JP2006046000A - Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium - Google Patents

Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium Download PDF

Info

Publication number
JP2006046000A
JP2006046000A JP2004231424A JP2004231424A JP2006046000A JP 2006046000 A JP2006046000 A JP 2006046000A JP 2004231424 A JP2004231424 A JP 2004231424A JP 2004231424 A JP2004231424 A JP 2004231424A JP 2006046000 A JP2006046000 A JP 2006046000A
Authority
JP
Japan
Prior art keywords
crushing
electric discharge
coefficient
length
resistance wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231424A
Other languages
Japanese (ja)
Inventor
Haruo Toyoda
治夫 豊田
Akio Iwasaki
章夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2004231424A priority Critical patent/JP2006046000A/en
Publication of JP2006046000A publication Critical patent/JP2006046000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining crushing specifications of a Thundermite for accurately obtaining the crushing specifications required for crushing, and to provide a computer readable recording medium. <P>SOLUTION: A crushing coefficient of the Thundermite is obtained by operation from a power coefficient of the Thundermite and a parameter including free surface number efficiency obtained beforehand from an experimental value corresponding to the number of free surfaces of a crushed object. At least one of the spacing of holes, the length of a resistance wire, and the length of the holes is obtained by operation from the crushing coefficient of the Thundermite and the preset charged amount of fluid material for crushing. Or the charged amount of fluid material for crushing is obtained by operation from the crushing coefficient of the Thundermite and at least one of the preset spacing of the holes, the length of the resistance wire and the length of the holes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばコンクリート建造物の地下のコンクリート地盤等を爆破により破砕する場合に好適な放電破砕装置(以下サンダーマイト(登録商標)という場合がある。)の破砕諸元(カートリッジを装填する孔の間隔、その長さおよびカートリッジに収容する抵抗線の長さ、またはカートリッジに装填する破砕用流動物質の装薬量)を求める方法とその方法を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。   The present invention relates to a crushing specification (a hole for loading a cartridge) of an electric discharge crushing apparatus (hereinafter sometimes referred to as “Sundermite (registered trademark)”) suitable for crushing, for example, an underground concrete ground of a concrete building by blasting. And the length of the resistance wire accommodated in the cartridge, or the loading amount of the crushing fluid substance loaded in the cartridge), and a computer-readable recording medium on which a program for executing the method is recorded About.

コンクリート建造物等の地下地盤や壁面等を爆薬により破砕する場合、爆薬を爆破させたときの衝撃力により破砕する桜ダイナマイト等よりも、特許第2894940号公報に記載のようなサンダーマイトを使用することが好適である。なぜならば、このサンダーマイトは、被破砕物に複数の孔を列状または縦横に掘り、金属細線からなる抵抗線および破砕用流動物質を収容したカートリッジを前記各孔内に入れ、予め充電されたコンデンサから前記抵抗線に瞬時に電流を流して前記抵抗線を瞬時に溶融蒸発させ、その熱で前記破砕用流動物質を気化させ、その気体の圧力で周囲の被破砕物を破砕するものであり、このサンダーマイトは、一般的に使用される桜ダイナマイトに比較して衝撃圧が約1/10程度であり、破砕時に周囲に与える振動や音を低減でき、近隣への迷惑を軽減できるからである。従来はこのサンダーマイトを使用して破砕を行なう場合、熟練者の勘に頼って前記破砕諸元を設定し、爆破作業を行なっていた。   When crushing underground ground or walls such as concrete buildings with explosives, use sanderite as described in Japanese Patent No. 2894940 rather than cherry dynamite that crushes by the impact force when explosives are blown up Is preferred. This is because the sanderite is precharged by digging a plurality of holes in a row or vertically and horizontally in the object to be crushed, and putting a resistance wire made of a fine metal wire and a cartridge containing a fluid material for crushing into each hole. The current is instantaneously passed from the capacitor to the resistance wire, the resistance wire is instantaneously melted and evaporated, the fluid for crushing is vaporized by the heat, and the surrounding crushed material is crushed by the pressure of the gas. This thundermite has an impact pressure of about 1/10 compared to the commonly used cherry dynamite, which can reduce the vibrations and sounds that are given to the surroundings during crushing, and can reduce inconvenience to the neighborhood. is there. In the past, when crushing using this sanderite, the above-mentioned crushing parameters were set depending on the intuition of an expert and the blasting operation was performed.

特許第2894940号公報Japanese Patent No. 2894940

前述のように、従来は作業者の勘に頼って破砕諸元を設定していたため、装薬量が過大になったり孔の間隔が小さ過ぎて爆破が過剰に行なわれ、サンダーマイトが無駄に消費されたり、近隣への音、振動の伝播により迷惑をかけたり、反対に装薬量が少量すぎたり孔の間隔が大きすぎ、破砕不足のために破砕屑の除去等の後処理が困難になる等の問題を生じていた。   As mentioned above, the crushing parameters have been set by relying on the operator's intuition, so that the amount of charge becomes excessive or the gap between the holes is too small, resulting in excessive blasting and waste of thunderite. Consumed or disturbed by the propagation of sound and vibration to the neighborhood, and on the contrary, the amount of charge is too small or the gap between holes is too large, and post-processing such as removal of crushing waste is difficult due to insufficient crushing The problem of becoming.

本発明は、上記問題点に鑑み、破砕に必要な破砕諸元を正確に求めることができ、もって放電破砕装置の装薬量の過剰等による放電破砕装置の無駄や近隣への迷惑の発生、あるいは装薬量不足等による爆破不良をなくすことができる放電破砕装置の破砕諸元を求める方法とコンピュータ読み取り可能な記録媒体を提供することを目的とする。   In view of the above problems, the present invention can accurately determine the pulverization specifications necessary for pulverization, and therefore, the waste of the electric discharge crushing device due to excessive charge amount of the electric discharge crushing device and the occurrence of inconvenience to the neighborhood, Alternatively, an object of the present invention is to provide a method for obtaining a shredding specification of a discharge shredding device and a computer-readable recording medium that can eliminate a blast failure due to insufficient charge amount.

請求項1の放電破砕装置の破砕諸元を求める方法は、被破砕物に等間隔に複数の孔を掘り、金属細線からなる抵抗線および破砕用流動物質を収容したカートリッジを前記各孔内に入れ、予め充電されたコンデンサから前記抵抗線に瞬時に電流を流して前記抵抗線を瞬時に溶融蒸発させ、その熱で前記破砕用流動物質を気化させることにより、被破砕物を破砕する放電破砕装置の破砕諸元を求める方法において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求め、
この放電破砕装置の破砕係数と予め設定された前記破砕用流動物質の装薬量とから、前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを演算により求めることを特徴とする。
According to the method for obtaining the crushing specifications of the electric discharge crushing apparatus according to claim 1, a plurality of holes are dug at equal intervals in the object to be crushed, and a resistance wire made of a fine metal wire and a cartridge containing a fluid material for crushing are placed in each hole. The discharge crushing crushes the object to be crushed by flowing an electric current instantaneously from the pre-charged capacitor to the resistance wire to instantaneously melt and evaporate the resistance wire and vaporize the crushing fluid with the heat. In the method of determining the crushing specifications of the device,
Obtain the crushing coefficient of the electric discharge crushing device from the parameters including the power factor of the electric discharge crushing device and the free surface number efficiency obtained in advance from the experimental values corresponding to the number of free surfaces of the object to be crushed,
By calculating at least one of the interval between the holes, the length of the resistance wire, and the length of the hole from the crushing coefficient of the electric discharge crushing device and the charge amount of the fluid material for crushing set in advance. It is characterized by seeking.

請求項2の放電破砕装置の破砕諸元を求める方法は、請求項1において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータ、並びに前記破砕用流動物質の装薬量を記憶手段に記憶させる入力処理と、
前記記憶手段に記憶された放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求める演算処理と、
この演算処理により求められた放電破砕装置の破砕係数と、前記記憶手段に記憶された前記破砕用流動物質の装薬量とから、前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを演算により求める演算処理と、
この演算処理により求められた前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを出力する出力処理とを含むことを特徴とする。
The method for obtaining the crushing specifications of the electric discharge crushing device according to claim 2 is as follows:
The storage means stores the parameters including the power coefficient of the electric discharge crushing device and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed, and the amount of charge of the fluid material for crushing. Input processing
Calculates the crushing coefficient of the electric discharge crusher from the parameters including the power coefficient of the electric discharge crusher stored in the storage means and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed. The arithmetic processing obtained by
From the crushing coefficient of the electric discharge crushing device obtained by this arithmetic processing and the charge amount of the crushing fluid substance stored in the storage means, the distance between the holes, the length of the resistance wire, and the length of the holes A calculation process for calculating at least one of the calculation values;
And an output process for outputting at least one of the interval between the holes, the length of the resistance wire, and the length of the hole obtained by the calculation process.

請求項3の放電破砕装置の破砕諸元を求める方法は、被破砕物に等間隔に複数の孔を掘り、金属細線からなる抵抗線および破砕用流動物質を収容したカートリッジを前記各孔内に入れ、予め充電されたコンデンサから前記抵抗線に瞬時に電流を流して前記抵抗線を瞬時に溶融蒸発させ、その熱で前記破砕用流動物質を気化させることにより、被破砕物を破砕する放電破砕装置の破砕諸元を求める方法において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求め、
予め設定された前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つと、前記放電破砕装置の破砕係数とから、前記破砕用流動物質の装薬量を演算により求めることを特徴とする。
The method for obtaining the crushing specifications of the electric discharge crushing apparatus according to claim 3 is to dig a plurality of holes at equal intervals in an object to be crushed, and to put a resistance wire made of a fine metal wire and a cartridge containing a fluid material for crushing in each hole. The discharge crushing crushes the object to be crushed by flowing an electric current instantaneously from the precharged capacitor to the resistance wire to instantaneously melt and evaporate the resistance wire and vaporize the crushing fluid with the heat. In the method of determining the crushing specifications of the device,
Obtain the crushing coefficient of the electric discharge crushing device from the parameters including the power factor of the electric discharge crushing device and the free surface number efficiency obtained in advance from the experimental values corresponding to the number of free surfaces of the object to be crushed,
By calculating at least one of the preset interval between the holes, the length of the resistance wire and the length of the hole, and the crushing coefficient of the electric discharge crushing device, the charge amount of the fluid material for crushing is calculated. It is characterized by seeking.

請求項4の放電破砕装置の破砕諸元を求める方法は、請求項3において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータ、並びに前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを記憶手段に記憶させる入力処理と、
前記記憶手段に記憶された放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた前記自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求める演算処理と、
前記記憶手段に記憶された前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つと、前記演算処理により求められた前記放電破砕装置の破砕係数とから、前記破砕用流動物質の装薬量を演算により求める演算処理と、
この演算処理により求められた前記破砕用流動物質の装薬量を出力する出力処理とを含むことを特徴とする。
The method for obtaining the crushing specifications of the electric discharge crushing device according to claim 4 is as follows:
Parameters including the power coefficient of the electric discharge crushing device and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed, as well as the distance between the holes, the length of the resistance wire, and the holes An input process for storing at least one of the lengths in the storage means;
The crushing coefficient of the electric discharge crusher is calculated from parameters including the power coefficient of the electric discharge crusher stored in the storage means and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed. A calculation process obtained by calculation;
From the interval between the holes, the length of the resistance wire, and the length of the hole stored in the storage means, and the crushing coefficient of the electric discharge crushing device obtained by the arithmetic processing, the crushing A calculation process for calculating the charge amount of the fluid substance for use by calculation,
And an output process for outputting the amount of charge of the crushing fluid substance obtained by the calculation process.

請求項5のコンピュータ読み取り可能な記録媒体は、請求項2または4に記載の放電破砕装置の破砕諸元を求める方法における前記各処理を行わせるプログラムを記録したことを特徴とする。   According to a fifth aspect of the present invention, there is provided a computer-readable recording medium in which a program for performing the above-described processes in the method for obtaining the shredding specifications of the electric discharge shredding device according to claim 2 or 4 is recorded.

本発明によれば、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率を用いて放電破砕装置の破砕係数を演算により求めるので、破砕係数として被破砕物の実情に適合した破砕諸元を求めることができる。このため、この破砕諸元を用いることにより、目標とする理想的な破砕状況が得られるので、放電破砕装置の装薬量過剰による放電破砕装置の無駄や装薬量不足による爆破不良をなくし、また破砕過剰による音や振動による近隣への迷惑を軽減することが可能となる。   According to the present invention, the crushing coefficient of the electric discharge crushing apparatus is obtained by calculation using the free surface number efficiency obtained in advance from the experimental value corresponding to the number of free surfaces of the object to be crushed, so Crushing specifications that match the actual situation can be obtained. For this reason, by using this crushing specification, the ideal ideal crushing situation can be obtained, so there is no waste of discharge crushing device due to excessive charge amount of discharge crushing device or blast failure due to insufficient charge amount, In addition, it is possible to reduce inconvenience to the neighborhood due to sound and vibration due to excessive crushing.

図1(A)、(B)はそれぞれサンダーマイトを説明する断面図と平面図である。これらの図において、1は被破砕物、2は被破砕物1に設けた孔、3はこの孔2に入れたカートリッジ、4はこのカートリッジ3に収容した破砕用流動物質であり、この破砕用流動物質としては水その他の破砕用流動物質などが用いることができる。5はこの破砕用流動物質4内に設けた銅、アルミニウム等の金属細線からなる抵抗線であり、この抵抗線5はコイル状等コンパクトにまとめた構造にし、前記カートリッジ3の破砕用流動物質4内この抵抗線5を沈める。6は電源7により充電され、前記抵抗線5に通電するためのコンデンサ、8は前記抵抗線5の両端に接続した電極、9はこの電極8に接続したリード線、10は抵抗線5にコンデンサ6から放電させるためのスイッチである。図示のように、各抵抗線5は、コンデンサ6に対して並列に接続される。11は孔2の入口に詰めた詰め物で、モルタル、砂+粘土、砂+土砂あるいは水等が用いられる。また、この詰め物11をしない場合もある。この例では孔2が1列上に配列されているが、縦横に孔2を配設する場合もある。   FIGS. 1A and 1B are a cross-sectional view and a plan view, respectively, for explaining a sanderite. In these drawings, 1 is a material to be crushed, 2 is a hole provided in the material 1 to be crushed, 3 is a cartridge placed in the hole 2, 4 is a fluid material for crushing contained in the cartridge 3, As the fluid material, water and other fluid materials for crushing can be used. Reference numeral 5 denotes a resistance wire made of a fine metal wire such as copper or aluminum provided in the crushing fluid substance 4, and the resistance wire 5 has a compact structure such as a coil shape. The resistance wire 5 is submerged. 6 is a capacitor charged by the power supply 7 and energizes the resistance wire 5, 8 is an electrode connected to both ends of the resistance wire 5, 9 is a lead wire connected to the electrode 8, and 10 is a capacitor connected to the resistance wire 5 6 is a switch for discharging from 6. As illustrated, each resistance line 5 is connected in parallel to the capacitor 6. 11 is a stuffing filled in the entrance of the hole 2, and mortar, sand + clay, sand + sediment or water is used. In some cases, the filling 11 is not used. In this example, the holes 2 are arranged in one row, but the holes 2 may be arranged vertically and horizontally.

ここで、破砕に必要な破砕用流動物質4の装薬量をL(cc)、サンダーマイトの基礎破砕係数をC、孔2の間隔をD(m)、抵抗線5の長さをW(m)、穿孔長をH(m)とすると、(1)式に示すHauserの式が成立する。
L=C・D・W・H……(1)
ここで、W=a・D(aは定数で例えば1に設定する。)、H=b・W(bは定数で、孔2の長手方向に破砕屑を飛散させるためにbは例えば1.5に設定される。)ので、(1)式は、
L=a・b・C・D……(2)
が成立する。ここで、a=1、b=1.5に設定すると、
L=1.5・C・D……(3)
が成立する。
Here, the amount of charge of the fluid material 4 for crushing required for crushing is L (cc), the basic crushing coefficient of thunderite is C, the distance between the holes 2 is D (m), and the length of the resistance wire 5 is W ( m) When the perforation length is H (m), the Hauser equation shown in the equation (1) is established.
L = C / D / W / H (1)
Here, W = a · D (a is a constant and is set to, for example, 1), H = b · W (b is a constant, and b is, for example, 1. in order to disperse crushed debris in the longitudinal direction of the hole 2. (5)), so equation (1) is
L = a 2 · b · C · D 3 (2)
Is established. Here, when a = 1 and b = 1.5 are set,
L = 1.5 · C · D 3 (3)
Is established.

したがって、(3)式において、孔2の間隔D(または抵抗線5の長さWあるいは孔2の長さH)を設定すると、基礎破砕係数Cが分かれば装薬量Lを演算により求めることができる。反対に(4)式から、装薬量Lと基礎破砕係数Cから孔2の間隔D、抵抗線5の長さW(=D)および孔2の長さH(=1.5D=1.5W)が分かる。
D={L/(1.5・C)}1/3……(4)
(3)、(4)式において、サンダーマイトの基礎破砕係数Cは、(5)式のHauserの式を用いて算出することができる。
C=e・g・d・l・f(w)……(5)
ここで、eはサンダーマイトの威力係数であり、後述のように他のダイナマイト、例えば桜ダイナマイトの威力係数に対して設定される係数である。gは抗力係数であり、被破砕物の種類(コンクリート、岩質等)により決まる圧縮強度により予め求められており、資料から引用して用いられる値である。dは填塞係数であり、前記詰め物11の種類によって設定される値である。lは装薬係数であり、孔2に対してどの位爆発物(破砕用流動物質4)を装填(少なくするか普通にするか過剰にするか)によって異ならせる値である。f(w)は破壊度係数であり、破砕による仕上げ状態(強く破砕するほど値を大きくする)に対応して設定される値である。
Therefore, in equation (3), when the distance D between the holes 2 (or the length W of the resistance wire 5 or the length H of the hole 2) is set, the amount of charge L can be obtained by calculation if the basic crushing coefficient C is known. Can do. Conversely, from equation (4), the distance D between the holes 2, the length W (= D) of the resistance wire 5, and the length H of the hole 2 (= 1.5D = 1. 5W).
D = {L / (1.5 · C)} 1/3 (4)
In the formulas (3) and (4), the basic crushing coefficient C of the sanderite can be calculated using the Hauser formula of the formula (5).
C = e · g · d · l · f (w) (5)
Here, e is a power coefficient of the thunderite, and is a coefficient set with respect to the power coefficient of another dynamite, for example, the cherry dynamite as described later. g is a drag coefficient, which is obtained in advance based on the compressive strength determined by the type of the object to be crushed (concrete, rock, etc.), and is a value used by quoting from the data. d is a filling coefficient, and is a value set according to the type of the filling 11. l is a charge coefficient, which is a value that varies depending on how much explosive (fluid material 4 for crushing) is loaded into the hole 2 (less, normal, or excess). f (w) is a degree-of-breakage coefficient, and is a value set corresponding to the finished state by crushing (the value is increased as the material is strongly crushed).

(5)式において、前記g、d、l、f(w)は既知あるいは任意に設定可能であるから、基礎威力係数eが分かれば基礎破砕係数Cが算出でき、その結果、(3)、(4)式からサンダーマイトの破砕諸元を求めることができる。   In the equation (5), g, d, l and f (w) can be known or arbitrarily set. Therefore, if the basic power coefficient e is known, the basic crushing coefficient C can be calculated. As a result, (3), From the formula (4), the crushing specifications of the sanderite can be obtained.

前記サンダーマイトの基礎威力係数eは、下記の(6)式から基準となる桜ダイナマイトに対して求めることができる。
1/e=(P/P0)・0.15+(f/f0)・0.85……(6)
ここで、Pは桜ダイナマイトの材料であるニトロメタンの衝撃圧、P0は桜ダイナマイトの衝撃圧、Dは爆発反応速度(m/sec)、fはニトロメタンの火薬力、f0は桜ダイナマイトの火薬力である。
The basic power coefficient e of the thunderite can be obtained for the cherry dynamite as a reference from the following equation (6).
1 / e = (P / P0) .0.15+ (f / f0) .0.85 (6)
Here, P is the impact pressure of nitromethane, the material of cherry dynamite, P0 is the impact pressure of cherry dynamite, D is the explosive reaction rate (m / sec), f is the explosive power of nitromethane, and f0 is the explosive power of cherry dynamite. is there.

また、(6)式におけるニトロメタン衝撃圧Pは、前記爆発反応速度Dと薬比重Δから(7)式により求めることができる。
P=0.000424・D・Δ(1-0.543・Δ+0.193・Δ)/1000……(7)
以上の爆薬における威力係数算出式に準じて、サンダーマイトの基礎威力係数を求めると表1に示すようにe=1.10となる。なお、表1には参考のため、他の数種の爆薬についても各種のパラメータおよび威力係数を示す。
Further, the nitromethane impact pressure P in the equation (6) can be obtained from the explosion reaction rate D and the chemical specific gravity Δ by the equation (7).
P = 0.000424 · D 2 · Δ (1-0.543 · Δ + 0.193 · Δ 2 ) / 1000 (7)
According to the power factor calculation formula for the explosives described above, the basic power factor of thunderite is obtained, and e = 1.10 as shown in Table 1. For reference, Table 1 shows various parameters and power coefficients for other types of explosives.

Figure 2006046000
表1から分かるように、サンダーマイトの爆速は桜ダイナマイトの約4割弱、衝撃圧は桜ダイナマイトの約1割程度となるものの、威力係数は桜ダイナマイトよりやや大きい程度であるから、サンダーマイトによる破砕作業は、振動や音が小さく、都市部等における破砕作業に好適であることが分かる。
Figure 2006046000
As can be seen from Table 1, although the explosion speed of Thunderite is about 40% that of Sakura Dynamite and the impact pressure is about 10% of that of Sakura Dynamite, the power coefficient is slightly higher than that of Sakura Dynamite. It can be seen that the crushing work is suitable for crushing work in urban areas and the like because vibration and sound are small.

前記カートリッジ3には装薬量が10cc、15cc、30cc、50ccのものがあるが、各タイプのカートリッジにおいて、(6)式により求められた基礎威力係数e(=1.10)を用いて、(5)式により求めた基礎破砕係数Cを、各種の被破砕物の圧縮強度(この圧縮強度が抗力係数gに変換される。)について求めた結果を図2に示す。なお、この演算において、前記填塞係数d、装薬係数l、破壊度係数f(w)は1とした。   The cartridges 3 have charge amounts of 10 cc, 15 cc, 30 cc, and 50 cc, but in each type of cartridge, using the basic power coefficient e (= 1.10) obtained by the equation (6), FIG. 2 shows the results obtained by determining the basic crushing coefficient C obtained by the equation (5) with respect to the compressive strength of various objects to be crushed (this compressive strength is converted into the drag coefficient g). In this calculation, the filling coefficient d, the charge coefficient l, and the destruction degree coefficient f (w) were set to 1.

このようにして圧縮強度ごとに求めた基礎破砕係数Cを用い、前記式(1)において、
孔の長さH=1.5×孔間隔Dとし、また孔間隔D=抵抗線の長さWとし、装薬量を10cc、すなわち10ccカートリッジを用いたとき孔間隔D、抵抗線の長さW、孔の長さHおよび破砕量(m)を求めた結果を表2に示す。また、15ccカートリッジ、30ccカートリッジ、50ccカートリッジを、前記と同じ条件で使用した場合の破砕諸元および破砕量をそれぞれ表3、表4、表5に示す。
Thus, using the basic crushing coefficient C obtained for each compressive strength,
Hole length H = 1.5 × hole interval D, hole interval D = resistance wire length W, and charge amount is 10 cc, that is, when a 10 cc cartridge is used, hole interval D and resistance wire length Table 2 shows the results of determining W, the hole length H, and the crushed amount (m 3 ). Tables 3, 4 and 5 show the crushing specifications and crushing amounts when 15 cc, 30 cc and 50 cc cartridges are used under the same conditions as described above.

Figure 2006046000
Figure 2006046000

このようにして計算により求めた各カートリッジにおいて、圧縮強度が107.8MPaの場合の破砕量と、同じ破砕強度において本発明者が実際に実験により測定した最大破砕量とを比較した結果、図3に示す通りになった。図3に示すように、計算により求めた破砕量とその実測最大破砕量とでは大きく異なっていることが分かる。   In each cartridge thus calculated, the amount of crushing when the compressive strength is 107.8 MPa and the maximum amount of crushing actually measured by the inventor at the same crushing strength were compared. It became as shown in. As shown in FIG. 3, it can be seen that the crushed amount obtained by calculation and the measured maximum crushed amount are greatly different.

Figure 2006046000
Figure 2006046000

破砕量の計算値と実測値とが異なる原因は、実測値から算出した破砕係数と(5)式の計算により求めた基礎破砕係数Cが異なることが原因であると推測される。計算により求めた基礎破砕係数Cでは、自由面の数によって発生する破砕抵抗を考慮していないことから異なる数値になったと推測される。   The cause of the difference between the calculated value of the crushing amount and the actually measured value is presumed to be that the crushing coefficient calculated from the actually measured value is different from the basic crushing coefficient C obtained by the calculation of the equation (5). It is presumed that the basic crushing coefficient C obtained by calculation has a different value because the crushing resistance generated by the number of free surfaces is not taken into consideration.

Figure 2006046000
Figure 2006046000

そこで、図4、図5に示すように、2自由面数、6自由面数における破砕に対する抵抗を求めた。図4の2自由面数の場合、被破砕物1に設けた孔2の中心から近い面は表面以外に1側面だけであり、この1側面までの距離は孔2どうしの間隔Dに等しい場合である。また、図5の6自由面数の場合、被破砕物2に設けた孔2の中心から周囲の4側面および底面までの距離は、孔2どうしの間隔Dに等しい場合である。なお、この例では孔2が4個設けられた例を示すが、一般的には同時に4個または8個の孔2を設けてこれらの孔にそれぞれ挿入するカートリッジの爆破を同時に行なうが、4または8以外の数で同時爆破を行なう場合もある。   Therefore, as shown in FIG. 4 and FIG. 5, resistance to crushing at 2 free faces and 6 free faces was obtained. In the case of the number of two free surfaces in FIG. 4, the surface near the center of the hole 2 provided in the object 1 is only one side other than the surface, and the distance to this one side is equal to the distance D between the holes 2. It is. Further, in the case of the number of 6 free surfaces in FIG. 5, the distance from the center of the hole 2 provided in the object to be crushed 2 to the surrounding four side surfaces and the bottom surface is equal to the distance D between the holes 2. In this example, four holes 2 are provided. In general, four or eight holes 2 are provided at the same time, and cartridges inserted into these holes are blown simultaneously. Or there may be simultaneous blasts with numbers other than 8.

Figure 2006046000
Figure 2006046000

このように、本発明者等は、(5)式から求められる基礎破砕係数Cにより破砕諸元を求める方法では誤差が大きく、自由面数によって破砕抵抗が異なることを考慮すべきであることを見出し、面数が2と6の場合について、実験により求めた破砕量から破砕抵抗を示す自由面数効率なるものを設定し、これを前記4種のカートリッジについて、被破砕物の圧縮強度が107.8MPaの場合の最大破砕量から、この自由面数効率hを(8)式の計算により求めた。
Vx/V=1/h……(8)
ここで、Vxは実験により求められた破砕量、Vは表1〜表5に示したように、計算により求められた破砕量である。この演算により求められた自由面数効率hを図6に示す。
As described above, the present inventors should consider that the method for obtaining the crushing specification using the basic crushing coefficient C obtained from the equation (5) has a large error and that the crushing resistance varies depending on the number of free surfaces. In the case where the number of heads is 2 and 6, the one having free surface number efficiency indicating the crushing resistance is set from the crushing amount obtained by the experiment, and the compression strength of the object to be crushed is about 107 for the above four types of cartridges. This free surface number efficiency h was determined by the calculation of equation (8) from the maximum crushed amount in the case of 8 MPa.
Vx / V = 1 / h (8)
Here, Vx is a crushing amount obtained by experiment, and V is a crushing amount obtained by calculation as shown in Tables 1 to 5. The free surface number efficiency h obtained by this calculation is shown in FIG.

実験により求められた破砕係数をCxとすると、前記基礎破砕係数Cと自由面数効率hに関して(9)式が成立する。
Vx/V=C/Cx……(9)
(8)、(9)式から、
C/Cx=1/h……(10)
が成立し、(5)式と(10)式とから、
Cx=e・g・d・l・f(w)・h……(11)
が成立する。したがって実際に使用される破砕係数Cxは、自由面数効率hを用いて(11)式から求めることができる。
When the crushing coefficient obtained by the experiment is Cx, the equation (9) is established with respect to the basic crushing coefficient C and the free surface number efficiency h.
Vx / V = C / Cx (9)
From equations (8) and (9)
C / Cx = 1 / h (10)
From the equations (5) and (10),
Cx = e · g · d · l · f (w) · h (11)
Is established. Therefore, the crushing coefficient Cx actually used can be obtained from the equation (11) using the free surface number efficiency h.

図7は、2自由面数の場合において、各カートリッジについて、圧縮強度が107.8MPaである場合の破砕係数Cxから他の圧縮強度についての破砕係数Cxを、(11)式から求めた結果を示す図であり、図7から分かるように、この破砕係数Cxは、図2に示す計算による場合の基礎破砕係数Cより小さい値となっている。   FIG. 7 shows the result of calculating the crushing coefficient Cx for other compression strengths from the crushing coefficient Cx when the compressive strength is 107.8 MPa for each cartridge from the equation (11) in the case of two free surfaces. As can be seen from FIG. 7, this crushing coefficient Cx is smaller than the basic crushing coefficient C in the case of the calculation shown in FIG.

図8は、6自由面数の場合において、各カートリッジについて、圧縮強度が107.8MPaである場合の破砕係数Cxから他の圧縮強度についての破砕係数Cxを、(11)式から求めた結果を示す図であり、この6自由面数の場合には、図7に示す計算による場合の破砕係数Cxよりさらに小さい値となっている。   FIG. 8 shows the result of calculating the crushing coefficient Cx for other compression strengths from the crushing coefficient Cx when the compressive strength is 107.8 MPa for each cartridge from the equation (11) in the case of 6 free surfaces. In the case of the number of 6 free faces, the value is smaller than the crushing coefficient Cx in the case of the calculation shown in FIG.

図9は圧縮強度が107.8MPaである2自由面数において、2自由面数における自由面数効率hを考慮した破砕量と、実際に破砕した場合の最大破砕量とを、前記各カートリッジについて比較した結果を示す図である。図9から分かるように、前記自由面数を考慮して求めた自由面数効率hを加味した演算により、破砕係数Cxを求め、この破砕係数Cxから(12)式により、予め決められている装薬量L(10cc、15cc、30cc、50cc)から正確な孔の間隔Dが求められ、この孔の間隔Dと一定の関係をもつ抵抗線の長さWや孔の長さHが(12)、(13)式から得られる。
D=W/a=H/(a・b)={L/(a・b・Cx)}1/3……(12)
(12)式において、a=1、b=1.5とすると、(12)式は下記のようになる。
D=W=H/1・5={L/(1.5・Cx)}1/3……(13)
反対に、装薬量Lが細かく設定できる場合には、前記孔の間隔D、抵抗線の長さWおよび孔の長さHから(14)式により、装薬量Lを求め、好適な装薬量Lを求めることができる。
L=Cx・D・W・H=a・b・Cx・D=(b/a)・Cx・W
=Cx・H/(a・b)……(14)
ここで、前記係数a=1、b=1.5とすると、(14)式は(15)式に変更できる。
L=1.5・Cx・D=1.5・Cx・W=0.44・Cx・H……(15)
図10は前記(12)式または(13)式を用いてコンピュータにより前記孔の間隔D、抵抗線の長さWおよび孔の長さHを求めるための本発明の一実施の形態を示す機能ブロック図である。図10において、入力手段20はコンピュータのキーボードにより実現されるもので、記憶手段21はコンピュータに付帯するメモリにより実現され、第一、第二の演算手段22、23はコンピュータのCPUにより実現され、出力手段24はコンピュータのプリンタや表示装置により実現される。
FIG. 9 shows the amount of crushing in consideration of the free surface number efficiency h in two free surfaces and the maximum amount of crushing when actually crushing for each of the cartridges in two free surfaces having a compressive strength of 107.8 MPa. It is a figure which shows the result compared. As can be seen from FIG. 9, the crushing coefficient Cx is obtained by calculation in consideration of the free face number efficiency h obtained in consideration of the number of free faces, and is determined in advance from the crushing coefficient Cx by the equation (12). The exact hole interval D is obtained from the amount of charge L (10 cc, 15 cc, 30 cc, 50 cc), and the resistance wire length W and the hole length H having a fixed relationship with the hole interval D are (12 ) And (13).
D = W / a = H / (a · b) = {L / (a 2 · b · Cx)} 1/3 (12)
In equation (12), if a = 1 and b = 1.5, equation (12) is as follows.
D = W = H / 1 · 5 = {L / (1.5 · Cx)} 1/3 (13)
On the contrary, when the charge amount L can be set finely, the charge amount L is obtained from the hole interval D, the resistance wire length W and the hole length H by the equation (14), and a suitable charge amount is obtained. The dose L can be determined.
L = Cx · D · W · H = a 2 · b · Cx · D 3 = (b / a) · Cx · W 3
= Cx · H 3 / (a · b 2 ) (14)
If the coefficients a = 1 and b = 1.5, the equation (14) can be changed to the equation (15).
L = 1.5 · Cx · D 3 = 1.5 · Cx · W 3 = 0.44 · Cx · H 3 (15)
FIG. 10 shows a function of an embodiment of the present invention for determining the hole distance D, the resistance wire length W and the hole length H by a computer using the equation (12) or (13). It is a block diagram. In FIG. 10, the input means 20 is realized by a computer keyboard, the storage means 21 is realized by a memory attached to the computer, and the first and second calculation means 22 and 23 are realized by a CPU of the computer. The output means 24 is realized by a computer printer or a display device.

入力手段20は、前記実験により求められた自由面数効率h、圧縮強度に対応する威力係数e、抗力係数g、填塞係数d、装薬係数l、破壊度係数f(w)、装薬量(10cc、15cc、30cc、50ccのいずれか)を入力して記憶手段21に記憶させるものである。   The input means 20 includes a free surface number efficiency h determined by the above-described experiment, a power coefficient e corresponding to the compressive strength, a drag coefficient g, a filling coefficient d, a charge coefficient l, a destruction coefficient f (w), a charge amount (Any one of 10 cc, 15 cc, 30 cc, and 50 cc) is input and stored in the storage means 21.

第一の演算手段22は、記憶手段21に記憶された前記パラメータh、e、g、d、l、f(w)を用い、前記(11)式を用いて破砕係数Cxを求めるものである。   The first calculation means 22 uses the parameters h, e, g, d, l, and f (w) stored in the storage means 21 to obtain the crushing coefficient Cx using the equation (11). .

第二の演算手段23は、第一の演算手段22により求められた破砕係数Cxと、前記記憶手段21に記憶されている装薬量Lと係数a、bとから前記(12)式により孔の間隔D、抵抗線の長さW、孔の長さHを求める。なお、係数a、bに固定の数を設定する場合は、これらの係数a、bの入力を不要とし、(13)式等により孔の間隔D、抵抗線の長さW、孔の長さHを求めてもよい。このようにして求めた孔の間隔D、抵抗線の長さW、孔の長さHは出力手段24(表示装置およびプリンタ)により出力する。   The second calculating means 23 calculates the hole according to the equation (12) from the crushing coefficient Cx obtained by the first calculating means 22 and the charge amount L and the coefficients a and b stored in the storage means 21. Distance D, resistance wire length W, and hole length H. When a fixed number is set for the coefficients a and b, it is not necessary to input these coefficients a and b, and the distance D between the holes, the length W of the resistance wire, and the length of the holes according to equation (13) and the like. H may be obtained. The hole spacing D, the resistance wire length W, and the hole length H thus obtained are output by the output means 24 (display device and printer).

前記入力手段20による入力するパラメータとして、填塞係数d、装薬係数l、破壊度係数f(w)の1つまたは全部に固定の値を設定して、その入力を省略してもよい。また、威力係数eも一たん記憶すると再度の入力は不要である。抗力係数gは対象とする被破砕物の圧縮強度に応じて入力する。   As a parameter input by the input means 20, a fixed value may be set for one or all of the filling coefficient d, the charge coefficient l, and the destruction degree coefficient f (w), and the input may be omitted. Further, once the power coefficient e is stored, it is not necessary to input it again. The drag coefficient g is input according to the compressive strength of the object to be crushed.

このようなパラメータを記憶手段21に記憶させる入力処理、第一、第二の演算手段22、23により演算処理、出力手段24による出力処理はコンピュータに記憶されたプログラムにより進行させるもので、このプログラムは記録媒体に記録され、この記録媒体に記憶されたプログラムはこれを種々のコンピュータにおいて読み込むことにより、利用可能である。   The input processing for storing such parameters in the storage means 21, the arithmetic processing by the first and second arithmetic means 22, 23, and the output processing by the output means 24 are advanced by a program stored in the computer. Is recorded in a recording medium, and the program stored in the recording medium can be used by reading it in various computers.

図11は前記(14)式または(15)式を用いてコンピュータにより前記孔の間隔D、(またはこれと抵抗線の長さWおよび孔の長さH)から装薬量Lを求めるための本発明の他の実施の形態を示す機能ブロック図である。図11において、入力手段20、記憶手段21、第一、第二の演算手段22、23A、出力手段24は前述のようにコンピュータにより実現されるものである。   FIG. 11 is a diagram for obtaining the charge amount L from the hole interval D (or the resistance wire length W and hole length H) by a computer using the equation (14) or (15). It is a functional block diagram which shows other embodiment of this invention. In FIG. 11, the input means 20, the storage means 21, the first and second calculation means 22, 23A, and the output means 24 are realized by a computer as described above.

入力手段20は、前記装薬量Lの代わりに孔の間隔Dを入力する点が前記実施の形態と異なっている。なお、孔の間隔D、抵抗線の長さW、孔の長さHを入力しても良く、この場合は係数a、bの入力は必要がない。   The input means 20 is different from the above-described embodiment in that a hole interval D is input instead of the charge amount L. It should be noted that the hole interval D, the resistance wire length W, and the hole length H may be input. In this case, the coefficients a and b need not be input.

第一の演算手段22は、前記実施の形態と同様に記憶手段21に記憶された前記パラメータh、e、g、d、l、f(w)を用い、前記(11)式を用いて破砕係数Cxを求めるものである。   The first calculation means 22 uses the parameters h, e, g, d, l, and f (w) stored in the storage means 21 as in the above embodiment, and crushes using the above equation (11). The coefficient Cx is obtained.

第二の演算手段23Aは、第一の演算手段22により求められた破砕係数Cxと、前記記憶手段21に記憶されている孔の間隔Dと係数a、bとから前記(14)式により装薬量Lを求める。なお、係数a、bに固定の数を設定する場合は、これらの係数a、bの入力を不要とし、(15)式等により装薬量Lを求めてもよい。   The second calculating means 23A is implemented by the above equation (14) from the crushing coefficient Cx obtained by the first calculating means 22, the hole interval D stored in the storage means 21, and the coefficients a and b. Determine the dose L. When a fixed number is set for the coefficients a and b, it is not necessary to input these coefficients a and b, and the charge amount L may be obtained by equation (15) or the like.

このように、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率を用いてサンダーマイトの破砕係数を演算により求めることにより、破砕係数として被破砕物の実情に適合した破砕諸元を求めることができる。このため、この破砕諸元を用いることにより、目標とする破砕状況が得られるので、サンダーマイトの装薬量過剰や孔の間隔過小によるサンダーマイトの無駄、および装薬量不足や孔の間隔過大による破砕不良をなくし、また破砕過剰による音や振動による近隣への迷惑を軽減することが可能となる。   In this way, by calculating the crush factor of thunderite by calculation using the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the material to be crushed, Applicable crushing specifications can be determined. Therefore, by using this crushing specification, the target crushing situation can be obtained. Thunderite may be wasted due to excessive amount of thundermite charge or too small gap between holes, and insufficient quantity of charge or excessive gap between holes. It is possible to eliminate crushing defects due to crushing, and to reduce inconvenience to the neighborhood due to sound and vibration due to excessive crushing.

(A)、(B)はそれぞれサンダーマイトを説明する断面図と平面図である。(A), (B) is sectional drawing and a top view explaining a Thundermite, respectively. (5)式により得られた圧縮強度と基礎破砕係数との種々の装薬量における関係図である。It is a related figure in various charge amounts with the compression strength obtained by (5) Formula, and a basic crushing coefficient. (5)式により得られた破砕量の計算値と実測最大破砕量との種々の装薬量における比較図である。It is a comparison figure in the various charge amount with the calculated value of the crushing amount obtained by (5) Formula, and the actual measurement maximum crushing amount. 2自由面数における破砕の説明図である。It is explanatory drawing of crushing in 2 free surface numbers. 6自由面数における破砕の説明図である。It is explanatory drawing of crushing in 6 free surface numbers. 本実施の形態において、実験により得られた自由面数に対する自由面数効率との関係図である。In this Embodiment, it is a relationship figure with the free surface number efficiency with respect to the free surface number obtained by experiment. 本実施の形態において、2自由面における実測値から求めた種々の圧縮強度における破砕係数を、各装薬量について示す図である。In this Embodiment, it is a figure which shows the crushing coefficient in various compressive strengths calculated | required from the measured value in 2 free surfaces about each charge amount. 本実施の形態において、6自由面における実測値から求めた種々の圧縮強度における破砕係数を、各装薬量について示す図である。In this Embodiment, it is a figure which shows the crushing coefficient in various compressive strengths calculated | required from the measured value in 6 free surfaces about each charge amount. 本発明により導いた破砕量の計算値と実測値の最大破砕量との比較図である。It is a comparison figure of the calculated value of the crushing quantity led by the present invention, and the maximum crushing quantity of the actual measurement value. 本発明の方法を実施する装置の一実施の形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the apparatus which implements the method of this invention. 本発明の方法を実施する装置の一実施の形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the apparatus which implements the method of this invention.

符号の説明Explanation of symbols

1:被破砕物、2:孔、3:カートリッジ、4:破砕用流動物質、5:抵抗線、6:コンデンサ、7:電源、8:電極、9:リード線、10:スイッチ、11:詰め物 1: object to be crushed, 2: hole, 3: cartridge, 4: fluid substance for crushing, 5: resistance wire, 6: capacitor, 7: power supply, 8: electrode, 9: lead wire, 10: switch, 11: padding

Claims (5)

被破砕物に等間隔に複数の孔を掘り、金属細線からなる抵抗線および破砕用流動物質を収容したカートリッジを前記各孔内に入れ、予め充電されたコンデンサから前記抵抗線に瞬時に電流を流して前記抵抗線を瞬時に溶融蒸発させ、その熱で前記破砕用流動物質を気化させることにより、被破砕物を破砕する放電破砕装置の破砕諸元を求める方法において、
サンダーマイトの威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータからサンダーマイトの破砕係数を演算により求め、
このサンダーマイトの破砕係数と予め設定された前記破砕用流動物質の装薬量とから、前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを演算により求めることを特徴とする放電破砕装置の破砕諸元を求める方法。
A plurality of holes are dug at equal intervals in the object to be crushed, a resistance wire made of a fine metal wire and a cartridge containing a fluid material for crushing are placed in each hole, and an electric current is instantaneously applied to the resistance wire from a precharged capacitor. In the method for obtaining the crushing specifications of the electric discharge crushing apparatus for crushing the material to be crushed by flowing and evaporating the resistance wire instantaneously and evaporating the crushing fluid with the heat,
Calculate the crush factor of thunderite by calculation from the parameters including the power factor of thunderite and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed,
From the crush factor of the sanderite and a preset charge amount of the fluid material for crushing, at least one of the interval between the holes, the length of the resistance wire, and the length of the hole is obtained by calculation. A method for obtaining a crushing specification of an electric discharge crusher characterized by the above.
請求項1に記載の放電破砕装置の破砕諸元を求める方法において、
サンダーマイトの威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータ、並びに前記破砕用流動物質の装薬量を記憶手段に記憶させる入力処理と、
前記記憶手段に記憶された放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求める演算処理と、
この演算処理により求められた放電破砕装置の破砕係数と、前記記憶手段に記憶された前記破砕用流動物質の装薬量とから、前記孔の間隔、前記抵抗線の長さおよび孔の長さのうちの少なくとも1つを演算により求める演算処理と、
この演算処理により求められた前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを出力する出力処理とを含むことを特徴とする放電破砕装置の破砕諸元を求める方法。
In the method of calculating | requiring the crushing specification of the electric discharge crushing apparatus of Claim 1,
The storage means stores the parameters including the power coefficient of the sanderite and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed, and the amount of charge of the fluid material for crushing. Input processing,
Calculates the crushing coefficient of the electric discharge crusher from the parameters including the power coefficient of the electric discharge crusher stored in the storage means and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed. The arithmetic processing obtained by
From the crushing coefficient of the electric discharge crushing device obtained by this arithmetic processing and the charge amount of the crushing fluid substance stored in the storage means, the interval between the holes, the length of the resistance wire, and the length of the hole An arithmetic process for calculating at least one of
An output process for outputting at least one of the interval between the holes, the length of the resistance wire, and the length of the hole obtained by the calculation process. How to ask.
被破砕物に等間隔に複数の孔を掘り、金属細線からなる抵抗線および破砕用流動物質を収容したカートリッジを前記各孔内に入れ、予め充電されたコンデンサから前記抵抗線に瞬時に電流を流して前記抵抗線を瞬時に溶融蒸発させ、その熱で前記破砕用流動物質を気化させることにより、被破砕物を破砕する放電破砕装置の破砕諸元を求める方法において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求め、
予め設定された前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つと、前記放電破砕装置の破砕係数とから、前記破砕用流動物質の装薬量を演算により求めることを特徴とする放電破砕装置の破砕諸元を求める方法。
A plurality of holes are dug at equal intervals in the object to be crushed, a resistance wire made of a fine metal wire and a cartridge containing a fluid material for crushing are placed in each hole, and an electric current is instantaneously applied to the resistance wire from a precharged capacitor. In the method for obtaining the crushing specifications of the electric discharge crushing apparatus for crushing the material to be crushed by flowing and evaporating the resistance wire instantaneously and evaporating the crushing fluid with the heat,
Obtain the crushing coefficient of the electric discharge crushing device from the parameters including the power factor of the electric discharge crushing device and the free surface number efficiency obtained in advance from the experimental values corresponding to the number of free surfaces of the object to be crushed,
By calculating at least one of the preset interval between the holes, the length of the resistance wire and the length of the hole, and the crushing coefficient of the electric discharge crushing device, the charge amount of the fluid material for crushing is calculated. A method for obtaining a crushing specification of an electric discharge crushing device characterized in that it is obtained.
請求項3に記載の放電破砕装置の破砕諸元を求める方法において、
放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた自由面数効率とを含むパラメータ、並びに前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つを記憶手段に記憶させる入力処理と、
前記記憶手段に記憶された放電破砕装置の威力係数と、被破砕物の自由面数に対応して実験値から予め求められた前記自由面数効率とを含むパラメータから放電破砕装置の破砕係数を演算により求める演算処理と、
前記記憶手段に記憶された前記孔の間隔、前記抵抗線の長さおよび前記孔の長さのうちの少なくとも1つと、前記演算処理により求められた前記放電破砕装置の破砕係数とから、前記破砕用流動物質の装薬量を演算により求める演算処理と、
この演算処理により求められた前記破砕用流動物質の装薬量を出力する出力処理とを含むことを特徴とする放電破砕装置の破砕諸元を求める方法。
In the method of calculating | requiring the crushing specification of the electric discharge crushing apparatus of Claim 3,
Parameters including the power coefficient of the electric discharge crushing device and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed, as well as the distance between the holes, the length of the resistance wire, and the holes An input process for storing at least one of the lengths in the storage means;
The crushing coefficient of the electric discharge crusher is calculated from parameters including the power coefficient of the electric discharge crusher stored in the storage means and the free surface number efficiency obtained in advance from experimental values corresponding to the number of free surfaces of the object to be crushed. A calculation process obtained by calculation;
From the interval between the holes, the length of the resistance wire, and the length of the hole stored in the storage means, and the crushing coefficient of the electric discharge crushing device obtained by the arithmetic processing, the crushing A calculation process for calculating the charge amount of the fluid substance for use by calculation,
And an output process for outputting the amount of charge of the fluid material for crushing obtained by the calculation process.
請求項2または4に記載の放電破砕装置の破砕諸元を求める方法における前記各処理を行わせるプログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。 5. A computer-readable recording medium in which a program for performing each of the processes in the method for obtaining a crushing specification of an electric discharge crushing apparatus according to claim 2 or 4 is recorded.
JP2004231424A 2004-08-06 2004-08-06 Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium Pending JP2006046000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231424A JP2006046000A (en) 2004-08-06 2004-08-06 Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231424A JP2006046000A (en) 2004-08-06 2004-08-06 Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium

Publications (1)

Publication Number Publication Date
JP2006046000A true JP2006046000A (en) 2006-02-16

Family

ID=36024896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231424A Pending JP2006046000A (en) 2004-08-06 2004-08-06 Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium

Country Status (1)

Country Link
JP (1) JP2006046000A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134000A (en) * 1993-11-09 1995-05-23 Yasuji Nakajima Suitable charging amount deciding method for plural free surface blasting
JPH0929730A (en) * 1995-07-14 1997-02-04 Hitachi Zosen Corp Destruction of object to be distructed
JPH10323826A (en) * 1997-05-27 1998-12-08 Ohbayashi Corp Breaking method
JP2003119774A (en) * 2001-10-12 2003-04-23 Hitachi Zosen Corp Electric discharge machining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134000A (en) * 1993-11-09 1995-05-23 Yasuji Nakajima Suitable charging amount deciding method for plural free surface blasting
JPH0929730A (en) * 1995-07-14 1997-02-04 Hitachi Zosen Corp Destruction of object to be distructed
JPH10323826A (en) * 1997-05-27 1998-12-08 Ohbayashi Corp Breaking method
JP2003119774A (en) * 2001-10-12 2003-04-23 Hitachi Zosen Corp Electric discharge machining method

Similar Documents

Publication Publication Date Title
Morin et al. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz–Ram model
Argon et al. Cavity formation from inclusions in ductile fracture
Jhanwar Theory and practice of air-deck blasting in mines and surface excavations: a review
Hamelin et al. Hard rock fragmentation with pulsed power
Kabwe Improving collar zone fragmentation by top air-deck blasting technique
Bourne et al. The temperature of a shock-collapsed cavity
Ghose et al. Environment-friendly techniques of rock breaking
Johnson Fragmentation analysis in the dynamic stress wave collision regions in bench blasting
Rustan et al. Mining and rock construction technology desk reference: Rock mechanics, drilling & blasting
Choudhary et al. Stemming plug and its effect on fragmentation and muckpile shape parameters
Englman Fragments of matter from a maximum-entropy viewpoint
JP2018100823A (en) Blasting method
JP2006046000A (en) Method for obtaining crushing specifications of electric discharge crushing device, and computer readable recording medium
JP6854626B2 (en) Pile head treatment method
CN114297824A (en) Design method of deep high-stress hard rock plate cracking rock explosive energy release supporting system
Vishwakarma et al. Evaluation of optimum burden for the excavation of narrow vein ore deposits using numerical simulation
KR20100045121A (en) Method for cushion blasting rock
Wilson et al. Comparison of calculated and experimental results of fragmenting cylinder experiments
JP2662691B2 (en) Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method
JP4113933B2 (en) Electric discharge crushing method
WO2003004797A1 (en) Method for demolishing concrete structures provided with internal reinforcing
Qu et al. Numerical simulation of parallel hole cut blasting with uncharged holes
JP2010261272A (en) Destruction method
Saroha et al. Penetration behaviour simulation of shaped charge jets in water filled targets
Ghosh Fractal and numerical models of explosive rock fragmentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208