JP2006049249A - Manufacturing method of porous membrane - Google Patents

Manufacturing method of porous membrane Download PDF

Info

Publication number
JP2006049249A
JP2006049249A JP2004232498A JP2004232498A JP2006049249A JP 2006049249 A JP2006049249 A JP 2006049249A JP 2004232498 A JP2004232498 A JP 2004232498A JP 2004232498 A JP2004232498 A JP 2004232498A JP 2006049249 A JP2006049249 A JP 2006049249A
Authority
JP
Japan
Prior art keywords
solvent
porous membrane
manufacturing
hydrocarbon
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232498A
Other languages
Japanese (ja)
Other versions
JP4822493B2 (en
Inventor
Kaori Mizutani
かおり 水谷
Takayuki Yamamoto
孝幸 山本
Mitsuhiro Kaneda
充宏 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004232498A priority Critical patent/JP4822493B2/en
Publication of JP2006049249A publication Critical patent/JP2006049249A/en
Application granted granted Critical
Publication of JP4822493B2 publication Critical patent/JP4822493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a porous membrane, capable of efficiently removing solvents and having a simple process as a manufacturing method of a porous membrane, having appropriate air permeability and vacancy rate, in particular, as a secondary battery membrane separator, and having little risk of firing explosion during a drying process, and to provide a manufacturing method of a separator for a battery. <P>SOLUTION: This manufacturing method of a porous membrane includes a process of removing, by using a cleaning solvent, a hydrocarbon-based solvent from the porous membrane containing the hydrocarbon-based solvent, after membrane formation. The manufacturing method uses a mixed solvent, containing a fluorine-based solvent and a bromide-based solvent as the cleaning solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、製膜後に炭化水素系溶媒を含有する多孔質膜から、洗浄溶剤を用いて炭化水素系溶媒を除去する工程を含む多孔質膜の製造方法、並びに電池用セパレータの製造方法に関し、簡便な製造工程であり、かつ乾燥工程中に引火爆発の危険性を低下できる製造方法に関する。   The present invention relates to a method for producing a porous membrane including a step of removing a hydrocarbon solvent using a cleaning solvent from a porous membrane containing a hydrocarbon solvent after film formation, and a method for producing a battery separator, The present invention relates to a production method that is a simple production process and that can reduce the risk of a flammable explosion during the drying process.

結晶性樹脂の多孔質膜は、電池用セパレータ、電解コンデンサー隔膜、透湿防水材、各種フィルター等に用いられている。中でも電池用セパレータは、電池として軽量・高起電力・高エネルギーが得られ、しかも自己放電が少ないリチウム二次電池の重要な部材として注目を集めており、今後は電気自動車用バッテリーの構成部材としても期待されている。   Porous membranes of crystalline resins are used for battery separators, electrolytic capacitor diaphragms, moisture permeable waterproof materials, various filters, and the like. Among them, battery separators are attracting attention as important components of lithium secondary batteries that can obtain light weight, high electromotive force, and high energy as a battery, and also have little self-discharge. Is also expected.

結晶性樹脂の多孔質膜の製造方法には、溶剤法、乾式法及び開孔延伸法があり、この中で溶剤法が一般に用いられている。溶剤法は結晶性樹脂に溶媒を添加し、溶融混練した後に溶媒を除去する工程を含み、この溶媒除去工程の効率性が、結晶性樹脂の多孔質膜の生産性だけでなく、多孔質膜の機械物性にも影響を与える。   As a method for producing a crystalline resin porous film, there are a solvent method, a dry method, and an aperture stretching method, and a solvent method is generally used. The solvent method includes a step of adding a solvent to the crystalline resin and removing the solvent after melt-kneading. The efficiency of this solvent removal step is not only the productivity of the porous membrane of the crystalline resin, but also the porous membrane. This also affects the mechanical properties of the machine.

溶媒除去工程には、従来から塩化メチレンを始めとする低沸点の塩素化アルカンや、ヘキサン等の沸点の低い脂肪族炭化水素系化合物が使用されている。低沸点の脂肪族炭化水素系化合物は、洗浄力は高いが、乾燥工程における引火爆発の危険性が高いという短所を有している。   Conventionally, low boiling point chlorinated alkanes such as methylene chloride and low boiling point aliphatic hydrocarbon compounds such as hexane are used in the solvent removal step. Low-boiling point aliphatic hydrocarbon compounds have high detergency, but have the disadvantage of high risk of flammable explosion in the drying process.

これに対し、引火性のない溶剤として、例えば、有機溶剤と水との混合溶剤及び界面活性剤水溶液等の代替溶剤が提案されている(例えば、特許文献1〜2参照)。しかし、これらのような準水系及び水系溶剤は、熱可塑性樹脂に含まれる溶媒を十分に洗浄できているとはいえない。   On the other hand, alternative solvents such as a mixed solvent of an organic solvent and water and a surfactant aqueous solution have been proposed as non-flammable solvents (see, for example, Patent Documents 1 and 2). However, it cannot be said that these semi-aqueous and aqueous solvents can sufficiently wash the solvent contained in the thermoplastic resin.

また、引火点を持つ溶剤で溶媒洗浄した後、引火点を持たないフッ素系溶剤で洗浄する二〜五段の多段工程が提案されている(例えば、特許文献3参照)。しかし、この方法は工程が複雑になってしまうという短所を有している。   In addition, a two- to five-stage multi-step process in which a solvent is washed with a solvent having a flash point and then washed with a fluorinated solvent having no flash point has been proposed (for example, see Patent Document 3). However, this method has a disadvantage that the process becomes complicated.

更に、溶媒除去工程において、フッ素系溶剤に他の溶剤を添加した混合溶剤を使用する方法も知られており、例えば、フッ素系溶剤と脂肪族炭化水素の混合溶剤を用いて、多孔質膜に残存する溶媒を除去する方法が提案されている(例えば、特許文献4参照)。しかしながら、この方法では、溶媒である流動パラフィン等に対する溶解性が十分でなく、溶媒の除去が困難であることが判明した。
特開平6−256559号公報 特開平6−298985号公報 特開2000−12695号公報 特開2003−103624号公報
Furthermore, in the solvent removal step, a method of using a mixed solvent obtained by adding another solvent to a fluorinated solvent is also known. For example, a porous film is formed using a mixed solvent of a fluorinated solvent and an aliphatic hydrocarbon. A method for removing the remaining solvent has been proposed (see, for example, Patent Document 4). However, with this method, it has been found that the solvent is not sufficiently soluble in liquid paraffin and the solvent is difficult to remove.
JP-A-6-256559 JP-A-6-298985 JP 2000-12695 A JP 2003-103624 A

そこで、本発明の目的は、特に二次電池膜セパレータとして適度な通気性や空孔率を有した多孔質膜の製造方法として、効率良く溶媒除去できるとともに工程が簡便であり、かつ乾燥工程中に引火爆発の危険性の少ない多孔質膜の製造方法並びに電池用セパレータの製造方法を提供することにある。   Therefore, an object of the present invention is to produce a porous membrane having appropriate air permeability and porosity, particularly as a secondary battery membrane separator, which can efficiently remove the solvent and is simple in the process, and in the drying process. Another object of the present invention is to provide a method for producing a porous membrane and a method for producing a battery separator with a low risk of flammable explosion.

本発明者らは、上記目的を達成すべく、各種洗浄溶剤について鋭意研究したところ、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることにより、複雑な工程を踏むことなく、効率良く溶媒除去でき、しかも通気性や空孔率を向上できることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors diligently researched various cleaning solvents. By using a mixed solvent containing a fluorine-based solvent and a bromide-based solvent, the solvent can be efficiently used without taking a complicated process. It has been found that the air permeability and porosity can be improved, and the present invention has been completed.

本発明の多孔質膜の製造方法は、製膜後に炭化水素系溶媒を含有する多孔質膜から、洗浄溶剤を用いて炭化水素系溶媒を除去する工程を含む多孔質膜の製造方法において、前記洗浄溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることを特徴とする。   The method for producing a porous membrane of the present invention includes the step of removing a hydrocarbon-based solvent using a cleaning solvent from a porous membrane containing a hydrocarbon-based solvent after film formation. A mixed solvent containing a fluorine-based solvent and a bromide-based solvent is used as the cleaning solvent.

本発明の多孔質膜の製造法によると、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤で溶媒除去をおこなうため、実施例の結果が示すように単段で溶媒除去が可能であり、乾燥速度が速いため空孔率が高く、また引火点を持たないため、安全に乾燥を進行させることができる。   According to the method for producing a porous membrane of the present invention, the solvent is removed with a mixed solvent containing a fluorine-based solvent and a bromide-based solvent, so that the solvent can be removed in a single stage as shown in the results of the examples. Since the speed is high, the porosity is high, and since there is no flash point, drying can proceed safely.

また、本発明は、ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、これを一軸方向以上に延伸する工程と、延伸物から洗浄溶剤を用いて炭化水素系溶媒を除去する工程とを含む多孔質膜の製造方法において、前記洗浄溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることを特徴とする。   In the present invention, a resin composition containing a polyolefin-based resin and a hydrocarbon-based solvent is melt-kneaded, and the obtained melt-kneaded product is cooled to obtain a sheet-like material, which is then stretched in a uniaxial direction or more. In the method for producing a porous membrane comprising a step and a step of removing the hydrocarbon solvent from the stretched product using a cleaning solvent, a mixed solvent containing a fluorine solvent and a bromide solvent is used as the cleaning solvent. It is characterized by.

上記一連の工程で得られるポリオレフィン系の多孔質膜には、多孔質構造中に流動パラフィンなどの溶媒を含有しており、これを除去する必要があるが、本発明によると、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤で溶媒除去をおこなうため、単段で溶媒除去が可能であり、乾燥速度が速いため空孔率が高く、また引火点を持たないため、安全に乾燥を進行させることができる。   The polyolefin-based porous membrane obtained by the above series of steps contains a solvent such as liquid paraffin in the porous structure, and it is necessary to remove this, but according to the present invention, Solvent removal is performed with a mixed solvent containing bromide solvent, so solvent removal is possible in a single stage, high drying speed, high porosity, and no flash point, so drying proceeds safely. be able to.

上記において、前記洗浄溶剤は、混合溶剤としてKB値が50以上であることが好ましい。KB値の値が高いほど溶解能力が大きくなり、50以上であれば溶媒を良好に除去することができる。   In the above, the cleaning solvent preferably has a KB value of 50 or more as a mixed solvent. The higher the KB value, the greater the dissolving ability. If the KB value is 50 or more, the solvent can be removed satisfactorily.

また、前記洗浄溶剤は、混合溶剤として引火点を持たないものであることが好ましい。フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤は、一般的に引火し難い性質を有するが、洗浄溶剤を持たない場合、特に安全に洗浄溶剤の乾燥工程を実施することができるようになる。   Moreover, it is preferable that the said washing | cleaning solvent is a thing which does not have a flash point as a mixed solvent. A mixed solvent containing a fluorine-based solvent and a bromide-based solvent generally has a property that it is difficult to ignite, but when there is no cleaning solvent, the cleaning solvent drying process can be performed particularly safely.

本発明の電池用セパレータの製造方法は、上記いずれかに記載の多孔質膜の製造方法によって電池用セパレータを製造することを特徴とする。本発明の電池用セパレータの製造方法によると、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤で溶媒除去をおこなうため、単段で溶媒除去が可能であり、乾燥速度が速いため空孔率が高く、また引火点を持たないため、安全に乾燥を進行させることができる。   The battery separator manufacturing method of the present invention is characterized in that the battery separator is manufactured by any one of the above-described porous film manufacturing methods. According to the method for manufacturing a battery separator of the present invention, solvent removal is performed with a mixed solvent containing a fluorine-based solvent and a bromide-based solvent, so that the solvent can be removed in a single stage, and the porosity is high due to the high drying speed. Since it is high and has no flash point, drying can proceed safely.

本発明の多孔質膜の製造方法は、製膜後に炭化水素系溶媒を含有する多孔質膜から、洗浄溶剤を用いて炭化水素系溶媒を除去する工程を含むものであり、かかる工程を実施する際に、前記洗浄溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることを特徴とする。   The method for producing a porous membrane of the present invention includes a step of removing a hydrocarbon-based solvent using a cleaning solvent from a porous membrane containing a hydrocarbon-based solvent after film formation, and this step is performed. In this case, a mixed solvent containing a fluorine-based solvent and a bromide-based solvent is used as the cleaning solvent.

多孔質膜としては、例えばポリオレフィン系樹脂、PVDF(ポリフッ化ビニリデン)、PSF(ポリスルホン)、PES(ポリエーテルスルホン)、PPES(ポリフェニルスルホン)、PVA、PTFE、セルロース系樹脂、ポリアミド、ポリアクリロニトリル、ポリイミドなどが挙げられる。   Examples of the porous membrane include polyolefin resin, PVDF (polyvinylidene fluoride), PSF (polysulfone), PES (polyethersulfone), PPES (polyphenylsulfone), PVA, PTFE, cellulose resin, polyamide, polyacrylonitrile, Examples thereof include polyimide.

製膜方法としては、製膜後に低分子量物が残存する方法であれば、特に限定されず、溶剤法、非溶媒誘起型湿式相分離法、熱誘起型湿式相分離法、乾式相分離法、開孔延伸法など何れでもよい。   The film forming method is not particularly limited as long as a low molecular weight substance remains after film formation, and is a solvent method, a non-solvent induced wet phase separation method, a heat induced wet phase separation method, a dry phase separation method, Any method such as an aperture stretching method may be used.

本発明は、多孔質膜の製膜工程が、ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、これを一軸方向以上に延伸する工程とを含む場合が有効である。これらの一連の工程で得られるポリオレフィン系の多孔質膜には、多孔質構造中に流動パラフィンなどの炭化水素系溶媒を含有している。以下、この製膜工程を例にとって説明する。   In the present invention, after the porous film forming step melts and kneads a resin composition containing a polyolefin resin and a hydrocarbon solvent, the obtained melt kneaded material is cooled to obtain a sheet-like material, It is effective to include a step of stretching in a uniaxial direction or more. The polyolefin-based porous membrane obtained by these series of steps contains a hydrocarbon-based solvent such as liquid paraffin in the porous structure. Hereinafter, this film forming process will be described as an example.

本発明では、製膜の際に結晶性樹脂を用いるのが好ましく、特に、ポリオレフィン系樹脂を用いるのが好ましい。ポリオレフィン系樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−へキセン等のオレフィンの単独重合体、共重合体、およびこれらのブレンド物等のポリオレフィンが好ましい。これらのなかでは、重量平均分子量が5×10以上の超高分子量ポリオレフィンを、好ましくは5重量%以上用いるのが望ましい。中でも得られる多孔質膜の機械的強度の観点から、超高分子量ポリエチレンが素材として特に好ましい。 In the present invention, it is preferable to use a crystalline resin during film formation, and it is particularly preferable to use a polyolefin resin. As the polyolefin resin, polyolefins such as homopolymers, copolymers, and blends of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene are preferable. Among these, it is desirable to use an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, preferably 5% by weight or more. Among these, ultrahigh molecular weight polyethylene is particularly preferable as a material from the viewpoint of the mechanical strength of the obtained porous membrane.

本発明に用いることのできる炭化水素系溶媒としては、樹脂の溶解性や膨潤性に優れたものであれば、通常用いられる公知のものを限定されることなく用いることができる。例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、テトラリン、流動パラフィン等の脂肪族又は環式の炭化水素、沸点がこれらに対応する鉱油留分等が挙げられ、これらの中では、流動パラフィンなどの不揮発性溶媒が好ましい。   As the hydrocarbon-based solvent that can be used in the present invention, known solvents that are usually used can be used without limitation as long as they have excellent resin solubility and swelling property. For example, nonane, decane, undecane, dodecane, decalin, tetralin, aliphatic hydrocarbons such as liquid paraffin, and mineral oil fractions with boiling points corresponding to these, among these, liquid paraffin, etc. Nonvolatile solvents are preferred.

ポリオレフィン系樹脂及び溶媒の混合割合は、樹脂の種類、溶解性などの材料条件や混練時間、混練温度などの混練条件によって異なるため、一概には決定できないが、樹脂および溶媒とのスラリー状樹脂混合組成物を溶融混練した際にシート状に成形できる程度であれば特に限定されない。例えば、樹脂成分の配合量は、得られる多孔質膜の強度を向上させる観点から、5重量%以上が好ましい。また、ポリオレフィンを十分に溶媒に溶解させて、混練することができる観点から、30重量%以下が好ましい。   The mixing ratio of polyolefin resin and solvent varies depending on the material conditions such as resin type, solubility and kneading conditions such as kneading time and kneading temperature. The composition is not particularly limited as long as it can be formed into a sheet shape when the composition is melt-kneaded. For example, the blending amount of the resin component is preferably 5% by weight or more from the viewpoint of improving the strength of the obtained porous membrane. Moreover, 30 weight% or less is preferable from a viewpoint which can fully melt | dissolve polyolefin in a solvent and knead | mix it.

混合物中の溶媒の配合量は70〜95重量%が好ましく、75〜90重量%がより好ましい。該配合量は、混練性が適度で特性的に優れる観点から、70重量%以上が好ましく、また、押出す際に、ダイスでの成形が容易になる観点から、95重量%以下が好ましい。   The amount of the solvent in the mixture is preferably 70 to 95% by weight, more preferably 75 to 90% by weight. The blending amount is preferably 70% by weight or more from the viewpoint of moderate kneadability and excellent characteristics, and is preferably 95% by weight or less from the viewpoint of facilitating molding with a die during extrusion.

また、シャットダウン機能(電池膜内の温度上昇時に、発火等の事故を防止するため、多孔質膜が溶融して多孔質膜を目詰まりさせ、電流を遮断する機能)を付与する目的として、5×10未満のポリオレフィン類、熱可塑性エラストマー、グラフトコポリマーが1種類以上含有されてもよい。 In addition, as a purpose of providing a shutdown function (a function of blocking the current by melting the porous film by clogging the porous film in order to prevent accidents such as ignition when the temperature in the battery film rises), 5 One or more kinds of polyolefins, thermoplastic elastomers, and graft copolymers of less than × 10 5 may be contained.

重量平均分子量が5×10未満のポリオレフィン類としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エチレン−アクリルモノマー共重合体、エチレン−酢酸ビニル共重合体等の変性ポリオレフィン樹脂が挙げられる。熱可塑性エラストマーとしては、ポリスチレン系や、ポリオレフィン系、ポリジエン系、塩化ビニル系、ポリエステル系等の熱可塑性エラスドマーが挙げられる。 Examples of polyolefins having a weight average molecular weight of less than 5 × 10 5 include polyolefin resins such as polyethylene and polypropylene, and modified polyolefin resins such as ethylene-acrylic monomer copolymers and ethylene-vinyl acetate copolymers. Examples of thermoplastic elastomers include thermoplastic elastomers such as polystyrene, polyolefin, polydiene, vinyl chloride, and polyester.

グラフトコポリマーとしては、主鎖にポリオレフィン、側鎖に非相性基を有するビニル系ポリマーを側鎖としたグラフトコポリマーが挙げられるが、ポリアクリル類、ポリメタクリル類、ポリスチレン、ポリアクリロニトリル、ポリオキシアルキレン類が好ましい。なお、ここで非相溶性基とは、ポリオレフィンに対して非相溶性基を意味し、例えば、ビニル系ポリマーに由来する基などが挙げられる。   Examples of the graft copolymer include graft copolymers in which the main chain is a polyolefin and the side chain is a vinyl polymer having a non-compatible group in the side chain, but polyacryls, polymethacrylates, polystyrene, polyacrylonitrile, polyoxyalkylenes. Is preferred. In addition, an incompatible group means an incompatible group with respect to polyolefin here, for example, the group derived from a vinyl polymer etc. are mentioned.

これらの5×10未満のポリオレフィン類、熱可塑性エラストマー、グラフトコポリマーの含有量は、適時要求されるシャットダウン温度により設定されるが、多孔質膜の原料樹脂混合物中、70重量%以下が好ましく、60重量%以下がより好ましく、50重量%以下が更に好ましい。該含有量は、高分子量ポリオレフィンの架橋点を十分確保し、十分な耐熱性が得られるという観点から70重量%以下が好ましい。 The content of these polyolefins less than 5 × 10 5 , the thermoplastic elastomer, and the graft copolymer is set according to the timely required shutdown temperature, but is preferably 70% by weight or less in the raw material resin mixture of the porous membrane, 60 wt% or less is more preferable, and 50 wt% or less is still more preferable. The content is preferably 70% by weight or less from the viewpoint of sufficiently securing the crosslinking point of the high molecular weight polyolefin and obtaining sufficient heat resistance.

なお、前記樹脂組成物には、必要に応じて、酸化防止剤、帯電防止剤、紫外線吸収剤、染料、造核剤、顔料、難燃剤、充填剤等の添加剤を、本発明の目的を損なわない範囲で添加することができる。   Note that additives such as an antioxidant, an antistatic agent, an ultraviolet absorber, a dye, a nucleating agent, a pigment, a flame retardant, and a filler are added to the resin composition as necessary. It can add in the range which does not impair.

得られる樹脂組成物を溶融混練する工程は、通常用いられる公知の方法により行うことができる。その際に高分子量ポリオレフィンのポリマー鎖の十分な絡み合いを得るために混合物に、十分なせん断力を作用させて行なうことが好ましい。例えば、樹脂組成物をバンバリーミキサー、ニーダー等を用いてバッチ式で混練したり、蓮続押出機などを用いたりしてもよい。蓮続混練機としては単軸混練機や二軸押出機、プラネタリー式などの多軸梶練機を用いてもよく、またこれら装置を複数組み合わせた工程でも良い。   The step of melt-kneading the obtained resin composition can be performed by a commonly used known method. At that time, in order to obtain sufficient entanglement of polymer chains of the high-molecular-weight polyolefin, it is preferable to carry out by applying a sufficient shearing force to the mixture. For example, the resin composition may be kneaded batch-wise using a Banbury mixer, a kneader or the like, or a continuous extruder may be used. As the continuous kneader, a multi-screw kneader such as a single-screw kneader, a twin-screw extruder, or a planetary type may be used, or a process combining a plurality of these devices may be used.

混合物を溶解混練する際の温度は、溶媒が高分子量ポリオレフィンを溶解開始させる温度(溶融開始温度)〜+60℃の範囲で行なうことが好ましい。該温度は、高分子量ポリオレフィンが効率よく分散する観点から、溶解開始温度以上が好ましい。なお、高分子量ポリオレフィンの熱分解や酸化劣化を抑制するため、溶解後の混練時に、膜特性を低下させない程度に温度を下げても問題はない。   The temperature at which the mixture is dissolved and kneaded is preferably in the range of the temperature at which the solvent starts dissolving the high molecular weight polyolefin (melting start temperature) to + 60 ° C. The temperature is preferably equal to or higher than the dissolution start temperature from the viewpoint of efficiently dispersing the high molecular weight polyolefin. In order to suppress thermal decomposition and oxidative degradation of the high molecular weight polyolefin, there is no problem even if the temperature is lowered to such an extent that the film characteristics are not deteriorated during kneading after dissolution.

シート状に成形する工程は、通常用いられる公知の方法により行うことができる。方法としては、特に限定されず、例えば、押し出し機先端にTダイ等を取り付ける方法が挙げられる。また、カレンダー成形やプレス成形によりシート化しても、なんら問題はない。   The step of forming into a sheet can be performed by a commonly used known method. It does not specifically limit as a method, For example, the method of attaching T-die etc. to the extruder tip is mentioned. Further, there is no problem even if the sheet is formed by calendar molding or press molding.

得られたシート状押出し物を好ましくは50℃以下、より好ましくは−10℃以下に冷却した金属板に挟み込み、冷却して、シート状に成形することが望ましい。このようにして得られるシート状成形物の厚みとしては、特に限定されないが、その後の工程における処理のしやすさから、2〜20mmのものが好ましい。   The obtained sheet-like extrudate is preferably sandwiched between metal plates cooled to 50 ° C. or less, more preferably −10 ° C. or less, and cooled to form a sheet. Although it does not specifically limit as thickness of the sheet-like molded product obtained in this way, The thing of 2-20 mm is preferable from the ease of the process in a subsequent process.

次に得られたシート状成形物を延伸処理する。延伸処理の方法は特に限定されるものではなく、通常のテンター法、ロール法、またはこれらの方法の組み合わせであってもよい。また、一軸延伸、二軸延伸等のいずれの方法をも適用することができ、二軸延伸の場合は、縦横同時延伸または逐次延伸のいずれでもよいが、強度向上の観点から、縦横同時延伸が好ましい。   Next, the obtained sheet-like molded product is stretched. The method for the stretching treatment is not particularly limited, and may be a normal tenter method, a roll method, or a combination of these methods. In addition, any method such as uniaxial stretching and biaxial stretching can be applied. In the case of biaxial stretching, either longitudinal or transverse simultaneous stretching or sequential stretching may be used. preferable.

延伸倍率は、目的とする空孔率や強度により適時設定できるが、好ましくは、延伸前の面積に対し通常5〜250倍の範囲で行う。   The draw ratio can be set as appropriate depending on the desired porosity and strength, but is preferably in the range of usually 5 to 250 times the area before drawing.

延伸処理時の温度は、高分子量ポリオレフィンの融点+5℃以下の温度が好ましい。温度が高すぎると構造が崩れて強度が低下する恐れがある。またあまりにも低い温度であると延伸時に、膜の被断や延伸後の収縮が大きくなる恐れがある。   The temperature during the stretching treatment is preferably a temperature of the melting point of the high molecular weight polyolefin + 5 ° C. or less. If the temperature is too high, the structure may collapse and the strength may decrease. If the temperature is too low, the film may be severed or shrinkage after stretching may be increased during stretching.

次に延伸処理後の炭化水素系溶媒を含有する多孔質膜から、溶媒除去処理を行なう。溶媒除去処理とは、延伸物から溶媒を除去して多孔質構造を形成させる工程である。例えば、延伸物を溶剤で洗浄して残留する溶媒を除去する溶剤法がある。   Next, a solvent removal process is performed from the porous film containing the hydrocarbon-based solvent after the stretching process. The solvent removal treatment is a step of forming a porous structure by removing the solvent from the stretched product. For example, there is a solvent method in which the stretched product is washed with a solvent to remove the remaining solvent.

本発明では、この溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いる。例えば、フッ素系溶剤としては、鎖状フルオロカーボン、環状フルオロカーボン、パーフルオロカーボン、パーフルオロエーテル等が挙げられる。具体的には、ペンタフルオロブタン、エチルパーフルオロブチルエーテル、C、C10などが挙げられるが、特にこれらの溶剤に限定されるものではない。 In the present invention, a mixed solvent containing a fluorinated solvent and a bromide solvent is used as the solvent. For example, examples of the fluorine-based solvent include a chain fluorocarbon, a cyclic fluorocarbon, a perfluorocarbon, and a perfluoroether. Specific examples include pentafluorobutane, ethyl perfluorobutyl ether, C 5 H 3 F 7 , and C 5 H 2 F 10 , but are not particularly limited to these solvents.

ブロマイド系溶剤としては、n−プロピルブロマイド、n−ブチルブロマイド、n−へキシルブロマイド等である。これらの混合溶剤は、それぞれ1種類ずつの組み合わせでもよく、また複数同士の組み合わせでもよい。   Examples of the bromide solvent include n-propyl bromide, n-butyl bromide, n-hexyl bromide and the like. Each of these mixed solvents may be a combination of one kind or a combination of plural kinds.

上記混合溶剤の混合重量比は、フッ素系溶剤/ブロマイド系溶剤で70/30〜30/70が好ましく、65/35〜40/60がより好ましい。この混合重量比が70/30未満であると、溶媒の抽出が不十分になる傾向がある。   The mixing weight ratio of the mixed solvent is preferably 70/30 to 30/70, more preferably 65/35 to 40/60 in terms of fluorine solvent / bromide solvent. If the mixing weight ratio is less than 70/30, solvent extraction tends to be insufficient.

上記の溶剤のKB値は50以上が好ましく、55以上がより好ましい。本明細書において「KB値」とは、ラッカー、ペイント工業で希釈剤の溶解力を示すのに使われる値であり、25℃において標準カウリーブタノール溶液20gからカウリガムを析出させるのに要する希釈剤のmL数である。この値が高いほど溶解能力が大きくなり、50以上であれば溶媒を良好に除去することが可能となる。   The KB value of the above solvent is preferably 50 or more, more preferably 55 or more. In the present specification, the “KB value” is a value used to indicate the dissolving power of the diluent in the lacquer and paint industry, and the diluent required for precipitating kauri gum from 20 g of a standard cowry butanol solution at 25 ° C. mL. The higher this value, the greater the dissolving ability. If it is 50 or more, the solvent can be removed satisfactorily.

また、上記の混合溶剤は、引火点が高いか、又は引火点を持たないものを使用することが好ましいが、特に混合溶剤として引火点を持たないことが好ましい。混合溶剤として引火点を持たないようにするには、引火点を持たない溶剤同士の組合せや、引火点を持たない溶剤の混合重量比を高めたりすればよい。特に、引火点を持たないフッ素系溶剤を使用することが好ましい。   In addition, it is preferable to use a mixed solvent having a high flash point or no flash point, but it is particularly preferable that the mixed solvent does not have a flash point. In order not to have a flash point as a mixed solvent, a combination of solvents having no flash point or a mixing weight ratio of solvents having no flash point may be increased. In particular, it is preferable to use a fluorinated solvent having no flash point.

かかる溶剤を用いた洗浄方法は特に限定されず、例えば、延伸物を溶剤に浸漬して溶媒を抽出する方法、溶剤を延伸物にスプレーノズル等からシャワーする方法等が挙げられる。   The cleaning method using such a solvent is not particularly limited, and examples thereof include a method of immersing the stretched product in a solvent and extracting the solvent, and a method of showering the solvent on the stretched product from a spray nozzle or the like.

なおこれら溶媒除去処理は延伸前に行なってもよい。また延伸処理前に溶媒除去処理を行った後、再度、延伸処理後に溶媒除去処理を行って、残存溶媒を除去する工程をとってもよい。   In addition, you may perform these solvent removal processes before extending | stretching. Moreover, after performing a solvent removal process before an extending | stretching process, you may take the process of removing a residual solvent by performing a solvent removing process after an extending | stretching process again.

なお、本発明では、延伸処理後および溶媒除去処理の前後に、表面性や特性改善のためさらに圧延処理を行なってもよい。例えば、前記シート状成形物を延伸処理と溶媒除去処理(延伸と溶媒除去の順序はいずれが先でもよい)を行なってから圧延処理に供してもよく、またシート状成形物を延伸処理してから延伸処理と溶媒除去処理を行なってもよい。また延伸処理後と溶媒除去処理後の双方で圧延処理を行ってもよい。   In the present invention, after the stretching treatment and before and after the solvent removal treatment, a rolling treatment may be further performed for improving surface properties and characteristics. For example, the sheet-like molded product may be subjected to a stretching treatment and a solvent removal treatment (the order of stretching and solvent removal may be any first) and then subjected to a rolling treatment. The stretching process and the solvent removal process may be performed. Further, the rolling treatment may be performed both after the stretching treatment and after the solvent removal treatment.

溶媒を抽出除去した際に使用する溶剤を置換する方法としては、樹脂を溶解せず尚且つ溶剤を溶解しうるほかの溶剤による抽出等も可能であるが、溶剤では乾燥後の溶剤放出時に安全性の課題があること、また溶剤の表面張力や乾燥速度に起因する乾燥収縮が大きい。また、フッ素系溶剤では溶媒の洗浄が不十分であるため、溶媒を溶解し、表面張力が小さく、乾燥速度が速く、尚且つ安全性の高いフッ素系混合溶剤を用いることが好ましい。   As a method of replacing the solvent used when the solvent is extracted and removed, extraction with another solvent that does not dissolve the resin and can dissolve the solvent is possible, but with a solvent, it is safe when the solvent is released after drying. And there is a large drying shrinkage due to the surface tension and drying speed of the solvent. In addition, since the fluorinated solvent is insufficiently washed, it is preferable to use a fluorinated mixed solvent that dissolves the solvent, has a low surface tension, has a high drying rate, and is highly safe.

次に、前記の工程により得られた多孔質構造を有する成形物の収縮抑制や構造固定化のためにヒートセット処理を行うのが好ましい。   Next, it is preferable to perform a heat setting treatment for suppressing shrinkage or fixing the structure of the molded product having a porous structure obtained by the above-described steps.

ヒートセット処理は一回で熱処理する一段式熱処理法でも、最初に低温でまず熱処理し、その後さらに高温での熱処理を行なう多段式の熱処理法でもよく、あるいは昇温しながら熱処理する昇温式熱処理法でもよいが、ガーレ値等の多孔質膜の元の諸特性を損なうことなく処理することが望ましい。   The heat setting treatment may be a one-stage heat treatment method in which heat treatment is performed at a time, a multi-stage heat treatment method in which heat treatment is first performed at a low temperature, and then heat treatment is performed at a higher temperature, or a temperature rising heat treatment in which heat treatment is performed while raising the temperature Although it may be a method, it is desirable to perform the treatment without impairing the original characteristics of the porous film such as the Gurley value.

ヒートセット処理の際の温度は、一段式熱処理の場合には、樹脂の融点−20℃以上、融点以下の温度が好ましい。温度で表した場合、樹脂の融点や、多孔質膜の組成によるが40〜140℃が好ましい。   In the case of a one-stage heat treatment, the temperature during the heat setting treatment is preferably a temperature of the melting point of the resin of −20 ° C. or more and the melting point or less. When expressed in terms of temperature, it is preferably 40 to 140 ° C. depending on the melting point of the resin and the composition of the porous membrane.

また諸特性を損なわずに、短時間で熱処理を完了するためには、多段式あるいは昇温式熱処理法も好ましい。この場合の熱処理時間は、使用する樹脂によるが、樹脂の融点−20℃以上、融点以下の温度が好ましい。温度で表した場合、樹脂の融点や、多孔質膜の組成により一概には決められないが例えば115℃であれば30分以上であることが好ましい。   Further, in order to complete the heat treatment in a short time without impairing various properties, a multistage type or a temperature rising type heat treatment method is also preferable. The heat treatment time in this case depends on the resin used, but a temperature of the melting point of the resin from −20 ° C. to the melting point is preferred. When expressed in terms of temperature, it cannot be determined unconditionally depending on the melting point of the resin or the composition of the porous film, but for example, it is preferably 30 minutes or longer at 115 ° C.

また必要に応じてさらに高温で、さらに短時間の3段目以降の熱処理を行なってもよい。具体的な熱処理方法としては、多孔質膜の四隅を固定し熱処理炉に投入する、ロールに捲回して熱処理炉に投入する、テンターで面積方向を固定して連続的に熱処理炉に通す等の公知の方法が用いられる。   Further, if necessary, the third and subsequent heat treatments may be performed at a higher temperature and for a shorter time. Specific heat treatment methods include fixing the four corners of the porous membrane and placing it in a heat treatment furnace, winding it into a roll and placing it in the heat treatment furnace, fixing the area direction with a tenter and continuously passing it through the heat treatment furnace. A known method is used.

このようにして得られた多孔質膜は溶剤乾燥時に安全であり、また大幅な成形条件を変更する必要なく、空孔率を向上することが期待できる。   The porous membrane thus obtained is safe when drying the solvent, and it can be expected to improve the porosity without having to change the molding conditions significantly.

以上のようにして得られる多孔質膜の厚みは1〜60μmが好ましく、5〜60μmがより好ましい。その空孔率は、30〜70%が好ましく、35〜70%がより好ましい。その透過性としては、例えば、JIS P8117に準拠した通気度が、50〜800秒/100ccが好ましく、100〜500秒/100ccがより好ましい。   The thickness of the porous membrane obtained as described above is preferably 1 to 60 μm, and more preferably 5 to 60 μm. The porosity is preferably 30 to 70%, and more preferably 35 to 70%. As the permeability, for example, the air permeability according to JIS P8117 is preferably 50 to 800 seconds / 100 cc, and more preferably 100 to 500 seconds / 100 cc.

本発明の多孔質膜は、以上のように透過性能および機械的強度に優れるため、電池用セパレータとして使用することで、電池の様々な大きさや用途に対してより安全性を向上させることが期待でき、また、その製造方法において溶剤を使用する際における安全性を向上させることができる。   Since the porous membrane of the present invention is excellent in permeation performance and mechanical strength as described above, it is expected to improve safety for various sizes and applications of batteries by using it as a battery separator. Moreover, the safety | security at the time of using a solvent in the manufacturing method can be improved.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各種特性については、下記要領にて測定を行なった。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. Various characteristics were measured as follows.

[抽出性]
50mlの溶剤をいれたバイヤル瓶に10μLの流動パラフィンを添加し、溶解しているか目視観察する。
[Extractability]
10 μL of liquid paraffin is added to a vial bottle containing 50 ml of solvent, and it is visually observed whether it is dissolved.

[空孔率]
測定対象の多孔質膜を5cmの正方形に切り抜き、その体積と重量を求め、得られる結果から次式を用いて計算する。
空孔率(体積%)=100×(体積(cm)−重量(g)/膜素材の密度(g/cm))/体積(cm
[乾燥速度]
溶剤を含有した多孔質膜を13cm角に切り取り、これを天秤上に置き、乾燥時における重量変化を完全に乾燥するまでの総重量の約1/2程度までの乾燥時間における、単位時間当たりの重量減少量として示した。単位は、[△g/秒]とした。
[Porosity]
The porous film to be measured is cut into a 5 cm square, its volume and weight are determined, and the calculation is performed using the following formula from the obtained results.
Porosity (volume%) = 100 × (volume (cm 3 ) −weight (g) / density of membrane material (g / cm 3 )) / volume (cm 3 )
[Drying speed]
A porous membrane containing a solvent is cut into a 13 cm square, placed on a balance, and the change in weight at the time of drying is about 1/2 of the total weight until complete drying. Expressed as weight loss. The unit was [Δg / sec].

実施例1
重量平均分子量が3×10の超高分子量ポリエチレン12重量部とポリオレフィン系熱可塑エラストマ−とノーソレックスおよび流動パラフィンをスラリー状に均一混合し、160℃で小型ニーダーで60分間混練した。これらの混練物を0℃の冷却された金属板に挟み込みシート状に急冷した。これらの急冷結晶化させたシート状樹脂を、約120℃でシートの厚さが0.4〜0.6mmになるまでヒートプレスし、約120℃の温度で同時に縦4.5×横3.8倍に二軸延伸した。
Example 1
12 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 3 × 10 6 , a polyolefin-based thermoplastic elastomer, Northolex, and liquid paraffin were uniformly mixed in a slurry state and kneaded at 160 ° C. with a small kneader for 60 minutes. These kneaded materials were sandwiched between 0 ° C. cooled metal plates and rapidly cooled into a sheet shape. These quenched and crystallized sheet-like resins are heat-pressed at about 120 ° C. until the thickness of the sheet becomes 0.4 to 0.6 mm, and simultaneously at a temperature of about 120 ° C., 4.5 × length × 3. Biaxial stretching was performed 8 times.

調製したシート状樹脂を9cm×9cmの固定枠に固定し、フッ素系混合溶剤(ペンタフルオロブタン/ノルマルプロピルブロマイド=50/50(重量比))を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。乾燥後、85℃で12時間、さらに116℃で2時間のヒートセット処理を行い、厚さ20μmで空孔率42%の多孔質膜を得た。   The prepared sheet-like resin is fixed to a 9 cm × 9 cm fixing frame, and 3 baths of a fluorine-based mixed solvent (pentafluorobutane / normal propyl bromide = 50/50 (weight ratio)) are prepared and immersed in each bath for 3 minutes. Solvent removal treatment was performed. After drying, heat setting treatment was performed at 85 ° C. for 12 hours and further at 116 ° C. for 2 hours to obtain a porous film having a thickness of 20 μm and a porosity of 42%.

実施例2
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、フッ素系混合溶剤(ペンタフルオロブタン/ノルマルプロピルブロマイド=60/40(重量比)、KB値55)を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。乾燥後、85℃で12時間さらに116℃で2時間のヒートセット処理を行い、厚さ20μmの空孔率40%の多孔質膜を得た。
Example 2
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and 3 baths of a fluorinated mixed solvent (pentafluorobutane / normal propyl bromide = 60/40 (weight ratio), KB value 55). Prepared and immersed in each bath for 3 minutes for solvent removal treatment. After drying, heat setting treatment was performed at 85 ° C. for 12 hours and further at 116 ° C. for 2 hours to obtain a porous film having a thickness of 20 μm and a porosity of 40%.

実施例3
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、フッ素系混合溶剤(ペンタフルオロブタン/ノルマルプロピルブロマイド=70/30(重量比))を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。乾燥後、85℃で12時間さらに116℃で2時間のヒートセット処理を行い、厚さ20μmの空孔率38%の多孔質膜を得た。
Example 3
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and 3 baths of a fluorine-based mixed solvent (pentafluorobutane / normal propyl bromide = 70/30 (weight ratio)) were prepared. The solvent was removed by immersing in a bath for 3 minutes. After drying, heat setting treatment was performed at 85 ° C. for 12 hours and further at 116 ° C. for 2 hours to obtain a porous film having a thickness of 20 μm and a porosity of 38%.

実施例4
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、フッ素系混合溶剤(エチルパーフルオロブチルエーテル/ノルマルプロピルブロマイド=60/40(重量比))を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。乾燥後、85℃で12時間さらに116℃で2時間のヒートセット処理を行い、厚さ20μmの空孔率47%の多孔質膜を得た。
Example 4
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and three baths of a fluorine-based mixed solvent (ethyl perfluorobutyl ether / normal propyl bromide = 60/40 (weight ratio)) were prepared. Each bath was immersed for 3 minutes to remove the solvent. After drying, heat setting treatment was performed at 85 ° C. for 12 hours and further at 116 ° C. for 2 hours to obtain a porous film having a thickness of 20 μm and a porosity of 47%.

比較例1
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、デカンを3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。
Comparative Example 1
The sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, 3 baths of decane were prepared, and each bath was immersed for 3 minutes for solvent removal treatment.

比較例2
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、フッ素系溶剤(ペンタフルオロブタン、KB値13)を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。
Comparative Example 2
The sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and three baths of a fluorinated solvent (pentafluorobutane, KB value 13) were prepared, and each bath was immersed for 3 minutes to remove the solvent. Went.

比較例3
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、エチルパーフルオロブチルエーテル/n−ヘプタン=95/5(重量比)の混合溶剤を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。
Comparative Example 3
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and three baths of a mixed solvent of ethyl perfluorobutyl ether / n-heptane = 95/5 (weight ratio) were prepared. Solvent removal treatment was performed by immersing for a minute.

比較例4
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、エチルパーフルオロブチルエーテル/n−ヘプタン=95/5(重量比)の混合溶剤を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。更に、エチルパーフルオロブチルエーテルでリンス処理した。
Comparative Example 4
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and three baths of a mixed solvent of ethyl perfluorobutyl ether / n-heptane = 95/5 (weight ratio) were prepared. Solvent removal treatment was performed by immersing for a minute. Further, rinsing with ethyl perfluorobutyl ether was performed.

比較例5
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、ペンタフルオロブタン/n−ヘプタン=95/5(重量比)の混合溶剤を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。
Comparative Example 5
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and 3 baths of a mixed solvent of pentafluorobutane / n-heptane = 95/5 (weight ratio) were prepared, and each bath was for 3 minutes. The solvent was removed by immersion.

比較例6
実施例1と同様に調製したシート状樹脂を9cm×9cmの固定枠に固定し、ペンタフルオロブタン/n−ヘプタン=95/5(重量比)の混合溶剤を3浴用意し、各浴3分間浸漬させて脱溶剤処理を行った。更に、ペンタフルオロブタンでリンス処理した。
Comparative Example 6
A sheet-like resin prepared in the same manner as in Example 1 was fixed to a 9 cm × 9 cm fixed frame, and 3 baths of a mixed solvent of pentafluorobutane / n-heptane = 95/5 (weight ratio) were prepared, and each bath was for 3 minutes. The solvent was removed by immersion. Further, rinsing with pentafluorobutane was performed.

以上で得られた多孔質膜の評価結果を表1に示す。   The evaluation results of the porous membrane obtained above are shown in Table 1.

Figure 2006049249
表1の結果が示すように、本発明の実施例1〜4では、溶媒の抽出性が良好で、乾燥速度も速く、空孔率が十分なものが得られた。これに対して、デカンを単独で使用した比較例1では乾燥速度が遅く、空孔率が低下した。また、フッ素系溶剤の単独使用(比較例2)やフッ素系溶剤と炭化水素系溶剤との混合溶剤では(比較例3〜6)、リンス処理の有無にかかわらず、抽出が行えず、空孔率の測定が不可能であった。
Figure 2006049249
As shown in the results of Table 1, in Examples 1 to 4 of the present invention, those having good solvent extractability, high drying speed, and sufficient porosity were obtained. On the other hand, in Comparative Example 1 in which decane was used alone, the drying rate was slow and the porosity was reduced. In addition, in the case of using a fluorine-based solvent alone (Comparative Example 2) or a mixed solvent of a fluorine-based solvent and a hydrocarbon-based solvent (Comparative Examples 3 to 6), extraction cannot be performed regardless of whether or not rinsing is performed. The rate could not be measured.

Claims (5)

製膜後に炭化水素系溶媒を含有する多孔質膜から、洗浄溶剤を用いて炭化水素系溶媒を除去する工程を含む多孔質膜の製造方法において、
前記洗浄溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることを特徴とする多孔質膜の製造方法。
In the method for producing a porous membrane comprising a step of removing a hydrocarbon solvent using a cleaning solvent from a porous membrane containing a hydrocarbon solvent after film formation,
A method for producing a porous film, wherein a mixed solvent containing a fluorine-based solvent and a bromide-based solvent is used as the cleaning solvent.
ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、これを一軸方向以上に延伸する工程と、延伸物から洗浄溶剤を用いて炭化水素系溶媒を除去する工程とを含む多孔質膜の製造方法において、
前記洗浄溶剤として、フッ素系溶剤とブロマイド系溶剤を含有する混合溶剤を用いることを特徴とする多孔質膜の製造方法。
After melt-kneading a resin composition containing a polyolefin-based resin and a hydrocarbon-based solvent, cooling the obtained melt-kneaded material to obtain a sheet-like material, and then stretching the uniaxial direction or more from the stretched product, In the method for producing a porous membrane comprising a step of removing a hydrocarbon solvent using a cleaning solvent,
A method for producing a porous film, wherein a mixed solvent containing a fluorine-based solvent and a bromide-based solvent is used as the cleaning solvent.
前記洗浄溶剤は、混合溶剤としてKB値が50以上である請求項1又は2に記載の多孔質膜の製造方法。   The method for producing a porous film according to claim 1, wherein the cleaning solvent has a KB value of 50 or more as a mixed solvent. 前記洗浄溶剤は、混合溶剤として引火点を持たないものである請求項1〜3のいずれかに記載の多孔質膜の製造方法。   The method for producing a porous film according to claim 1, wherein the cleaning solvent does not have a flash point as a mixed solvent. 請求項1〜4のいずれかに記載の多孔質膜の製造方法によって電池用セパレータを製造する電池用セパレータの製造方法。   The manufacturing method of the separator for batteries which manufactures the separator for batteries by the manufacturing method of the porous membrane in any one of Claims 1-4.
JP2004232498A 2004-08-09 2004-08-09 Method for producing porous membrane Expired - Fee Related JP4822493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232498A JP4822493B2 (en) 2004-08-09 2004-08-09 Method for producing porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232498A JP4822493B2 (en) 2004-08-09 2004-08-09 Method for producing porous membrane

Publications (2)

Publication Number Publication Date
JP2006049249A true JP2006049249A (en) 2006-02-16
JP4822493B2 JP4822493B2 (en) 2011-11-24

Family

ID=36027537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232498A Expired - Fee Related JP4822493B2 (en) 2004-08-09 2004-08-09 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP4822493B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234193A (en) * 1999-12-15 2001-08-28 Kaneko Kagaku:Kk Solvent composition for cleaning
JP2002012694A (en) * 2000-06-30 2002-01-15 Tonen Chem Corp Method for producing fine porous membrane of thermoplastic resin
JP2002241796A (en) * 2001-02-14 2002-08-28 Kaneko Kagaku:Kk Solvent composition for cleaning
JP2002256099A (en) * 2001-03-02 2002-09-11 Tonen Chem Corp Method for producing thermoplastic resin microporous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234193A (en) * 1999-12-15 2001-08-28 Kaneko Kagaku:Kk Solvent composition for cleaning
JP2002012694A (en) * 2000-06-30 2002-01-15 Tonen Chem Corp Method for producing fine porous membrane of thermoplastic resin
JP2002241796A (en) * 2001-02-14 2002-08-28 Kaneko Kagaku:Kk Solvent composition for cleaning
JP2002256099A (en) * 2001-03-02 2002-09-11 Tonen Chem Corp Method for producing thermoplastic resin microporous membrane

Also Published As

Publication number Publication date
JP4822493B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4734520B2 (en) Method for producing thermoplastic microporous membrane
JP4634192B2 (en) Method for producing porous membrane
KR100524110B1 (en) Method for producing thermoplastic resin micro-porous film
JP2003103626A (en) Polyolefin microporous film and method for manufacturing the same
JP6100022B2 (en) Method for producing polyolefin microporous membrane
JP2003103624A (en) Polyolefin microporous film and method for manufacturing the same
JP4344550B2 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
KR100884213B1 (en) Fabrication method of multi-component microporous film for lithium secondary battery separator and multi-component microporous film therefrom
JP2003003006A (en) Manufacturing method of thermoplastic resin-based microporous film
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP2003105121A (en) Polyolefin minute porous film and method of its manufacture
JP4822493B2 (en) Method for producing porous membrane
JP4562074B2 (en) Battery separator manufacturing method
JP4646199B2 (en) Method for producing porous membrane
JP2003082151A (en) Process for producing thermoplastic resin molded product and fine porous membrane composed of its thermoplastic resin molded product
JP3953840B2 (en) Manufacturing method of polyolefin microporous membrane and polyolefin microporous membrane by the manufacturing method
JP2003103625A (en) Polyolefin microporous film and method for manufacturing the same
JP2002012694A (en) Method for producing fine porous membrane of thermoplastic resin
JP2003003008A (en) Manufacturing method of thermoplastic resin-based microporous film
JP4798730B2 (en) Method for producing thermoplastic microporous membrane
JP2003003007A (en) Manufacturing method of thermoplastic resin-based microporous film
JP4746830B2 (en) Method for producing thermoplastic microporous membrane
JP5083927B2 (en) Method for producing polyolefin microporous membrane
WO2014083831A1 (en) Method for manufacturing porous membrane
JP7470297B2 (en) Polyolefin microporous membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4822493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees