JP2006049250A - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP2006049250A
JP2006049250A JP2004245964A JP2004245964A JP2006049250A JP 2006049250 A JP2006049250 A JP 2006049250A JP 2004245964 A JP2004245964 A JP 2004245964A JP 2004245964 A JP2004245964 A JP 2004245964A JP 2006049250 A JP2006049250 A JP 2006049250A
Authority
JP
Japan
Prior art keywords
magnetic field
induction heating
processed
gravity
heating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245964A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004245964A priority Critical patent/JP2006049250A/en
Publication of JP2006049250A publication Critical patent/JP2006049250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating treatment device for forming a uniform alloy or uniform dispersion body of metals without any complicated process with a large difference of specific gravity from each other or metal and ceramic by preventing separation of above materials apt to be caused due to the difference of specific gravity. <P>SOLUTION: The induction heating device can apply a heat treatment on a material to be processed under practically zero gravity by applying a field of force in an opposite direction of gravitational force on the material to be processed by supplying an alternating current to a material to be processed in a rectangular direction in a horizontal plane in compliance with an alternating magnetic field applied on the heating device so as to change the direction in conformity with the alternating magnetic field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は主として金属の溶解用の誘導加熱装置にかかり、比重の異なる2成分以上からなる金属、あるいは金属と非金属を均一に分布させた合金や均一に粒子を分散させた金属体を製造するための装置に関するものである。The present invention mainly relates to an induction heating apparatus for melting metal, and produces a metal composed of two or more components having different specific gravities, an alloy in which metal and nonmetal are uniformly distributed, or a metal body in which particles are uniformly dispersed. It is related with the apparatus for.

合金の製造や粒子分散金属の製造ではその比重差が小さく、融点の近い金属同士や金属と粒子の合金であれば誘導加熱によって融解を行えばその攪拌作用と相まって均一な合金が得られる。合金成分を融体化する場合に、双方の融点が大きく異なる場合は量比を変えた合金をあらかじめ作成しておき、その合金同士を融解することによってある程度の均一化が図れるので、通常の合金ではこのような手法のとられることが多い。しかしながら、このような場合でも合金成分同士に比重差があり、それが大きい場合は、たとえ合金粉末同士を再溶解しても、溶解中に比重差による分離が起こってしまい、単純な混合溶解よりはいくらかましではあるが、部分部分によって組成が変わってしまうという問題点があった。In the production of alloys and the production of particle-dispersed metals, the difference in specific gravity is small, and in the case of metals having close melting points or alloys of metal and particles, a homogeneous alloy can be obtained in combination with the stirring action when melting by induction heating. When melting the alloy components, if the melting points of both are greatly different, an alloy with a different quantitative ratio is prepared in advance, and a certain degree of homogeneity can be achieved by melting the alloys together. Then, such a technique is often taken. However, even in such a case, there is a difference in specific gravity between alloy components, and if it is large, even if the alloy powders are remelted, separation due to the difference in specific gravity occurs during melting, rather than simple mixing and melting. Although it was somewhat better, there was a problem that the composition changed depending on the part.

また一方は溶解するが一方は溶解し難い場合あるいは細かい粒子を金属内に分散させるなどして機能を向上させた粒子分散型金属や合金を作成する場合、粒子と金属の比重が近ければ必要に応じて粒子の金属とのぬれ性を向上させるように粒子表面にあらかじめ該金属をメッキなどによって被覆しておくこと、またはそのまま混合しても誘導溶解では中で攪拌しながら溶解するができそれによって比較的容易に粒子が分散した合金が得られる。しかし合金成分に大きな比重の差異がありしかも片方が粒子の様な場合、比重差に応じて溶解中に分離してしまう可能性が大きい。特に白金やイリジウム、あるいはタングステンやタンタルの場合その比重は20g/ml以上あるのに対してこれにセラミックス微粉体などを分散する場合セラミックスの比重は10g/ml以下、通常は3から7g/mlが多いため、比重差が極めて大きいので合金を作ること、あるいはセラミックス粒子を白金やイリジウムなどの白金属金属や、タングステンなどに添加し、分散させて均一な合金や混合物を得ることは内部で撹拌していても困難であった。 つまり混合しなければならない粉末や粒子が浮いてしまい、攪拌機能がある高周波誘導溶解でもでも均一にはなりにくかった。Also, when one is soluble but one is difficult to dissolve, or when creating a particle-dispersed metal or alloy with improved function by dispersing fine particles in the metal, it is necessary if the specific gravity of the particles and the metal is close Accordingly, the surface of the particles can be coated with the metal in advance so as to improve the wettability of the particles with the metal, or even if mixed as it is, it can be dissolved with stirring in the induction dissolution. An alloy having dispersed particles can be obtained relatively easily. However, if the alloy components have a large difference in specific gravity and one of them is particles, there is a high possibility of separation during melting depending on the specific gravity difference. In particular, in the case of platinum, iridium, tungsten or tantalum, the specific gravity is 20 g / ml or more, whereas when ceramic fine powder is dispersed in this, the specific gravity of the ceramic is 10 g / ml or less, usually 3 to 7 g / ml. Because there are many, the difference in specific gravity is so large that it is necessary to make an alloy, or to add ceramic particles to a white metal such as platinum or iridium or tungsten and disperse them to obtain a uniform alloy or mixture. It was difficult. In other words, the powder and particles that must be mixed floated, and even with high-frequency induction melting with a stirring function, it was difficult to be uniform.

最近脚光を浴びている液晶の基盤ガラスの製作用にその溶解坩堝として高温強度の必要なジルコニアなどの粒子を分散した白金が使われるが、このような合金の製造に当たっては通常の溶解法では成分の比重差から分離が起こり、分散させることができないために、特別な方法がとられている。つまり、アトマイズ法の様に、金属中に粉末が入った母合金の粉末を作り、それを焼結する(特開平06−336631)。あるいは白金について白金金属粉末の周りに水酸化ジルコニウムを水中で坦持させ、それを焼結し、鍛造する等の方法によっている(特開2002−012924)。 また、通常では粉末を粉末冶金の方法で作成した母合金粉末を成形し、HIP(高温等方プレス法)によって空隙率を最小にしながら金属体とするなどの方法がとられている。これらの粉末焼結や、鍛造、あるいはHIP法でもあくまでも金属は溶解ではないので、十分な充填率が得られないこと、またこれでも完全に均一になる保証はなく、必ずしも均一にはならないという問題点が残されていた。
なお金属の溶解に電磁誘導法を使用することに関しては多くの文献や特許が出されているが、いずれも加熱の効率化等に関するものであった。
特開平06−336631 特開2002−012924
Recently, platinum with dispersed particles such as zirconia that require high-temperature strength is used as a melting crucible for the production of liquid crystal base glass, which has recently been attracting attention. A special method is used because separation occurs due to the difference in specific gravity and cannot be dispersed. That is, as in the atomizing method, a mother alloy powder containing powder in a metal is prepared and sintered (Japanese Patent Laid-Open No. 06-336631). Alternatively, platinum is supported by a method in which zirconium hydroxide is supported in water around platinum metal powder, sintered, and forged (Japanese Patent Laid-Open No. 2002-012924). In general, a mother alloy powder prepared by powder metallurgy is formed into a metal body while minimizing the porosity by HIP (high temperature isotropic pressing). These powder sintering, forging, and HIP methods do not completely dissolve the metal, so a sufficient filling rate cannot be obtained, and even this is not guaranteed to be completely uniform, and is not necessarily uniform. The point was left.
Many documents and patents have been issued regarding the use of the electromagnetic induction method for melting metals, but all relate to heating efficiency and the like.
Japanese Patent Laid-Open No. 06-336631 JP2002-012924

比重差の大きい金属同士や金属とセラミックスの合金で起こりやすいそれらの比重差による分離を複雑なプロセスなしに均一合金とするあるいは均一分散体とするための加熱処理装置を提供することを課題とした。It is an object of the present invention to provide a heat treatment apparatus for forming a uniform alloy or a uniform dispersion without complicated processes for separation due to a difference in specific gravity, which is likely to occur between metals having a large specific gravity difference or between metal and ceramic alloys. .

本発明は、誘導加熱装置にかける交番磁場に対応してその水平面内の直角方向に交番磁場に同調して方向が変化するように被処理物質に交番電流を流して、重力の反対方向への力場を与えることによって実質的に該被処理物質を実質的に無重力下で加熱処理ができる誘導加熱装置であって、誘導加熱装置に於ける交番磁場とそれに直角方向に交番磁場に同期させて交番電流を流すことによっていわゆるフレミングの法則に則る力場を形成しそれを重力と反対方向にかけるようにして実質的に被処理物の処理中は重力が相殺される様にしてほぼ無重力状態での加熱を可能とするとともに、誘導加熱によって被処理融体を撹拌することにより均一な合金あるいは分散体を得ることができるようになった。In the present invention, an alternating current is passed through the material to be processed so that the direction changes in synchronization with the alternating magnetic field in the direction perpendicular to the horizontal plane in response to the alternating magnetic field applied to the induction heating device. An induction heating device capable of substantially heat-treating the material to be treated under a weightless condition by applying a force field, wherein the alternating magnetic field in the induction heating device is synchronized with the alternating magnetic field in a direction perpendicular thereto. By applying an alternating current, a force field that complies with the so-called Fleming's law is formed and applied in the direction opposite to the gravity so that the gravity is substantially canceled while the workpiece is being processed. It became possible to obtain a uniform alloy or dispersion by stirring the melt to be treated by induction heating.

つまり、本発明はフレミングの左手の法則を利用して重力と反対方向に力の発生が行われるようにし、重力場に逆らってほぼ重力と同じ力を働かせることによって無重力に近づけると同時に磁場によって与えられる誘導電流によって被処理体を加熱し、必要に応じて他の熱源と共に、被処理物質を融体化し該誘導電流に伴う融体の撹拌作用によって被処理物質を均一化するものである。つまり導電体の高温加熱や融解にはしばしば高周波加熱法が取られるがこれは高周波コイルによって、被処理体内に電流が流れ発熱する事によって目的が達成される。通常はこの電場或いは磁場を逃がさないような構造体とすることによって効率よく熱に変え流努力が行われている。此処では交番磁場が与えられこれが熱となるわけであるが、これとは別に直角方向に同期して電流が流され、溶解とは別に所謂フレミングの左手の法則によってそれらの向きに対して直角の方向に力が掛かる。高周波誘導加熱の場合それに使われる磁場は交番磁場であるので、磁場の方向は常に反転している。これにかける電場を同期させて反転することにより常に一方向向きの力をくわえる事が出来るようになる。このようにして重力と釣り合わせれば実質的に無重力の状態での溶解が可能となる。In other words, the present invention uses Fleming's left-hand rule so that force is generated in the direction opposite to gravity, and is applied by a magnetic field while approaching zero gravity by applying almost the same force as gravity against the gravitational field. The material to be treated is heated by the induced current, and the material to be treated is melted together with other heat sources as necessary, and the material to be treated is homogenized by the stirring action of the melt accompanying the induced current. In other words, the high-frequency heating method is often used for high-temperature heating and melting of the conductor, and this is achieved by a high-frequency coil that causes current to flow through the body to be processed and generate heat. Usually, by making the structure so as not to let this electric or magnetic field escape, heat is efficiently converted into heat. Here, an alternating magnetic field is applied and this becomes heat, but apart from this, a current flows in synchronization with the perpendicular direction, and apart from melting, the so-called Fleming's left-hand rule is A force is applied in the direction. In the case of high-frequency induction heating, the magnetic field used for this is an alternating magnetic field, so the direction of the magnetic field is always reversed. By synchronizing and reversing the electric field applied to this, it is possible to always apply a force in one direction. Thus, if it balances with gravity, melt | dissolution in a substantially weightless state will be attained.

此処で使用する誘導加熱装置はコイルを重力方向に垂直の方向に置き、この中に融体(融体の前駆体)を通すようにする。一方この流れと重力方向の何れにも直角の方向に該融体中に磁場に同期させて電流を流す。なお誘導加熱は通常行われる高周波法が望ましいが、その周波数は50から500Hzが望ましい。これは誘導加熱に同期させて被処理体に交番電流を流すことになるが、被処理体によるが、その静電容量によっては周波数が高くなると電流方向を変えてもそれに追随しなくなるからであり、金属の場合は容量が比較的小さいので問題は少ないと考えられるが、それでも500Hz程度以下であることが望ましい。これによって重力場の方向で重力と反対向きに重力場とほぼ同じ大きさの力を発生させることが出来る。なお誘導磁場とこれに同期させた電流場は被処理体の比重や必要とする温度によって変化させる必要があるので、同期はさせるものの、それらの強度は独立に変化させるようにすることが必要である。In the induction heating apparatus used here, a coil is placed in a direction perpendicular to the direction of gravity, and a melt (a precursor of the melt) is passed through the coil. On the other hand, an electric current is passed through the melt in synchronization with the magnetic field in a direction perpendicular to both the flow direction and the gravity direction. The induction heating is preferably performed by a high-frequency method that is normally performed, but the frequency is preferably 50 to 500 Hz. This is because an alternating current flows through the object to be processed in synchronization with induction heating, but depending on the object to be processed, depending on the capacitance, if the frequency increases, it will not follow the current direction even if the current direction is changed. In the case of metal, since the capacity is relatively small, it is considered that there are few problems. As a result, a force of almost the same magnitude as the gravity field can be generated in the direction opposite to the gravity field in the direction of the gravity field. Since the induced magnetic field and the current field synchronized with this need to be changed according to the specific gravity of the object to be processed and the required temperature, they must be synchronized, but their strength must be changed independently. is there.

被処理体はこの中で溶解される。被処理材はこれらのコイル中にバッチ的に置いても良いし、或いは外で溶解または半溶解しておき、または粉末状にして連続的に処理し、半融体で連続的に取り出すようにしても良い。いずれにしてもこれによって溶解部分は基本的には無重力に近い条件で撹拌されながらの溶解が可能となる。一例を図1に示す。つまり中央に電流通電用の被処理体のボートがあり、その外側に誘導磁場発生用のコイルが置かれる。これによって誘導磁場がボートの長手方向に起こる。又このコイルに平行してボート内におかれた電極により被処理体に電流が流され電場が形成される。電場、磁場共に高周波であり、通常の金属では300Hz程度である。もちろんこの周波数は被処理体の条件によって変えることができる。なお電場と磁場の方向は同期させているので、これによって形成される力はこれらの磁場と電場の直角方向、で重力方向の逆となる。勿論これは重力加速度を増加して遠心分離的な作用を与える事によって傾斜材料的な合金を作ることもできるが、ここでは、重力と逆方向に向けることによって無重力状態での混合物や合金を作るのに使われる。The object to be processed is dissolved therein. The material to be treated may be placed in a batch in these coils, or may be melted or semi-dissolved outside, or processed continuously in powder form and continuously taken out as a semi-melt. May be. In any case, the dissolved portion can basically be dissolved while being stirred under conditions close to weightlessness. An example is shown in FIG. That is, there is a boat for current application in the center, and a coil for generating an induction magnetic field is placed outside the boat. This causes an induced magnetic field in the longitudinal direction of the boat. In addition, an electric field is generated by applying an electric current to the object to be processed by an electrode placed in the boat in parallel with the coil. Both the electric field and the magnetic field are high-frequency, and about 300 Hz for a normal metal. Of course, this frequency can be changed according to the condition of the object to be processed. In addition, since the directions of the electric field and the magnetic field are synchronized, the force formed by this is a direction perpendicular to the magnetic field and the electric field, and is opposite to the direction of gravity. Of course, this can also make a gradient material alloy by increasing the acceleration of gravity and giving a centrifugal action, but here we make a mixture or alloy in the zero gravity state by turning it in the opposite direction to gravity. Used for

例えば液晶基盤ガラス溶融用の、ジルコニア分散白金の場合では酸化ジルコニウムの比重が約5g/ccであるのに対して白金が約22g/ccと極めて大きな差が有り、反応もしないので普通の溶解では均一にならないことは上述の通りである。このような場合に本提案のプロセスで溶解すると、誘導磁場により白金が撹拌され酸化ジルコニウムが中に均一に分散する。これを冷却すれば均一に酸化ジルコニウムの分散した白金が得られる。このプロセスは連続でも良いしバッチでも良いこと上述の通りである。For example, in the case of zirconia-dispersed platinum for melting liquid crystal base glass, the specific gravity of zirconium oxide is about 5 g / cc, whereas platinum has a very large difference of about 22 g / cc. As described above, it is not uniform. In such a case, when dissolved by the proposed process, platinum is stirred by an induced magnetic field, and zirconium oxide is uniformly dispersed therein. If this is cooled, platinum in which zirconium oxide is uniformly dispersed can be obtained. This process may be continuous or batch as described above.

図1に示すように、中央部に被処理材を流す、あるいは入れて処理をするためのセラミックス製の流路あるいはボートを起きその周辺に磁場を発生させるための高周波コイルを置く。また被処理材用のボートあるいは流路の内側には磁場の軸方向に平行に二つの電極が置かれ、そこには電極から融体を通じて電流が流され、電場を形成する。この電極は被処理体と反応しにくいこと、導電性が良いこと、耐熱性が十分にあることが必要であり、更にジルコニア分散白金の溶解用では酸化雰囲気が必要であり、そのためには安定で部分溶解はするがその影響が少ないイリジウム金属、あるいはある程度の消耗を考慮して炭素を使うことが有効である。図1ボート(3)に被処理体の比重の大きく異なる金属成分や白金とジルコニア微粉などの金属と分散用のセラミックス体粉末が入れられる。最初周囲の誘導磁場用のコイル(4)(に高周波が通電されるとボート内の金属が溶解される。ついで、ボート内の電極(5)に誘導磁場の高周波と同期させた電流を流す。これによって重力と反対方向に力が働き、被処理体の融体は実質的に無重力となり、比重の異なる白金とジルコニア粒子が互いに分散すると共に誘導加熱による撹拌効果で全体が均一となる。このように均一になったところで、冷却をして固化することによって均一にジルコニアを分散した白金を得ることができる。As shown in FIG. 1, a ceramic flow path or boat for flowing or processing a material to be processed is placed in the center, and a high frequency coil for generating a magnetic field is placed around it. Further, two electrodes are placed in parallel with the axial direction of the magnetic field inside the boat or flow path for the material to be processed, and an electric current flows from the electrodes through the melt to form an electric field. This electrode is difficult to react with the object to be processed, has good electrical conductivity, needs to have sufficient heat resistance, and needs an oxidizing atmosphere for dissolving zirconia-dispersed platinum. It is effective to use iridium metal that partially dissolves but has little influence, or carbon in consideration of a certain amount of consumption. In FIG. 1 boat (3), metal components having greatly different specific gravity of the object to be processed and metals such as platinum and zirconia fine powder and ceramic body powder for dispersion are put. First, when a high frequency is applied to the surrounding induction coil (4), the metal in the boat is melted. Next, a current synchronized with the induction magnetic field is supplied to the electrode (5) in the boat. As a result, a force acts in the direction opposite to gravity, the melt of the object to be processed becomes substantially weightless, and platinum and zirconia particles having different specific gravity are dispersed with each other and the whole is made uniform by the stirring effect by induction heating. When it becomes uniform, it is cooled and solidified to obtain platinum in which zirconia is uniformly dispersed.

実質的に無重力での金属の溶解ができる、あるいは均一にセラミックス粉末、繊維を分散した金属が得られる本プロセスは特に金属合金分野における各種合金の製造に有用であるばかりでなく、金属とセラミックスとの複合体や、強化合金製造などに広く応用が可能であり、たとえば、軽量化が必須である、自動車用アルミニウムパネルを強化剤とすること、また上記したような強化白金による材料剛性の高まりから、より安定的に液晶用のガラス基盤を製造する。等、直接の製品から、製品を作るための加工部分まで多くの有用な使用の可能性がある。This process, which can dissolve metals in a substantially weightless manner or obtain a metal in which ceramic powders and fibers are uniformly dispersed, is useful not only for the production of various alloys in the metal alloy field, but also for metals and ceramics. It can be widely applied to the production of composites and reinforced alloys. For example, it is essential to use aluminum panels for automobiles that require weight reduction, and the increase in material rigidity due to reinforced platinum as described above. , More stable manufacturing glass substrate for liquid crystal. Etc. There are many useful uses from direct products to processed parts for making products.

本発明装置の模式図であり、正面と平面の断面図を示した。It is a schematic diagram of this invention apparatus, and sectional drawing of the front and the plane was shown.

符号の説明Explanation of symbols

1. 平面断面図
2. 正面断面図
3. 被処理体用ボート
4. 誘導磁場用コイル
5. 電極
6. 磁場の方向
7. 電場の方向
8. 重力
9. フレミング力
1. Plan sectional view 2. Front sectional view 3. 3. Boat for object to be processed 4. Inductive magnetic field coil Electrode 6. 6. Direction of magnetic field Electric field direction8. Gravity 9. Fleming power

Claims (8)

誘導加熱装置にかける交番磁場に対応してその直角方向に該交番磁場に同調して方向が変化するように被処理物質に交番電流を流して、重力の反対方向への力場を与えることにより実質的に該被処理物質を実質的に無重力下で加熱処理ができる誘導加熱装置。Corresponding to the alternating magnetic field applied to the induction heating device, by passing an alternating current through the material to be treated so that the direction changes in the direction perpendicular to the alternating magnetic field, a force field in the opposite direction of gravity is applied. An induction heating apparatus capable of substantially heat-treating the material to be treated under substantially zero gravity. 交番磁場を高周波電流によってかけるようにしたことを特徴とする請求項1の誘導加熱装置。2. The induction heating apparatus according to claim 1, wherein the alternating magnetic field is applied by a high frequency current. 高周波電流の周波数が50から500Hzであることを特徴とする請求項1及び2の誘導加熱装置。The induction heating apparatus according to claim 1 or 2, wherein the frequency of the high-frequency current is 50 to 500 Hz. 交番磁場に同期された交番電場を磁場の強度とは独立に変化できる様にしたことを特徴とする請求項1及び2の誘導加熱装置。3. The induction heating apparatus according to claim 1, wherein the alternating electric field synchronized with the alternating magnetic field can be changed independently of the strength of the magnetic field. 誘導加熱装置が金属の溶解装置であることを特徴とする請求項1から3の誘導加熱装置。4. The induction heating device according to claim 1, wherein the induction heating device is a metal melting device. 誘導磁場が水平にかかり、同じ水平方向で磁場とは直角の方向に電場をかける様にしたことを特徴とする請求項1から4の誘導加熱装置。5. The induction heating apparatus according to claim 1, wherein the induction magnetic field is applied horizontally, and an electric field is applied in the same horizontal direction in a direction perpendicular to the magnetic field. 被処理物を磁場の軸方向に流すようにしたことを特徴とする請求項1から5の誘導加熱装置。6. The induction heating apparatus according to claim 1, wherein the object to be processed is caused to flow in the axial direction of the magnetic field. 被処理物の予備加熱機構を有することを特徴とする請求項1から6の誘導加熱装置。The induction heating apparatus according to claim 1, further comprising a preheating mechanism for an object to be processed.
JP2004245964A 2004-07-30 2004-07-30 Heating device Pending JP2006049250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245964A JP2006049250A (en) 2004-07-30 2004-07-30 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245964A JP2006049250A (en) 2004-07-30 2004-07-30 Heating device

Publications (1)

Publication Number Publication Date
JP2006049250A true JP2006049250A (en) 2006-02-16

Family

ID=36027538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245964A Pending JP2006049250A (en) 2004-07-30 2004-07-30 Heating device

Country Status (1)

Country Link
JP (1) JP2006049250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107888B2 (en) 2011-01-18 2015-08-18 Senju Pharmaceutical Co., Ltd. Aqueous liquid bromfenac composition having preservative efficacy
CN110066974A (en) * 2019-04-26 2019-07-30 四川大学 The method and device of intensive treatment hard alloy cutter under electromagnetic coupling outer field action

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107888B2 (en) 2011-01-18 2015-08-18 Senju Pharmaceutical Co., Ltd. Aqueous liquid bromfenac composition having preservative efficacy
CN110066974A (en) * 2019-04-26 2019-07-30 四川大学 The method and device of intensive treatment hard alloy cutter under electromagnetic coupling outer field action
CN110066974B (en) * 2019-04-26 2020-05-19 四川大学 Method and device for strengthening treatment of hard alloy cutter under action of electromagnetic coupling external field

Similar Documents

Publication Publication Date Title
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
Sun et al. Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles
Todd No more tears for metal 3D printing
Rameshbabu et al. Diffraction, microstructure and thermal stability analysis in a double phase nanocrystalline Al20Mg20Ni20Cr20Ti20 high entropy alloy
Ahangarkani et al. The effect of additive and sintering mechanism on the microstructural characteristics of W–40Cu composites
Chen et al. Synergistic enhancing effect for mechanical and electrical properties of tungsten copper composites using spark plasma infiltrating sintering of copper-coated graphene
Liu et al. A surface energy driven dissolution model for immiscible Cu-Fe alloy
Yang et al. Experimental and numerical investigation on mass transfer induced by electromagnetic field in cold crucible used for directional solidification
Zhang et al. Controlled motion of electrically neutral microparticles by pulsed direct current
Teng et al. Parameter optimization and microhardness experiment of AlSi10Mg alloy prepared by selective laser melting
Hwang et al. Thermodynamics and kinetics in the synthesis of monodisperse nanoparticles
Guan et al. Scalable manufacturing of AgCu40 (wt%)–WC nanocomposite microwires
Ren et al. Purification of aluminium-silicon alloy by electromagnetic directional solidification: Degassing and grain refinement
Liu et al. Phase separation in melt-casting of ceramic materials by high-gravity combustion synthesis
Feng et al. Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization
Li et al. Effects of magnesium on the microstructure and properties of Al–Si alloy deposited by wire and arc-based additive manufacturing
JP2006049250A (en) Heating device
Wu et al. Influence of sintering time on microstructure and properties of hot oscillatory pressing sintered W–Cu refractory alloys
JP2009091605A (en) Diamond particle dispersion type metal-matrix composite material and producing method therefor
Zhong et al. Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification
Qian et al. A method for the preparation of spherical titanium powder for additive manufacturing
Watanabe et al. Decomposition of Al2. 7Fe0. 3Ti in heated Al–Al2. 7Fe0. 3Ti refiner fabricated by spark plasma sintering and its refining performance
Shi et al. Fabrication of BiInSn alloy powder via the combination of ultrasonic crushing with dispersants
Xu et al. Continuous removal of nonmetallic inclusions from aluminum melts by means of stationary electromagnetic field and DC current
Xie et al. Fabrication of Cu-ZrO 2 composites by in situ oxidation of liquid Cu–Zr alloy