JP2006049407A - Manufacturing method of compound soft magnetic material having high strength and high specific resistance - Google Patents

Manufacturing method of compound soft magnetic material having high strength and high specific resistance Download PDF

Info

Publication number
JP2006049407A
JP2006049407A JP2004225133A JP2004225133A JP2006049407A JP 2006049407 A JP2006049407 A JP 2006049407A JP 2004225133 A JP2004225133 A JP 2004225133A JP 2004225133 A JP2004225133 A JP 2004225133A JP 2006049407 A JP2006049407 A JP 2006049407A
Authority
JP
Japan
Prior art keywords
powder
iron powder
soft magnetic
compression
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004225133A
Other languages
Japanese (ja)
Inventor
Kazunori Igarashi
和則 五十嵐
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004225133A priority Critical patent/JP2006049407A/en
Publication of JP2006049407A publication Critical patent/JP2006049407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a compound soft material having high strength and high specific resistance. <P>SOLUTION: A plasma processing is performed for previously applying liquid where one type or two or above types among polyether sulfone, polyphenylene sulphide, polyamideimide, polyimide and silicone resin and polytetrafluoroethylene are dissolved or distributed on a surface of iron powder or phosphate coating iron powder and drying it. 0.1 to 1.5 mass% of fluororesin powder is added and mixed to phosphate coating iron powder to which the plasma processing is performed. Mixed powder is formed, mixed powder is compressed and molded, and heat treatment is performed on it at a temperature of 320 to 450°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、モーター用コア、アクチュエータ、磁気センサー、インジェクター部品、イグニッション部品、電磁弁用コアなどの複雑形状を有する高強度および高比抵抗を有する複合軟磁性材を効率よく製造する方法に関するものである。   The present invention relates to a method for efficiently producing a composite soft magnetic material having a complex shape, such as a motor core, an actuator, a magnetic sensor, an injector component, an ignition component, and a solenoid valve core, and having high strength and high specific resistance. is there.

一般に、複合軟磁性材は、鉄または鉄合金などの軟磁性粉末に樹脂粉末を添加し、混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施すことにより製造することは知られている。この時使用する樹脂粉末としては、一般に、熱硬化性フェノール樹脂粉末、熱可塑性ポリアミド樹脂粉末、エポキシ樹脂粉末、ポリイミド樹脂粉末、ポリフェニルサルファイド樹脂粉末などを用いることが多いが、フッ素樹脂粉末を用いることも知られている。このフッ素樹脂粉末は超微粉末が得られやすく、樹脂融点以上の温度で樹脂同士を燒結することが可能なため、緻密な絶縁膜が得られ易いと言われている(特許文献1参照)。
さらに、アトマイズ鉄粉または表面にリン酸塩皮膜を形成した鉄粉(以下、リン酸塩被覆鉄粉という)に熱可塑性ポリイミド粉末または熱可塑性ポリイミド粉末とポリテトラフルオロエチレン粉末の混合粉末を添加し混合した混合粉末を圧縮成形したのち熱処理を施す複合軟磁性材の製造方法も知られている(特許文献2参照)。
特開昭59−50138号公報 特開2004‐71860号公報
In general, a composite soft magnetic material is manufactured by adding a resin powder to a soft magnetic powder such as iron or an iron alloy, mixing to prepare a mixed powder, compression-molding the mixed powder, and then performing a heat treatment. Are known. As the resin powder used at this time, in general, thermosetting phenol resin powder, thermoplastic polyamide resin powder, epoxy resin powder, polyimide resin powder, polyphenyl sulfide resin powder, etc. are often used, but fluororesin powder is used. It is also known. It is said that this fluororesin powder is easy to obtain an ultrafine powder, and the resin can be sintered at a temperature equal to or higher than the melting point of the resin, so that a dense insulating film is easily obtained (see Patent Document 1).
Furthermore, thermoplastic polyimide powder or a mixed powder of thermoplastic polyimide powder and polytetrafluoroethylene powder is added to atomized iron powder or iron powder having a phosphate film formed on the surface (hereinafter referred to as phosphate-coated iron powder). There is also known a method for producing a composite soft magnetic material in which a mixed powder is compression-molded and then subjected to heat treatment (see Patent Document 2).
JP 59-50138 A Japanese Patent Laid-Open No. 2004-71860

前記鉄または鉄合金などの軟磁性粉末にフッ素樹脂粉末を添加し、混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施す特許文献1記載の複合軟磁性材の製造方法は、フッ素樹脂粉末が潤滑性に優れているところから、鉄または鉄合金などの軟磁性粉末にフッ素樹脂粉末を添加し混合して得られた混合粉末は潤滑性に優れており、圧縮成形時の金型内面に潤滑剤を塗布することなく圧縮成形できるために金型内面に潤滑剤を塗布する工程を省き、効率よく複合軟磁性材を製造することができるという優れた効果を奏するものであるが、このフッ素樹脂粉末を鉄または鉄合金などの軟磁性粉末に混合した混合粉末を圧縮成形・熱処理して得られた複合軟磁性材は、フッ素樹脂に対する鉄または鉄合金などの軟磁性粉末の密着性が悪いために十分な機械的強度が得られない。
一方、アトマイズ鉄粉またはリン酸塩被覆鉄粉に熱可塑性ポリイミド粉末または熱可塑性ポリイミド粉末とポリテトラフルオロエチレン粉末の混合粉末を添加して混合した混合粉末を圧縮成形したのち熱処理を施す特許文献2記載の複合軟磁性材の製造方法は、熱可塑性ポリイミド粉末または熱可塑性ポリイミド粉末がアトマイズ鉄粉またはリン酸塩被覆鉄粉に対する密着性に優れているところから、高強度の複合軟磁性材が得られるが、混合粉末に熱可塑性ポリイミド粉末または熱可塑性ポリイミド粉末が含まれているところから、ポリテトラフルオロエチレン粉末の潤滑特性が十分に発揮されず、そのため圧縮成形に際しては金型空間内面に潤滑剤を塗布する必要があるが、モータヨーク等の複雑な形状を有する部品、特に肉薄な箇所を有する部品の成形においては金型空間内面の隅々まで潤滑剤の塗布が十分に行われないことがあり、かかる潤滑剤の塗布が不十分な個所があると、得られる圧縮成形体にキズ、クラック等の欠陥が生じる場合があった。
A method for producing a composite soft magnetic material according to Patent Document 1, in which a fluororesin powder is added to and mixed with a soft magnetic powder such as iron or an iron alloy, and a mixed powder is produced. Since the fluororesin powder is excellent in lubricity, the mixed powder obtained by adding the fluororesin powder to the soft magnetic powder such as iron or iron alloy and mixing is excellent in lubricity. Since it can be compression-molded without applying a lubricant to the inner surface of the mold, the step of applying the lubricant to the inner surface of the mold can be omitted, and the composite soft magnetic material can be produced efficiently. However, the composite soft magnetic material obtained by compression molding and heat treatment of a mixed powder obtained by mixing this fluororesin powder with soft magnetic powder such as iron or iron alloy is soft magnetic powder such as iron or iron alloy for fluororesin. Dense Sex is sufficient mechanical strength can not be obtained for bad.
On the other hand, Patent Document 2 in which a thermoplastic powder or a mixed powder of thermoplastic polyimide powder and polytetrafluoroethylene powder is added to atomized iron powder or phosphate-coated iron powder and mixed and then heat-treated after compression molding. The method for producing the composite soft magnetic material described above is that a high-strength composite soft magnetic material is obtained because thermoplastic polyimide powder or thermoplastic polyimide powder is excellent in adhesion to atomized iron powder or phosphate-coated iron powder. However, since the mixed powder contains thermoplastic polyimide powder or thermoplastic polyimide powder, the lubrication characteristics of polytetrafluoroethylene powder are not sufficiently exhibited, so that the lubricant is applied to the inner surface of the mold space during compression molding. However, parts with complicated shapes such as motor yokes, especially thin parts In the molding of the parts to be performed, the lubricant may not be sufficiently applied to every corner of the inner surface of the mold space, and if there is an insufficient application of such lubricant, the resulting compression molded body will be scratched. Defects such as cracks may occur.

そこで、本発明者等は、鉄粉またはリン酸塩被覆鉄粉を金型内面に潤滑剤を塗布することなく圧縮成形し熱処理して一層の高強度でかつ高比抵抗を有する複合軟磁性材を製造する方法を開発すべく研究を行った結果、
鉄粉またはリン酸塩被覆鉄粉の表面にあらかじめプライマ処理を施し、このプライマ処理を施した鉄粉またはリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施すと、鉄粉またはリン酸塩被覆鉄粉と樹脂との密着性はプライマ処理を施すことにより向上して高強度および高比抵抗を有する複合軟磁性材を製造することができ、さらにプライマ処理を施した鉄粉またはリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して作製した混合粉末を圧縮成形すると、混合粉末にフッ素樹脂粉末が含まれるために潤滑性が向上し、潤滑剤を金型内面に塗布することなく複雑形状の圧縮成形体を作製することができ、したがって、効率良く複雑形状の複合磁性材を製造することができる、という研究結果が得られたのである。
Accordingly, the present inventors have made a composite soft magnetic material having a higher strength and a higher specific resistance by compressing and heat-treating iron powder or phosphate-coated iron powder without applying a lubricant to the inner surface of the mold. As a result of research to develop a method of manufacturing
Apply a primer treatment to the surface of the iron powder or phosphate-coated iron powder in advance, add the fluororesin powder to the primer-treated iron powder or phosphate-coated iron powder, and mix to make a mixed powder. When the mixed powder is compression molded and heat treated, the adhesion between the iron powder or phosphate-coated iron powder and the resin is improved by applying a primer treatment, and a composite soft magnetic material having high strength and high specific resistance is obtained. When the mixed powder produced by adding and mixing fluororesin powder to iron powder or phosphate-coated iron powder that has been further treated with primer is compression molded, the mixed powder contains fluororesin powder. The lubricity is improved, and a compression-molded body having a complicated shape can be produced without applying a lubricant to the inner surface of the mold. Therefore, a complex magnetic material having a complicated shape can be efficiently produced. Results of studies say is that obtained.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)鉄粉またはリン酸塩被覆鉄粉の表面にあらかじめプライマ処理を施し、このプライマ処理を施したリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施す高強度および高比抵抗を有する複合軟磁性材の製造方法、に特徴を有するものである。
The present invention has been made based on such research results,
(1) The surface of the iron powder or phosphate-coated iron powder is subjected to a primer treatment in advance, and the fluororesin powder is added to and mixed with the phosphate-coated iron powder subjected to the primer treatment to produce a mixed powder. It is characterized by a method for producing a composite soft magnetic material having high strength and high specific resistance, in which a mixed powder is compression-molded and then heat-treated.

前記プライマ処理は、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、シリコーン樹脂の1種または2種以上とポリテトラフルオロエチレンが溶解または分散した液を鉄粉またはリン酸塩被覆鉄粉の表面に塗布し乾燥する処理である。したがって、この発明は、
(2)鉄粉またはリン酸塩被覆鉄粉の表面にあらかじめポリエーテルスルホン、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、シリコーン樹脂の1種または2種以上とポリテトラフルオロエチレンが溶解または分散した液を塗布し乾燥するプライマ処理を施し、このプライマ処理を施したリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施す高強度および高比抵抗を有する複合軟磁性材の製造方法、に特徴を有するものである。
In the primer treatment, a liquid in which polytetrafluoroethylene and one or more of polyethersulfone, polyphenylene sulfide, polyamideimide, polyimide, and silicone resin and polytetrafluoroethylene are dissolved or dispersed is applied to the surface of iron powder or phosphate-coated iron powder. It is a process of applying and drying. Therefore, the present invention
(2) A liquid in which one or more of polyethersulfone, polyphenylene sulfide, polyamideimide, polyimide, silicone resin and polytetrafluoroethylene are dissolved or dispersed in advance is applied to the surface of the iron powder or phosphate-coated iron powder. Applying a primer treatment to dry, and then adding the fluororesin powder to the phosphate-coated iron powder that has been subjected to the primer treatment to produce a mixed powder. It is characterized by a method for producing a composite soft magnetic material having a high specific resistance.

前記プライマ処理を施した鉄粉またはリン酸塩被覆鉄粉にフッ素樹脂粉末を添加する際のフッ素樹脂粉末の添加量は、0.1質量%未満では圧縮成形時に十分な潤滑性が得られないので金型内面に潤滑剤を塗布することなく圧縮成形することができなくなるので好ましくなく、一方、1.5質量%を越えて含有すると、潤滑性が向上するものの、樹脂が多くなり過ぎて得られた複合軟磁性材の密度が低下するので好ましくない。したがって、プライマ処理を施した鉄粉またはリン酸塩被覆鉄粉に添加するフッ素樹脂粉末の量を0.1〜1.5質量%の範囲内にあることが好ましい。したがって、この発明は、
(3)鉄粉またはリン酸塩被覆鉄粉の表面にあらかじめポリエーテルスルホン、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、シリコーン樹脂の1種または2種以上とポリテトラフルオロエチレンが溶解または分散した液を塗布し乾燥するプライマ処理を施し、このプライマ処理を施したリン酸塩被覆鉄粉にフッ素樹脂粉末:0.1〜1.5質量%添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施す高強度および高比抵抗を有する複合軟磁性材の製造方法、に特徴を有するものである。
When the fluororesin powder is added to the primer-treated iron powder or phosphate-coated iron powder and the amount of the fluororesin powder is less than 0.1% by mass, sufficient lubricity cannot be obtained during compression molding. Therefore, it is not preferable because compression molding cannot be performed without applying a lubricant to the inner surface of the mold. On the other hand, if the content exceeds 1.5% by mass, the lubricity is improved, but the resin becomes too much. This is not preferable because the density of the composite soft magnetic material is reduced. Therefore, it is preferable that the amount of the fluororesin powder added to the primer-treated iron powder or phosphate-coated iron powder is in the range of 0.1 to 1.5% by mass. Therefore, the present invention
(3) A liquid in which one or more of polyethersulfone, polyphenylene sulfide, polyamideimide, polyimide, silicone resin and polytetrafluoroethylene are dissolved or dispersed in advance is applied to the surface of the iron powder or phosphate-coated iron powder. Then, apply the primer treatment to dry, and then add phosphate resin: 0.1-1.5% by mass to the phosphate-coated iron powder that has been subjected to this primer treatment to produce a mixed powder, and then compress this mixed powder. It is characterized by a method for producing a composite soft magnetic material having high strength and high specific resistance, which is heat-treated after being molded.

前記熱処理は、温度:320〜450℃の範囲内に加熱して行われることが好ましい。熱処理温度が320℃未満だと鉄粉またはリン酸塩被覆鉄粉の表面とプライマ層、プライマ層とフッ素樹脂の密着性が不十分となり、複合軟磁性材料の機械的強度が低下するからであり、一方、450度を越えると、フッ素樹脂の熱分解が顕著となり、複合軟磁性材料の機械的強度が低下するので好ましくないからである。したがって、この発明は、
(4)鉄粉またはリン酸塩被覆鉄粉の表面にあらかじめポリエーテルスルホン、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、シリコーン樹脂の1種または2種以上とポリテトラフルオロエチレンが溶解または分散した液を塗布し乾燥するプライマ処理を施し、このプライマ処理を施したリン酸塩被覆鉄粉にフッ素樹脂粉末:0.1〜1.5質量%添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち温度:320〜450℃で熱処理を施す高強度および高比抵抗を有する複合軟磁性材の製造方法、に特徴を有するものである。
The heat treatment is preferably performed by heating within a temperature range of 320 to 450 ° C. If the heat treatment temperature is less than 320 ° C., the adhesion between the surface of the iron powder or phosphate-coated iron powder and the primer layer, the primer layer and the fluororesin becomes insufficient, and the mechanical strength of the composite soft magnetic material decreases. On the other hand, if it exceeds 450 degrees, the thermal decomposition of the fluororesin becomes remarkable and the mechanical strength of the composite soft magnetic material is lowered, which is not preferable. Therefore, the present invention
(4) A liquid in which one or more of polyethersulfone, polyphenylene sulfide, polyamideimide, polyimide, silicone resin and polytetrafluoroethylene are dissolved or dispersed is applied to the surface of iron powder or phosphate-coated iron powder in advance. Then, apply the primer treatment to dry, and then add phosphate resin: 0.1-1.5% by mass to the phosphate-coated iron powder that has been subjected to this primer treatment to produce a mixed powder, and then compress this mixed powder. It is characterized by a method for producing a composite soft magnetic material having high strength and high specific resistance, which is heat-treated at a temperature of 320 to 450 ° C. after molding.

鉄粉またはリン酸塩被覆鉄粉を金型内面に潤滑剤を塗布することなく圧縮成形しても不良品を発生させることなく複雑形状の圧縮成形体を作製することができ、得られた圧縮成形体を熱処理して強度および比抵抗の高い複雑形状の複合軟磁性材を効率良く製造することができる。 Even if iron powder or phosphate-coated iron powder is compression-molded without applying a lubricant to the inner surface of the mold, a compression-molded body with a complicated shape can be produced without causing defective products, and the resulting compression It is possible to efficiently produce a complex soft magnetic material having a complex shape with high strength and specific resistance by heat-treating the compact.

原料として、平均粒径:80μmを有するアトマイズ鉄粉および平均粒径:100μmを有する市販のリン酸塩被覆鉄粉を用意した。さらに、ポリエーテルスルホン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、平均粒径:15μmのポリフェニレンサルファイド樹脂粉末および室温硬化型の液状シリコーン樹脂を用意した。さらにフッ素樹脂として平均粒径:0.3μmのポリテトラフルオロエチレン粉末を用意した。   As raw materials, an atomized iron powder having an average particle diameter of 80 μm and a commercially available phosphate-coated iron powder having an average particle diameter of 100 μm were prepared. Furthermore, a polyethersulfone resin, a polyamideimide resin, a polyimide resin, a polyphenylene sulfide resin powder having an average particle size of 15 μm, and a room temperature curable liquid silicone resin were prepared. Furthermore, polytetrafluoroethylene powder having an average particle size of 0.3 μm was prepared as a fluororesin.

実施例1
ポリエーテルスルホン樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とアトマイズ鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりアトマイズ鉄粉表面にプライマ処理を施し、表1に示される配合組成のプライマ処理アトマイズ鉄粉を作製した。
このプライマ処理アトマイズ鉄粉にポリテトラフルオロエチレン樹脂粉末を表1に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表1に示される温度に保持の熱処理を行って本発明法1を実施した。
本発明法1により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その測定結果を表1に示した。
Example 1
Polyethersulfone resin is dissolved in N-methylpyrrolidone, and polytetrafluoroethylene powder and atomized iron powder are added to this solution and stirred to disperse, and dried while stirring to prime the surface of atomized iron powder. Then, a primer-treated atomized iron powder having the composition shown in Table 1 was produced.
A polytetrafluoroethylene resin powder was added to the primer-treated atomized iron powder at a ratio shown in Table 1 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a 10 mm compression molded body and examining the presence or absence of defective products of the compression molded body, the compression molded body was heat-treated in the atmosphere at a temperature shown in Table 1 to achieve the method 1 of the present invention. Carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 1 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method using a universal testing machine. The density, the specific resistance of the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts, and the magnetic flux density were measured using a BH loop tracer after winding, and the measurement results are shown in Table 1.

比較例1
実施例1で作製したプライマ処理したアトマイズ鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例1と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表1に示される温度に保持の熱処理を行って比較法1を実施した。
比較法1により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その測定結果を表1に示した。
Comparative Example 1
A compression-molded article was produced by compression-molding the primed atomized iron powder produced in Example 1 in the same manner as in Example 1 without adding polytetrafluoroethylene resin powder. After the presence or absence of this, the compression molding was subjected to a heat treatment for holding the compressed molded body at a temperature shown in Table 1 in the atmosphere, and Comparative Method 1 was performed.
With respect to the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced by Comparative Method 1, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The measurement results are shown in Table 1.

従来例1
アトマイズ鉄粉にフッ素樹脂粉末であるポリテトラフルオロエチレン樹脂粉末を表1に示される割合で配合し混合して混合粉末を作製し、この混合粉末を実施例1と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表1に示される温度に保持する熱処理を行って従来法1を実施した。
従来法1により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、実施例1と同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その測定結果を表1に示した。
Conventional Example 1
By blending and mixing polytetrafluoroethylene resin powder, which is a fluororesin powder, with atomized iron powder at a ratio shown in Table 1, a mixed powder is prepared, and this mixed powder is compression-molded in the same manner as in Example 1. A compression molded body was prepared, and the presence or absence of a defective product of the compression molded body was examined. After that, heat treatment was performed to keep the compression molded body at the temperature shown in Table 1 in the atmosphere, and the conventional method 1 was carried out.
A ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm manufactured by the conventional method 1 was used in the same manner as in Example 1 to obtain the crushing strength, density, specific resistance, and magnetic flux density. The measurement results are shown in Table 1.

Figure 2006049407
Figure 2006049407

表1に示される結果から、本発明法1は、比較法1に比べて得られた圧縮成形体に欠陥が無く、従来法1に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 1, the present invention method 1 is capable of producing a composite soft magnetic material having no defects in the compression molded body obtained compared to the comparative method 1 and having superior strength compared to the conventional method 1. I understand that I can do it.

実施例2
ポリフェニレンサルファイド樹脂粉末、ポリテトラフルオロエチレン粉末およびアトマイズ鉄粉をエタノールに添加して攪拌することにより分散させ、攪拌しながら乾燥させ、乾燥した粉末を大気中350℃に30分間保持したのち、凝集した粉末を解砕することによりアトマイズ鉄粉表面にプライマ処理を施し、表2に示される配合組成のプライマ処理アトマイズ鉄粉を作製した。
このプライマ処理したアトマイズ鉄粉にポリテトラフルオロエチレン樹脂粉末を表2に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35m m、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表2に示される温度に保持する熱処理を行って本発明法2を実施した。
本発明法2により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表2に示した。
Example 2
Polyphenylene sulfide resin powder, polytetrafluoroethylene powder and atomized iron powder were added to ethanol and dispersed by stirring, dried while stirring, and the dried powder was agglomerated after being kept at 350 ° C. in the atmosphere for 30 minutes. By pulverizing the powder, the surface of the atomized iron powder was subjected to a primer treatment to prepare a primer-treated atomized iron powder having the composition shown in Table 2.
Polytetrafluoroethylene resin powder was added to the primed atomized iron powder at a ratio shown in Table 2 and mixed to prepare a mixed powder. By filling this mixed powder into a mold inner space having dimensions of an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and compression molding at a pressure of 780 MPa. A compression molded body having a height of 10 mm was prepared, and the presence or absence of a defective product of the compression molded body was examined. After that, the compression molded body was subjected to a heat treatment for maintaining the compression molded body at the temperature shown in Table 2 in the present invention. 2 was carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 2 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method using a universal testing machine. The density was measured for the C-shaped test piece obtained by dividing the ring-shaped test piece in two by the four-terminal method, and the magnetic flux density was measured by applying a winding and a BH loop tracer. The results are shown in Table 2.

比較例2
実施例2で作製したプライマ処理したアトマイズ鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例2と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表2に示される温度に保持する熱処理を行って比較法2を実施した。
比較法2により作製した外径:35m m、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表2に示した。
Comparative Example 2
A compression-molded article was produced by compression-molding the primed atomized iron powder produced in Example 2 in the same manner as in Example 2 without adding the polytetrafluoroethylene resin powder. After the presence or absence of this, the heat treatment which hold | maintains this compression molding to the temperature shown in Table 2 in air | atmosphere was performed, and the comparative method 2 was implemented.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm prepared by Comparative Method 2 was measured in the same manner for the crushing strength, density, specific resistance, and magnetic flux density. The results are shown in Table 2.

Figure 2006049407
Figure 2006049407

表2に示される結果から、本発明法2は、比較法2に比べて圧縮成形体に欠陥が無く、表1の従来法1に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 2, the present invention method 2 is capable of producing a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 2 and superior in strength to the conventional method 1 shown in Table 1. I understand that I can do it.

実施例3
ポリアミドイミド樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とアトマイズ鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりアトマイズ鉄粉表面にプライマ処理を施し、表3に示される配合組成のプライマ処理アトマイズ鉄粉を作製した。
このプライマ処理アトマイズ鉄粉にポリテトラフルオロエチレン樹脂粉末を表3に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表3に示される温度に保持する熱処理を行って本発明法3を実施した。
本発明法3により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表3に示した。
Example 3
Polyamide imide resin is dissolved in N-methylpyrrolidone, and polytetrafluoroethylene powder and atomized iron powder are added to this solution and stirred to disperse, and dried with stirring to perform primer treatment on the atomized iron powder surface. And a primer-treated atomized iron powder having the composition shown in Table 3 was prepared.
A polytetrafluoroethylene resin powder was added to the primer-treated atomized iron powder at a ratio shown in Table 3 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and checking the presence or absence of a defective product of the compression molded body, the compression molded body was subjected to heat treatment for maintaining the compression molded body at the temperature shown in Table 3 in the present invention. Carried out.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm manufactured by the method 3 of the present invention, the crushing strength at room temperature is measured by the Archimedes method using a universal testing machine. The density, the specific resistance of the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts were measured by the four-terminal method, and the magnetic flux density was measured with a BH loop tracer after winding. The results are shown in Table 3.

比較例3
実施例3で作製したプライマ処理したアトマイズ鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例3と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表3に示される温度に保持の熱処理を行って比較法3を実施した。
比較法3より作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表3に示した。
Comparative Example 3
A compression-molded article was produced by compression-molding the primed atomized iron powder produced in Example 3 in the same manner as in Example 3 without adding polytetrafluoroethylene resin powder. After the presence or absence of this, the compression molding was subjected to heat treatment for holding the compressed molded body at the temperature shown in Table 3 in the atmosphere, and Comparative Method 3 was carried out.
For the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced by Comparative Method 3, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 3.

Figure 2006049407
Figure 2006049407

表3に示される結果から、本発明法3は、比較法3に比べて圧縮成形体に欠陥が無く、表1の従来法1に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 3, the present invention method 3 can produce a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 3 and superior in strength to the conventional method 1 shown in Table 1. I understand that I can do it.

実施例4
ポリイミド樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とアトマイズ鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりアトマイズ鉄粉表面にプライマ処理を施し、表4に示される配合組成のプライマ処理アトマイズ鉄粉を作製した。
このプライマ処理アトマイズ鉄粉にポリテトラフルオロエチレン樹脂粉末を表4に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表4に示される温度に保持の熱処理を行って本発明法4を実施した。
本発明法4により作製した外径:35mm、内径:30m m、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表4に示した。
Example 4
Dissolve the polyimide resin in N-methylpyrrolidone, add polytetrafluoroethylene powder and atomized iron powder to this solution and stir to disperse, and dry with stirring to apply the primer treatment to the atomized iron powder surface. Primer-treated atomized iron powder having the composition shown in Table 4 was prepared.
A polytetrafluoroethylene resin powder was added to the primer-treated atomized iron powder at a ratio shown in Table 4 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and checking the presence or absence of defective products of the compression molded body, the compression molded body was subjected to heat treatment for holding the compressed molded body at the temperature shown in Table 4 in the atmosphere. Carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 4 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method. Table 4 shows the density, the specific resistance was measured by a four-terminal method on a C-shaped test piece obtained by dividing the ring-shaped test piece into two pieces, and the magnetic flux density was measured by a BH loop tracer.

比較例4
実施例4で作製したプライマ処理したアトマイズ鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例4と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表4に示される温度に保持の熱処理を行って比較法4を実施した。
比較法4より作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表4に示した。
Comparative Example 4
A compression-molded article was produced by compression-molding the primed atomized iron powder produced in Example 4 in the same manner as in Example 4 without adding polytetrafluoroethylene resin powder. After the presence or absence of this, the compression molding was subjected to heat treatment for holding the compressed molded body at the temperature shown in Table 4 in the atmosphere, and Comparative Method 4 was carried out.
With respect to the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced by Comparative Method 4, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 4.

Figure 2006049407
Figure 2006049407

表4に示される結果から、本発明法4は、比較法4に比べて圧縮成形体に欠陥が無く、表1の従来法1に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 4, the present invention method 4 is capable of producing a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 4 and superior in strength to the conventional method 1 shown in Table 1. I understand that I can do it.

実施例5
液状シリコーン樹脂をトルエンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とアトマイズ鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりアトマイズ鉄粉表面にプライマ処理を施し、表5に示される配合組成のプライマ処理アトマイズ鉄粉を作製した。
このプライマ処理アトマイズ鉄粉にポリテトラフルオロエチレン樹脂粉末を表5に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表5に示される温度に保持の熱処理を行って本発明法5を実施した。
本発明法5により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表5に示した。
Example 5
Dissolve the liquid silicone resin in toluene, add polytetrafluoroethylene powder and atomized iron powder to this solution and stir to disperse, and dry with stirring to apply a primer treatment to the surface of the atomized iron powder. A primer-treated atomized iron powder having the composition shown in FIG.
A polytetrafluoroethylene resin powder was added to the primer-treated atomized iron powder at a ratio shown in Table 5 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and checking the presence or absence of defective products of the compression molded body, the compression molded body was subjected to heat treatment for holding the compression molded body at the temperature shown in Table 5 in the present invention. Carried out.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 5 of the present invention, the crushing strength at room temperature was measured by the Archimedes method using a universal testing machine. The density was measured for the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts by the four-terminal method, the winding was applied, and the magnetic flux density was measured by the BH loop tracer. The results are shown in Table 5.

比較例5
実施例5で作製したプライマ処理したアトマイズ鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例5と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表5に示される温度に保持の熱処理を行って比較法5を実施した。
比較法5より作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表5に示した。
Comparative Example 5
A compression-molded article was produced by compression-molding the primed atomized iron powder produced in Example 5 in the same manner as in Example 5 without adding polytetrafluoroethylene resin powder. After the presence or absence of this, the compression molding was subjected to heat treatment for holding the compressed molded body at a temperature shown in Table 5 in the atmosphere, and Comparative Method 5 was carried out.
With respect to the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced from Comparative Method 5, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 5.

Figure 2006049407
Figure 2006049407

表5に示される結果から、本発明法5は、比較法5に比べて圧縮成形体に欠陥が無く、表1の従来法1に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 5, the present invention method 5 is capable of producing a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 5 and superior in strength to the conventional method 1 shown in Table 1. I understand that I can do it.

実施例6
ポリエーテルスルホン樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とリン酸塩被覆鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりリン酸塩被覆鉄粉表面にプライマ処理を施し、表6に示される配合組成のプライマ処理リン酸塩被覆鉄粉を作製した。
このプライマ処理リン酸塩被覆鉄粉にポリテトラフルオロエチレン樹脂粉末を表6に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表6に示される温度に保持の熱処理を行って本発明法6を実施した。
本発明法6により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表6に示した。
Example 6
Dissolve the polyethersulfone resin in N-methylpyrrolidone, add polytetrafluoroethylene powder and phosphate-coated iron powder to this solution and stir to disperse, and dry with stirring to cover the phosphate The surface of the iron powder was subjected to a primer treatment to prepare a primer-treated phosphate-coated iron powder having the composition shown in Table 6.
A polytetrafluoroethylene resin powder was added to the primer-treated phosphate-coated iron powder at a ratio shown in Table 6 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. Length: After producing a 10 mm compression molded body and examining the presence or absence of defective products of this compression molded body, the compression molded body was subjected to heat treatment for holding the compressed molded body at the temperatures shown in Table 6 in the present invention. Carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 6 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method using a universal testing machine. The density was measured for the C-shaped test piece obtained by dividing the ring-shaped test piece into two pieces by measuring the specific resistance by the four-terminal method, and the magnetic flux density was measured by the BH loop tracer after winding. The results are shown in Table 6.

比較例6
実施例6で作製したプライマ処理したリン酸塩被覆鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例6と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表6に示される温度に保持の熱処理を行って比較法6を実施した。
比較法6により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表6に示した。
Comparative Example 6
A compression-molded body was produced by compression-molding the primer-treated phosphate-coated iron powder produced in Example 6 in the same manner as in Example 6 without adding polytetrafluoroethylene resin powder. After the presence or absence of the defective product was examined, a comparative heat treatment was carried out by subjecting this compression-molded body to heat treatment in the atmosphere at a temperature shown in Table 6.
For the ring-shaped composite soft magnetic material test piece having the outer diameter: 35 mm, the inner diameter: 30 mm, and the height: 10 mm produced by Comparative Method 6, the crushing strength, density, specific resistance, and magnetic flux density were measured in the same manner. The results are shown in Table 6.

従来例2
リン酸塩被覆鉄粉にフッ素樹脂粉末であるポリテトラフルオロエチレン樹脂粉末を表6に示される割合で配合し混合して混合粉末を作製し、この混合粉末を実施例6と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表6に示される温度に保持の熱処理を行って従来法6を実施した。
従来法6により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表6に示した。
Conventional example 2
Polytetrafluoroethylene resin powder, which is a fluororesin powder, is mixed with phosphate-coated iron powder in the proportions shown in Table 6 to produce a mixed powder. This mixed powder is compression-molded in the same manner as in Example 6. After the compression molded body was manufactured and the presence or absence of defective products of the compression molded body was checked, the conventional method 6 was carried out by performing a heat treatment for holding the compression molded body at the temperature shown in Table 6 in the atmosphere. did.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the conventional method 6, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 6.

Figure 2006049407
Figure 2006049407

表6に示される結果から、本発明法6は、比較法6に比べて圧縮成形体に欠陥が無く、表6の従来法2に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 6, the present invention method 6 can produce a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 6 and superior in strength to the conventional method 2 shown in Table 6. I understand that I can do it.

実施例7
ポリフェニレンサルファイド樹脂、ポリテトラフルオロエチレン粉末およびリン酸塩被覆鉄粉をエタノールに添加して攪拌することにより分散させ、攪拌しながら乾燥させ、乾燥した粉末を大気中350℃に30分間保持したのち、凝集した粉末を解砕することによりリン酸塩被覆鉄粉表面にプライマ処理を施し、表7に示される配合組成のプライマ処理リン酸塩被覆鉄粉を作製した。
このプライマ処理リン酸塩被覆鉄粉にポリテトラフルオロエチレン樹脂粉末を表7に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表7に示される温度に保持の熱処理を行って本発明法7を実施した。
本発明法7により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表7に示した。
Example 7
After adding polyphenylene sulfide resin, polytetrafluoroethylene powder and phosphate-coated iron powder to ethanol and dispersing by stirring, drying with stirring, holding the dried powder at 350 ° C. in air for 30 minutes, By crushing the agglomerated powder, the surface of the phosphate-coated iron powder was subjected to a primer treatment to prepare a primer-treated phosphate-coated iron powder having the composition shown in Table 7.
Polytetrafluoroethylene resin powder was added to the primer-treated phosphate-coated iron powder at a ratio shown in Table 7 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and checking the presence or absence of defective products of the compression molded body, the compression molded body was subjected to heat treatment for holding the compressed molded body at the temperatures shown in Table 7 in the present invention. Carried out.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 7 of the present invention, the crushing strength at room temperature was measured by the Archimedes method using a universal testing machine. The density was measured for the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts by the four-terminal method, and the magnetic flux density was measured using a BH loop tracer after winding. The results are shown in Table 7.

比較例7
実施例7で作製したプライマ処理したリン酸塩被覆鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例7と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表7に示される温度に保持の熱処理を行って比較法7を実施した。
比較法7により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表7に示した。
Comparative Example 7
A compression-molded body was produced by compression-molding the primer-treated phosphate-coated iron powder produced in Example 7 in the same manner as in Example 7 without adding polytetrafluoroethylene resin powder. After the presence or absence of the defective product was examined, the compression molded body was subjected to a heat treatment for holding the compressed molded body at the temperature shown in Table 7 in the atmosphere, and Comparative Method 7 was carried out.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by Comparative Method 7, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 7.

Figure 2006049407
Figure 2006049407

表7に示される結果から、本発明法7は、比較法7に比べて圧縮成形体に欠陥が無く、表6の従来法2に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 7, the present invention method 7 can produce a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 7 and superior in strength compared with the conventional method 2 shown in Table 6. I understand that I can do it.

実施例8
ポリアミドイミド樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とリン酸塩被覆鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりリン酸塩被覆鉄粉表面にプライマ処理を施し、表8に示される配合組成のプライマ処理リン酸塩被覆鉄粉を作製した。
このプライマ処理リン酸塩被覆鉄粉にポリテトラフルオロエチレン樹脂粉末を表8に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表8に示される温度に保持の熱処理を行って本発明法8を実施した。
本発明法8により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表8に示した。
Example 8
Phosphate-coated iron is prepared by dissolving polyamideimide resin in N-methylpyrrolidone, dispersing polytetrafluoroethylene powder and phosphate-coated iron powder in this solution by stirring, and drying while stirring. The powder surface was subjected to a primer treatment to prepare a primer-treated phosphate-coated iron powder having a composition shown in Table 8.
A polytetrafluoroethylene resin powder was added to the primer-treated phosphate-coated iron powder at a ratio shown in Table 8 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and examining the presence or absence of defective products of the compression molded body, the compression molded body was subjected to a heat treatment for holding the compression molded body at the temperature shown in Table 8 in the present invention. Carried out.
For the ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 8 of the present invention, the crushing strength at room temperature was measured by the Archimedes method using a universal testing machine. The density was measured for the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts by measuring the specific resistance by the four-terminal method, and the magnetic flux density was measured by the BH loop tracer after winding. The results are shown in Table 8.

比較例8
実施例8で作製したプライマ処理したリン酸塩被覆鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例8と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表8に示される温度に保持の熱処理を行って比較法8を実施した。
比較法8により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表8に示した。
Comparative Example 8
A compression-molded body was produced by compression-molding the primer-treated phosphate-coated iron powder produced in Example 8 in the same manner as in Example 8 without adding polytetrafluoroethylene resin powder. After the presence or absence of the defective product, the compression molding was subjected to heat treatment for holding the compressed molded body at a temperature shown in Table 8 in the atmosphere, and Comparative Method 8 was carried out.
For the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced by Comparative Method 8, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 8.

Figure 2006049407
Figure 2006049407

表8に示される結果から、本発明法8は、比較法8に比べて圧縮成形体に欠陥が無く、表6の従来法2に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 8, the present invention method 8 can produce a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 8 and superior in strength to the conventional method 2 shown in Table 6. I understand that I can do it.

実施例9
ポリイミド樹脂をN−メチルピロリドンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とリン酸塩被覆鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりリン酸塩被覆鉄粉表面にプライマ処理を施し、表9に示される配合組成のプライマ処理リン酸塩被覆鉄粉を作製した。
このプライマ処理リン酸塩被覆鉄粉にポリテトラフルオロエチレン樹脂粉末を表9に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表9に示される温度に保持の熱処理を行って本発明法9を実施した。
本発明法9により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表9に示した。
Example 9
Dissolve polyimide resin in N-methylpyrrolidone, add polytetrafluoroethylene powder and phosphate-coated iron powder to this solution and stir to disperse, and dry with stirring to phosphate-coated iron powder The surface was subjected to a primer treatment to prepare a primer-treated phosphate-coated iron powder having the composition shown in Table 9.
A polytetrafluoroethylene resin powder was added to the primer-treated phosphate-coated iron powder at a ratio shown in Table 9 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. After preparing a compression molded body having a thickness of 10 mm and checking the presence or absence of defective products of the compression molded body, the compression molded body was subjected to heat treatment for holding the compressed molded body at a temperature shown in Table 9 in the air. Carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 9 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method using a universal testing machine. The density was measured on the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts by the four-terminal method, and the magnetic flux density was measured with a BH loop tracer after winding. The results are shown in Table 9.

比較例9
実施例9で作製したプライマ処理リン酸塩被覆鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例9と同様にして圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表9に示される温度に保持の熱処理を行って比較法9を実施した。
比較法9により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性試験片について同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その測定結果を表9に示した。
Comparative Example 9
A compression-molded body was prepared in the same manner as in Example 9 without adding the polytetrafluoroethylene resin powder to the primer-treated phosphate-coated iron powder prepared in Example 9, and the presence or absence of a defective product of this compression-molded body was checked. After the investigation, the compression molding was subjected to a heat treatment for holding at a temperature shown in Table 9 in the atmosphere, and Comparative Method 9 was performed.
The ring-shaped composite soft magnetic test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by Comparative Method 9 was measured in the same manner to measure the crushing strength, density, specific resistance, and magnetic flux density. The results are shown in Table 9.

Figure 2006049407
Figure 2006049407

表9に示される結果から、本発明法9は、比較法9に比べて圧縮成形体に欠陥が無く、表6の従来法2に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 9, the present invention method 9 is capable of producing a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 9 and superior in strength to the conventional method 2 shown in Table 6. I understand that I can do it.

実施例10
液状シリコーン樹脂をトルエンに溶解させ、この溶液にポリテトラフルオロエチレン粉末とリン酸塩被覆鉄粉を添加して攪拌することにより分散させ、攪拌しながら乾燥させることによりリン酸塩被覆鉄粉表面にプライマ処理を施し、表10に示される配合組成のプライマ処理リン酸塩被覆鉄粉を作製した。
このプライマ処理リン酸塩被覆鉄粉にポリテトラフルオロエチレン樹脂粉末を表10に示される割合で添加し混合して混合粉末を作製した。この混合粉末を外径:35mm、内径:30mm、深さ:25mmの寸法を有する金型内空間に潤滑剤を金型内面に塗布することなく充填し、圧力:780MPaで圧縮成形することにより高さ:10mmの圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表10に示される温度に保持の熱処理を行って本発明法10を実施した。
本発明法10により作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、万能試験機を使用して室温における圧環強度を、アルキメデス法により密度を、リング状試験片を二分割したC字状試験片において四端子法により比抵抗を、巻線を施しBHループトレーサにより磁束密度をそれぞれ測定し、その結果を表10に示した。
Example 10
Dissolve the liquid silicone resin in toluene, add polytetrafluoroethylene powder and phosphate-coated iron powder to this solution and stir to disperse, and dry with stirring to the phosphate-coated iron powder surface. Primer treatment was performed to prepare a primer-treated phosphate-coated iron powder having a composition shown in Table 10.
A polytetrafluoroethylene resin powder was added to the primer-treated phosphate-coated iron powder at a ratio shown in Table 10 and mixed to prepare a mixed powder. The mixed powder is filled in the inner space of the mold having an outer diameter of 35 mm, an inner diameter of 30 mm, and a depth of 25 mm without applying the lubricant to the inner surface of the mold, and is compressed by compression molding at a pressure of 780 MPa. A 10 mm compression molded body was prepared, and the presence or absence of a defective product of the compression molded body was examined. After that, the compression molded body was subjected to a heat treatment for holding at a temperature shown in Table 10 in the atmosphere. Carried out.
The ring-shaped composite soft magnetic material test piece having an outer diameter of 35 mm, an inner diameter of 30 mm, and a height of 10 mm produced by the method 10 of the present invention was measured for the crushing strength at room temperature by using the Archimedes method using a universal testing machine. The density, the specific resistance of the C-shaped test piece obtained by dividing the ring-shaped test piece into two parts, and the magnetic flux density were measured with a BH loop tracer after winding, and the results are shown in Table 10.

比較例10
実施例10で作製したプライマ処理したリン酸塩被覆鉄粉をポリテトラフルオロエチレン樹脂粉末を添加することなく実施例10と同様にして圧縮成形することにより圧縮成形体を作製し、この圧縮成形体の不良品の有無を調べたのち、この圧縮成形体を大気中、表10に示される温度に保持の熱処理を行って比較法10を実施した。
比較法10より作製した外径:35mm、内径:30mm、高さ:10mmの寸法を有するリング状複合軟磁性材試験片について、同様にして圧環強度、密度、比抵抗および磁束密度を測定し、その結果を表10に示した。
Comparative Example 10
A compression-molded body was produced by compression-molding the primer-treated phosphate-coated iron powder produced in Example 10 in the same manner as in Example 10 without adding polytetrafluoroethylene resin powder. After the presence or absence of the defective product was examined, the compression molding was subjected to a heat treatment for holding the compressed molded body at a temperature shown in Table 10 in the atmosphere, and Comparative Method 10 was carried out.
For the ring-shaped composite soft magnetic material test piece having the outer diameter of 35 mm, the inner diameter of 30 mm, and the height of 10 mm produced from Comparative Method 10, the crushing strength, density, specific resistance and magnetic flux density were measured in the same manner. The results are shown in Table 10.

Figure 2006049407
Figure 2006049407

表10に示される結果から、本発明法10は、比較法10に比べて圧縮成形体に欠陥が無く、表6の従来法2に比べて強度の優れた複合軟磁性材を製造することができることが分かる。   From the results shown in Table 10, the present invention method 10 can produce a composite soft magnetic material having no defects in the compression-molded body as compared with the comparative method 10 and superior in strength to the conventional method 2 shown in Table 6. I understand that I can do it.

Claims (5)

鉄粉または表面にリン酸塩皮膜を形成した鉄粉(以下、リン酸塩被覆鉄粉という)の表面にあらかじめプライマ処理を施し、このプライマ処理を施したリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して混合粉末を作製し、この混合粉末を圧縮成形したのち熱処理を施すことを特徴とする高強度および高比抵抗を有する複合軟磁性材の製造方法。 The surface of iron powder or iron powder with a phosphate film formed on the surface (hereinafter referred to as phosphate-coated iron powder) is preliminarily subjected to primer treatment, and the phosphate-coated iron powder subjected to this primer treatment is then subjected to fluororesin powder. A method for producing a composite soft magnetic material having high strength and high specific resistance is characterized in that a mixed powder is prepared by adding and mixing, and the mixed powder is compression-molded and then subjected to heat treatment. 前記プライマ処理は、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、シリコーン樹脂の1種または2種以上とポリテトラフルオロエチレンが溶解または分散した液を鉄粉またはリン酸塩被覆鉄粉の表面に塗布し乾燥する処理であることを特徴とする請求項1記載の高強度および高比抵抗を有する複合軟磁性材の製造方法。 In the primer treatment, a liquid in which polytetrafluoroethylene and one or more of polyethersulfone, polyphenylene sulfide, polyamideimide, polyimide, and silicone resin and polytetrafluoroethylene are dissolved or dispersed is applied to the surface of iron powder or phosphate-coated iron powder. 2. The method for producing a composite soft magnetic material having high strength and high specific resistance according to claim 1, wherein the treatment is applied and dried. 前記プライマ処理を施した鉄粉またはリン酸塩被覆鉄粉にフッ素樹脂粉末を添加し混合して作製した混合粉末は、プライマ処理を施した鉄粉またはリン酸塩被覆鉄粉にフッ素樹脂粉末を0.1〜1.5質量%を添加し混合した混合粉末であることを特徴とする請求項1または2記載の高強度および高比抵抗を有する複合軟磁性材の製造方法。 The mixed powder prepared by adding and mixing fluororesin powder to the iron powder or phosphate-coated iron powder subjected to the primer treatment is obtained by adding the fluororesin powder to the iron powder or phosphate-coated iron powder subjected to the primer treatment. 3. The method for producing a composite soft magnetic material having high strength and high specific resistance according to claim 1, wherein the mixed powder is obtained by adding 0.1 to 1.5% by mass and mixing. 前記熱処理は、温度:320〜450℃の範囲内に加熱して行われることを特徴とする請求項1、2または3記載の高強度および高比抵抗を有する複合軟磁性材の製造方法。 The method for producing a composite soft magnetic material having high strength and high specific resistance according to claim 1, 2 or 3, wherein the heat treatment is performed by heating in a temperature range of 320 to 450 ° C. 請求項1、2、3または4記載の方法により製造したことを特徴とする高強度および高比抵抗を有する複合軟磁性材。
A composite soft magnetic material having high strength and high specific resistance, which is produced by the method according to claim 1, 2, 3 or 4.
JP2004225133A 2004-08-02 2004-08-02 Manufacturing method of compound soft magnetic material having high strength and high specific resistance Pending JP2006049407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225133A JP2006049407A (en) 2004-08-02 2004-08-02 Manufacturing method of compound soft magnetic material having high strength and high specific resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225133A JP2006049407A (en) 2004-08-02 2004-08-02 Manufacturing method of compound soft magnetic material having high strength and high specific resistance

Publications (1)

Publication Number Publication Date
JP2006049407A true JP2006049407A (en) 2006-02-16

Family

ID=36027642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225133A Pending JP2006049407A (en) 2004-08-02 2004-08-02 Manufacturing method of compound soft magnetic material having high strength and high specific resistance

Country Status (1)

Country Link
JP (1) JP2006049407A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024346A (en) * 2016-06-29 2016-10-12 无锡康柏斯机械科技有限公司 Preparation process of pen-like iron core for automobile ignition coil
CN106098337A (en) * 2016-07-28 2016-11-09 无锡康柏斯机械科技有限公司 A kind of pen-type ignition coil of automobile soft magnet core
CN106128727A (en) * 2016-07-28 2016-11-16 无锡康柏斯机械科技有限公司 A kind of automobile ignition coil static iron core
JP6326185B1 (en) * 2017-01-31 2018-05-16 アルプス電気株式会社 Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted
WO2018142666A1 (en) * 2017-01-31 2018-08-09 アルプス電気株式会社 Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein
US11183321B2 (en) 2016-03-31 2021-11-23 Diamet Corporation Powder magnetic core with silica-based insulating film, method of producing the same, and electromagnetic circuit component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183321B2 (en) 2016-03-31 2021-11-23 Diamet Corporation Powder magnetic core with silica-based insulating film, method of producing the same, and electromagnetic circuit component
CN106024346A (en) * 2016-06-29 2016-10-12 无锡康柏斯机械科技有限公司 Preparation process of pen-like iron core for automobile ignition coil
CN106098337A (en) * 2016-07-28 2016-11-09 无锡康柏斯机械科技有限公司 A kind of pen-type ignition coil of automobile soft magnet core
CN106128727A (en) * 2016-07-28 2016-11-16 无锡康柏斯机械科技有限公司 A kind of automobile ignition coil static iron core
CN106098337B (en) * 2016-07-28 2017-11-21 陈振德 A kind of pen-type ignition coil of automobile soft magnet core
JP6326185B1 (en) * 2017-01-31 2018-05-16 アルプス電気株式会社 Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted
WO2018142666A1 (en) * 2017-01-31 2018-08-09 アルプス電気株式会社 Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein
US11482356B2 (en) 2017-01-31 2022-10-25 Alps Alpine Co., Ltd. Powder core, electric or electronic component including the powder core and electric or electronic device having the electric or electronic component mounted therein

Similar Documents

Publication Publication Date Title
TW459253B (en) Iron powder and method for the preparation thereof
JP5833983B2 (en) Powder for dust core and dust core
Sroka et al. An investigation into the influence of filler silanization conditions on mechanical and thermal parameters of epoxy resin-fly ash composites
JP2016180154A (en) Powder for magnetic core, dust core, and method for producing powder for magnetic core
WO2017090430A1 (en) Soft magnetic powder, magnetic core, method for producing soft magnetic powder, and method for producing magnetic core
JPWO2003038843A1 (en) Method for producing composite magnetic material
WO2019009320A1 (en) Method for manufacturing sintered body, structure, and composite structure
JP2006049407A (en) Manufacturing method of compound soft magnetic material having high strength and high specific resistance
CN114929413A (en) Joining material, method for producing joining material, and joined body
JP2007207958A (en) Manufacturing method for composite soft magnetic material having high strength
Schwertz et al. Optimization of the spark plasma sintering processing parameters affecting the properties of polyimide
JP2003318014A (en) Dust core powder, high-strength dust core, and method of manufacturing the same
JP5979733B2 (en) Bonded magnet composition, bonded magnet, and integrally molded part
CN110976852A (en) Preparation method of copper-based graphite composite lubricating sealing material
CN1267894A (en) Compressed magnetic core and its producing method
Gonzalez-Gutierrez et al. Time-dependent properties of multimodal polyoxymethylene based binder for powder injection molding
Abdoos et al. Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
JP4759533B2 (en) Powder for powder magnetic core, powder magnetic core, and method for producing the same
JP2005060830A (en) Method for producing soft magnetic sintered member
Uppalapati et al. Effect of external lubricant on mechanical properties of dry‐pressed green bodies
JP2013142182A (en) Coated particle powder and method for producing the same
JP2006049406A (en) Manufacturing method of compound soft magnetic material having high strength
JP2016160523A (en) Copper-molybdenum composite material and method for producing the same
Ronghao et al. Mechanical properties of plasma‐treated carbon fiber reinforced PTFE composites with CNT
JP6763708B2 (en) Joining material, manufacturing method of joining material, and joining body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A621 Written request for application examination

Effective date: 20070215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090326

A521 Written amendment

Effective date: 20090522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091211