) Ceramic composite for photoconversion, method for producing same, and light-emitting device comprising same
JP2011159555A (en) Light source device and lighting system
TW201621031A (en) A light emitting device
JP4513541B2 (en) Light emitting device using ceramic composite for light conversion
JP6672674B2 (en) Method of manufacturing substrate, substrate obtained thereby, and method of manufacturing light emitting device
TWI473872B (en) Ceramic composite for optical conversion and method of manufacturing the same
CN110017434A (en) Wavelength converter and its light source
WO2023166638A1 (en) Composite ceramic, phosphor element, laser illumination device, and method for manufacturing composite element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees