JP2006045647A - Method and device for forming chromium dioxide thin film - Google Patents

Method and device for forming chromium dioxide thin film Download PDF

Info

Publication number
JP2006045647A
JP2006045647A JP2004231472A JP2004231472A JP2006045647A JP 2006045647 A JP2006045647 A JP 2006045647A JP 2004231472 A JP2004231472 A JP 2004231472A JP 2004231472 A JP2004231472 A JP 2004231472A JP 2006045647 A JP2006045647 A JP 2006045647A
Authority
JP
Japan
Prior art keywords
electrode
thin film
chromium dioxide
dioxide thin
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004231472A
Other languages
Japanese (ja)
Inventor
Kouta Kodama
幸多 児玉
Koji Kajiyoshi
浩二 梶芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004231472A priority Critical patent/JP2006045647A/en
Publication of JP2006045647A publication Critical patent/JP2006045647A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for forming a thin film of chromium dioxide having high safety, wherein chromium dioxide is directly formed from chromium. <P>SOLUTION: The forming device 100 for a chromium dioxide thin film comprises: a pressure resisting vessel 10 which is charged with a solution 16 of pH 1.5 to 4.0; a first electrode 12 made of a metal substrate comprising chromium on the surface which is installed in the pressure resisting vessel 10 and is dipped into the solution 16; a second electrode 14 to form a counter electrode to the first electrode which is installed in the pressure resisting vessel 10 and is dipped into the solution 16; a potential source 26 which is connected with a platinum wire 22 from the first electrode 12 and a platinum wire 24 from the second electrode 14, and controls the electrode potential of the first electrode 12 and the second electrode 14 to -4.0 to -2.0 V; and a warming apparatus (not shown in Figure) which warms the solution 16 in the pressure resisting vessel 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電位をかけて水熱処理を行うことにより、直接クロムから二酸化クロム薄膜を形成する二酸化クロム薄膜の形成方法および形成装置に関する。   The present invention relates to a method and an apparatus for forming a chromium dioxide thin film that directly forms a chromium dioxide thin film from chromium by performing a hydrothermal treatment while applying an electric potential.

二酸化クロム(CrO2)は、一般に磁気記録媒体として粉体状のものが用いられている。通常、二酸化クロムは、ルチル型の結晶構造をもっており、ルチル型酸化物の数10nmの微結晶の存在下でCrO3またはCr25を水熱処理(400℃)とすると、その微結晶を核として二酸化クロムの針状結晶が成長する。 Chromium dioxide (CrO 2 ) is generally used in powder form as a magnetic recording medium. Usually, chromium dioxide has a rutile crystal structure. When CrO 3 or Cr 2 O 5 is subjected to hydrothermal treatment (400 ° C.) in the presence of microcrystals of several tens of nanometers of rutile oxide, the microcrystals are used as nuclei. Chromium needle crystals grow.

また、出発物質として無水クロム酸(CrO3)、塩化クロミル(CrO2Cl2)、クロム酸アンモニウム((NH42CrO4)、重クロム酸アンモニウム((NH42Cr27)等の6価クロムイオンを含む化合物を用い、高圧加熱下で行われる反応、特に酸素雰囲気中の高圧加熱下の熱分解反応による支持体上に二酸化クロムの堆積膜を形成してなる磁気記録媒体が提案されている(例えば、特許文献1)。 Further, as starting materials, chromic anhydride (CrO 3 ), chromyl chloride (CrO 2 Cl 2 ), ammonium chromate ((NH 4 ) 2 CrO 4 ), ammonium dichromate ((NH 4 ) 2 Cr 2 O 7 ) A magnetic recording medium in which a deposited film of chromium dioxide is formed on a support using a compound containing a hexavalent chromium ion, such as a reaction carried out under high pressure heating, particularly a thermal decomposition reaction under high pressure heating in an oxygen atmosphere Has been proposed (for example, Patent Document 1).

特開平10−106835号公報Japanese Patent Laid-Open No. 10-106835

しかしながら、上述した特許文献1に提案されている二酸化クロムの堆積膜の製造方法は、6価のクロムイオンを含む化合物を用いており、この6価のクロムイオンは、体内または粘膜に触れることで毒性を示す。一方、近年、特にグリーンケミカルへの指向が高まり、毒性を有する化合物を用いることを極力避ける方向に移行している。   However, the method for producing a deposited film of chromium dioxide proposed in Patent Document 1 described above uses a compound containing hexavalent chromium ions, and the hexavalent chromium ions come into contact with the body or mucous membrane. Toxic. On the other hand, in recent years, the trend toward green chemicals has increased, and there has been a shift toward avoiding the use of toxic compounds as much as possible.

また、上記特許文献1では、二酸化クロムの堆積膜はできるものの、二酸化クロムの緻密な薄膜を製造するに至っていない。   Further, in Patent Document 1, although a chromium dioxide deposition film can be formed, a dense thin film of chromium dioxide has not been produced.

本発明は、上記課題に鑑みなされたものであり、直接クロムから二酸化クロム薄膜を形成する二酸化クロム薄膜の形成方法および形成装置を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the formation method and forming apparatus of the chromium dioxide thin film which form a chromium dioxide thin film directly from chromium.

上記目的を達成するために、本発明の二酸化クロム薄膜の形成方法および形成装置は、以下の特徴を有する。   In order to achieve the above object, the method and apparatus for forming a chromium dioxide thin film of the present invention have the following characteristics.

(1)クロムを表面に有する金属基板を一方の電極とし、pH1.5以上4.0以下の溶液中で、他方の電極に対して、−4.0V以上−2.0V以下の電極電位下で、水熱電気化学処理を行うことにより、前記クロムを表面に有する金属基板上に二酸化クロム薄膜を形成させる二酸化クロム薄膜の形成方法である。   (1) A metal substrate having chromium on its surface is used as one electrode, and in a solution having a pH of 1.5 or more and 4.0 or less, the electrode potential is −4.0 V or more and −2.0 V or less with respect to the other electrode. The method of forming a chromium dioxide thin film comprises forming a chromium dioxide thin film on a metal substrate having chromium on its surface by performing hydrothermal electrochemical treatment.

上記二酸化クロム薄膜の形成方法によれば、クロムを表面に有する金属基板上のクロムを直接水熱電気化学処理により二酸化クロムに生成させることができる。したがって、従来のように毒性を有する6価クロムイオンを含む化合物を経て二酸化クロムを生成させる必要がなくなり、安全性がより高くなる。また、水熱電気化学処理を用いるため、緻密な二酸化クロムの薄膜を金属基板上に形成することができる。   According to the method for forming a chromium dioxide thin film, chromium on a metal substrate having chromium on the surface can be directly formed into chromium dioxide by hydrothermal electrochemical treatment. Therefore, it is not necessary to produce chromium dioxide through a compound containing hexavalent chromium ions having toxicity as in the prior art, and safety is further improved. Further, since the hydrothermal electrochemical treatment is used, a dense chromium dioxide thin film can be formed on the metal substrate.

(2)上記(1)に記載の二酸化クロム薄膜の形成方法において、前記他方の電極は、白金電極である。   (2) In the method for forming a chromium dioxide thin film according to (1) above, the other electrode is a platinum electrode.

白金電極は、自ら電気化学反応をすることなく安定な電極であるため、一方の電極の金属基板に効率よく二酸化クロム薄膜を生成させることができる。   Since the platinum electrode is a stable electrode without undergoing an electrochemical reaction by itself, a chromium dioxide thin film can be efficiently generated on the metal substrate of one of the electrodes.

(3)上記(1)または(2)に記載の二酸化クロム薄膜の形成方法において、前記溶液は、硫酸溶液である。   (3) In the method for forming a chromium dioxide thin film according to (1) or (2), the solution is a sulfuric acid solution.

特に、他方の電極が白金電極であるとき、硫酸溶液であると、電気化学反応が安定し、一方の電極の金属基板上に効率よく二酸化クロムの薄膜を生成させることができる。   In particular, when the other electrode is a platinum electrode, if it is a sulfuric acid solution, the electrochemical reaction is stable, and a thin film of chromium dioxide can be efficiently produced on the metal substrate of one electrode.

(4)上記(1)から(3)のいずれか1つに記載の二酸化クロム薄膜の形成方法において、前記水熱電気化学処理は、100℃以上250℃以下で圧力が処理温度における水の飽和蒸気圧以上の圧力の高温高圧の水を関与させて電気化学処理を行う。   (4) In the method for forming a chromium dioxide thin film according to any one of (1) to (3), the hydrothermal electrochemical treatment is performed by saturation of water at a temperature of 100 ° C. to 250 ° C. and a pressure of the treatment temperature. Electrochemical treatment is performed by involving high-temperature and high-pressure water at a pressure higher than the vapor pressure.

上記水熱電気化学処理の条件下で、特に二酸化クロムの単相薄膜の生成が促進される。   In particular, the production of a single-phase thin film of chromium dioxide is promoted under the conditions of the hydrothermal electrochemical treatment.

(5)pH1.5以上4.0以下の溶液が充填された耐圧容器と、前記耐圧容器内に設置され前記溶液内に浸漬されるクロムを表面に有する金属基板からなる第1の電極と、前記耐圧容器内に設置され前記溶液内に浸漬される前記第1の電極と対極となる第2の電極と、前記第1の電極と第2の電極との電極電位を調整する電位源と、前記耐圧容器内の溶液を加温する加温装置と、を有する二酸化クロム薄膜形成装置である。   (5) a pressure-resistant container filled with a solution having a pH of 1.5 or more and 4.0 or less, a first electrode made of a metal substrate having chromium on the surface, which is installed in the pressure-resistant container and immersed in the solution; A second electrode that is installed in the pressure-resistant container and is immersed in the solution, and a counter electrode; a potential source that adjusts the electrode potential of the first electrode and the second electrode; A chromium dioxide thin film forming apparatus having a heating device for heating the solution in the pressure vessel.

上記二酸化クロム薄膜の形成装置によれば、クロムを表面に有する金属基板上のクロムを直接水熱電気化学処理により二酸化クロムに生成させることができる。したがって、上述したように、従来のように毒性を有する6価クロムイオンを含む化合物を経て二酸化クロムを生成させる必要がなくなり、安全性がより高くなる。また、水熱電気化学処理を用いるため、緻密な二酸化クロムの薄膜を金属基板上に形成することができる。   According to the apparatus for forming a chromium dioxide thin film, chromium on a metal substrate having chromium on the surface can be directly produced in chromium dioxide by hydrothermal electrochemical treatment. Therefore, as described above, there is no need to generate chromium dioxide through a compound containing hexavalent chromium ions having toxicity as in the prior art, and safety is further improved. Further, since the hydrothermal electrochemical treatment is used, a dense chromium dioxide thin film can be formed on the metal substrate.

(6)上記(5)に記載の二酸化クロム薄膜の形成装置において、前記電位源は、第1の電極と第2の電極との電極電位を−4.0V以上−2.0V以下に調整する。   (6) In the chromium dioxide thin film forming apparatus according to (5) above, the potential source adjusts the electrode potential of the first electrode and the second electrode to −4.0 V or more and −2.0 V or less. .

上記電極電位に調節することにより、単層の二酸化クロムの薄膜を生成させることができる。   By adjusting to the above electrode potential, a single-layer chromium dioxide thin film can be formed.

(7)上記(5)または(6)に記載の二酸化クロム薄膜の形成装置において、前記第1の電極が白金電極である。   (7) In the chromium dioxide thin film forming apparatus according to (5) or (6), the first electrode is a platinum electrode.

上述したように、白金電極は、自ら電気化学反応をすることなく安定な電極であるため、一方の電極の金属基板に効率よく二酸化クロム薄膜を生成させることができる。   As described above, since the platinum electrode is a stable electrode without undergoing an electrochemical reaction itself, a chromium dioxide thin film can be efficiently generated on the metal substrate of one electrode.

(8)上記(5)から(7)のいずれか1つに記載の二酸化クロム薄膜の形成装置において、前記溶液が硫酸溶液である。   (8) In the chromium dioxide thin film forming apparatus according to any one of (5) to (7), the solution is a sulfuric acid solution.

上述したように、特に、他方の電極が白金電極であるとき、硫酸溶液であると、電気化学反応が安定し、一方の電極の金属基板上に効率よく二酸化クロムの薄膜を生成させることができる。   As described above, in particular, when the other electrode is a platinum electrode, if it is a sulfuric acid solution, the electrochemical reaction is stabilized, and a thin film of chromium dioxide can be efficiently generated on the metal substrate of one electrode. .

(9)上記(5)または(8)のいずれか1つに記載の二酸化クロム薄膜の形成装置において、前記加温装置は、100℃以上250℃以下に前記耐圧容器内の溶液を加温する。   (9) In the chromium dioxide thin film forming apparatus according to any one of (5) and (8), the heating device heats the solution in the pressure vessel to 100 ° C. or more and 250 ° C. or less. .

上記水熱電気化学処理の条件下にすることにより、特に二酸化クロムの単相薄膜の生成を促進されることができる。   By making it the conditions of the said hydrothermal electrochemical treatment, the production | generation of the single phase thin film of especially chromium dioxide can be accelerated | stimulated.

(10)上記(1)から(4)のいずれか1つに記載の二酸化クロム薄膜の形成方法により形成された二酸化クロム薄膜を有する燃料電池用セパレータ。   (10) A fuel cell separator having a chromium dioxide thin film formed by the method of forming a chromium dioxide thin film according to any one of (1) to (4) above.

緻密な二酸化クロム薄膜が形成された燃料電池用セパレータが得られ、燃料電池の電池効率も向上する。   A fuel cell separator in which a dense chromium dioxide thin film is formed is obtained, and the cell efficiency of the fuel cell is also improved.

本発明によれば、毒性を有しないクロムを直接二酸化クロムに生成する安全性の高い二酸化クロムの緻密な薄膜を形成することができる。   According to the present invention, it is possible to form a dense chromium dioxide thin film with high safety, in which chromium having no toxicity is directly generated in chromium dioxide.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[二酸化クロム薄膜の製造方法]
本実施の形態の二酸化クロム薄膜の形成方法は、クロムを表面に有する金属基板を一方の電極とし、pH1.5以上4.0以下の溶液中で、他方の電極に対して、−4.0V以上−2.0V以下の電極電位下で、水熱電気化学処理を行うことにより、前記クロムを表面に有する金属基板上に二酸化クロム薄膜を形成させる方法である。
[Production method of chromium dioxide thin film]
In the method for forming a chromium dioxide thin film according to the present embodiment, a metal substrate having chromium on the surface is used as one electrode, and in a solution having a pH of 1.5 or higher and 4.0 or lower, the other electrode is −4.0 V. This is a method of forming a chromium dioxide thin film on a metal substrate having chromium on its surface by performing hydrothermal electrochemical treatment under an electrode potential of −2.0 V or less.

ここで、上記水熱電気化学処理とは、100℃、1atm(0.1MPa)以上の高温高圧の水が関与する反応である「水熱反応」の条件下で電気化学処理を行うことをいう。上記「水熱反応」では、水が高温高圧になると、イオン積が増加し誘電率や粘度は減少するなど、常温常圧の水とは様相を呈する。   Here, the hydrothermal electrochemical treatment refers to performing an electrochemical treatment under the conditions of “hydrothermal reaction”, which is a reaction involving high-temperature and high-pressure water at 100 ° C. and 1 atm (0.1 MPa) or more. . In the above-mentioned “hydrothermal reaction”, when water becomes high temperature and high pressure, the ionic product increases and the dielectric constant and viscosity decrease.

上記溶液のpHは、上述したように、1.5以上4.0以下が好ましく、より好ましくは1.6以上3.5V以下である。溶液のpHが1.5未満の場合および4.0を超えると、Crを表面に有する金属基板上に二酸化クロム(CrO2)の単相薄膜が生成しにくい。 As described above, the pH of the solution is preferably 1.5 or more and 4.0 or less, and more preferably 1.6 or more and 3.5 V or less. When the pH of the solution is less than 1.5 or exceeds 4.0, it is difficult to form a single-phase thin film of chromium dioxide (CrO 2 ) on a metal substrate having Cr on the surface.

上記溶液として、例えば、硫酸溶液(H2SO4aq.)、塩酸溶液などを用いることができるが、後述するように、上記他方の電極として白金電極を用いる場合には、硫酸溶液を用いることが好ましい。硫酸溶液中で白金電極は電気化学反応が安定するため、一方の電極の金属基板上に効率よく二酸化クロムの薄膜を生成させることができる。 As the solution, for example, a sulfuric acid solution (H 2 SO 4 aq.), A hydrochloric acid solution, or the like can be used. However, as described later, when a platinum electrode is used as the other electrode, a sulfuric acid solution is used. Is preferred. Since the electrochemical reaction of the platinum electrode in the sulfuric acid solution is stable, a thin film of chromium dioxide can be efficiently produced on the metal substrate of one electrode.

Crを表面に有する金属基板である一方の電極と対極である他方の電極との上記電極電位は、−4.0V以上−2.0Vが好ましく、より好ましくは−3.5V以上−2.0V以下である。この範囲外では、Crを表面に有する金属基板上に二酸化クロムの単相薄膜は生成し難い。   The electrode potential of one electrode which is a metal substrate having Cr on the surface and the other electrode which is a counter electrode is preferably −4.0V or more and −2.0V, more preferably −3.5V or more and −2.0V. It is as follows. Outside this range, it is difficult to produce a single phase thin film of chromium dioxide on a metal substrate having Cr on its surface.

上述した他方の電極としては、例えば、白金電極、金電極、水銀アマルガム電極などが挙げられる。これらは、自ら電気化学反応をすることなく安定な電極であるため、一方の電極の金属基板に効率よく二酸化クロム薄膜を生成させることができる。ここで、上記溶液として硫酸溶液を用いる場合には、上記理由より、白金電極が好ましい。   Examples of the other electrode described above include a platinum electrode, a gold electrode, and a mercury amalgam electrode. Since these are stable electrodes without undergoing an electrochemical reaction themselves, a chromium dioxide thin film can be efficiently generated on the metal substrate of one of the electrodes. Here, when a sulfuric acid solution is used as the solution, a platinum electrode is preferable for the above reason.

上記水熱電気化学処理は、100℃以上250℃以下で圧力が処理温度における水の飽和蒸気圧以上の圧力の高温高圧の水を関与させて電気化学処理を行うことが好ましい。上記範囲外では、Crを表面に有する金属基板上に二酸化クロムの単相薄膜が生成し難い。   The hydrothermal electrochemical treatment is preferably performed by involving high-temperature and high-pressure water having a pressure of 100 ° C. or higher and 250 ° C. or lower and a pressure equal to or higher than the saturated vapor pressure of water at the treatment temperature. Outside the above range, it is difficult to produce a single phase thin film of chromium dioxide on a metal substrate having Cr on its surface.

二酸化クロムの薄膜の所望の厚さに応じて、水熱電気化学処理における電位をかける通電時間を適宜選択することが望ましく、また、二酸化クロムの単相薄膜の膜厚に応じて、Crを表面に有する金属基板上のCr層の厚みも適宜調整することが望ましい。   Depending on the desired thickness of the chromium dioxide thin film, it is desirable to appropriately select the energization time during which the potential is applied in the hydrothermal electrochemical treatment. In addition, depending on the film thickness of the chromium dioxide single-phase thin film, It is desirable to appropriately adjust the thickness of the Cr layer on the metal substrate.

[二酸化クロム薄膜の形成装置]
次に、本実施の形態の二酸化クロム薄膜の形成装置100について、以下に図1を用いて説明する。
[Chromium dioxide thin film forming equipment]
Next, the chromium dioxide thin film forming apparatus 100 of the present embodiment will be described below with reference to FIG.

図1に示すように、二酸化クロム薄膜の形成装置100は、溶液16が充填された耐圧容器10と、耐圧容器10内に設置され溶液16内に浸漬されるクロムを表面に有する金属基板からなる第1の電極12と、耐圧容器10内に設置され溶液16内に浸漬される前記第1の電極と対極となる第2の電極14と、第1の電極12から白金線22と第2の電極14からの白金線24とが接続され第1の電極12と第2の電極14との電極電位を調整する電位源26と、耐圧容器10内を加圧する加圧装置を構成するガス導入路18とバルブ20と、耐圧容器10内の溶液16を加温する加温装置(図示せず)とを有する。   As shown in FIG. 1, a chromium dioxide thin film forming apparatus 100 includes a pressure-resistant container 10 filled with a solution 16 and a metal substrate having chromium placed on the surface and installed in the pressure-resistant container 10 and immersed in the solution 16. A first electrode 12; a second electrode 14 which is placed in the pressure vessel 10 and is immersed in the solution 16; and a counter electrode; a platinum wire 22 and a second electrode from the first electrode 12; A platinum wire 24 from the electrode 14 is connected to a potential source 26 that adjusts the electrode potential of the first electrode 12 and the second electrode 14, and a gas introduction path that constitutes a pressurizing device that pressurizes the inside of the pressure vessel 10. 18, a valve 20, and a heating device (not shown) for heating the solution 16 in the pressure vessel 10.

上記耐圧容器10は、少なくとも4.02MPa(水熱電気化学処理における最高温度:250℃における水の飽和蒸気圧)までの加圧に耐えられるものが好ましい。耐圧容器の材質としては、例えばSUS304、SUS316などのステンレス製のものが好ましい。耐圧容器10として、オートクレーブを用いてもよい。   The pressure vessel 10 is preferably capable of withstanding pressurization up to at least 4.02 MPa (maximum temperature in hydrothermal electrochemical treatment: saturated vapor pressure of water at 250 ° C.). As the material of the pressure vessel, for example, a stainless steel material such as SUS304 or SUS316 is preferable. An autoclave may be used as the pressure vessel 10.

溶液16は、上述したように、そのpHは、1.5以上4.0以下が好ましく、より好ましくは1.6以上3.5V以下である。また、溶液16は、例えば、硫酸溶液(H2SO4aq.)、塩酸溶液などを用いることができるが、後述するように、上記第2に電極14として白金電極を用いる場合には、硫酸溶液を用いることが好ましい。硫酸溶液中で白金電極は電気化学反応が安定するため、一第1の電極12の金属基板上に効率よく二酸化クロムの薄膜を生成させることができる。 As described above, the pH of the solution 16 is preferably 1.5 or more and 4.0 or less, more preferably 1.6 or more and 3.5 V or less. For example, a sulfuric acid solution (H 2 SO 4 aq.), A hydrochloric acid solution, or the like can be used as the solution 16. However, as described below, when a platinum electrode is used as the second electrode 14, sulfuric acid solution is used. It is preferable to use a solution. Since the electrochemical reaction of the platinum electrode in the sulfuric acid solution is stable, a thin film of chromium dioxide can be efficiently generated on the metal substrate of the first electrode 12.

電位源26は、第1の電極と第2の電極との電極電位を−4.0V以上−2.0V以下、好ましくは3.5V以上−2.0V以下に調整する。この範囲外では、Crを表面に有する金属基板上に二酸化クロムの単相薄膜は生成し難いからである。   The potential source 26 adjusts the electrode potential of the first electrode and the second electrode to −4.0 V to −2.0 V, preferably 3.5 V to −2.0 V. Outside this range, it is difficult to produce a single phase thin film of chromium dioxide on a metal substrate having Cr on its surface.

第1の電極12は、この第1の電極12の基板上に形成する二酸化クロムの単相薄膜の膜厚に応じて、その表面のCr層の厚みを適宜調整することが好ましい。なお、Crを表面上に有する金属基板の金属は、耐酸性の高い金属であることが好ましく、クロム、Ta、Nb、Ti、Cu、Mo、W、Ni、およびモネル(Monel)、ハステロイ(Hastelloy)、インコネル(Inconel)などのニッケル合金、およびステンレス(例えばSUS316L)などを用いることができる。   It is preferable that the thickness of the Cr layer on the surface of the first electrode 12 is appropriately adjusted according to the thickness of the single phase thin film of chromium dioxide formed on the substrate of the first electrode 12. In addition, it is preferable that the metal of the metal substrate which has Cr on the surface is a metal with high acid resistance, and chromium, Ta, Nb, Ti, Cu, Mo, W, Ni, Monel, Hastelloy ), Nickel alloys such as Inconel, stainless steel (for example, SUS316L), and the like.

第2の電極14は、上述したように、例えば、白金電極、金電極、水銀アマルガム電極などが挙げられる。これらは、自ら電気化学反応をすることなく安定な電極であるため、一方の電極の金属基板に効率よく二酸化クロム薄膜を生成させることができる。   Examples of the second electrode 14 include a platinum electrode, a gold electrode, and a mercury amalgam electrode as described above. Since these are stable electrodes without undergoing an electrochemical reaction themselves, a chromium dioxide thin film can be efficiently generated on the metal substrate of one of the electrodes.

上記水熱電気化学処理は、100℃以上250℃以下で圧力が処理温度における水の飽和蒸気圧以上の圧力の高温高圧の水を関与させて電気化学処理を行うことが好ましい。上記範囲外では、Crを表面に有する金属基板上に二酸化クロムの単相薄膜が生成し難い。   The hydrothermal electrochemical treatment is preferably performed by involving high-temperature and high-pressure water having a pressure of 100 ° C. or higher and 250 ° C. or lower and a pressure equal to or higher than the saturated vapor pressure of water at the treatment temperature. Outside the above range, it is difficult to produce a single phase thin film of chromium dioxide on a metal substrate having Cr on its surface.

また、加温装置(図示せず)は、100℃以上250℃以下に耐圧容器10内の溶液16を加温するように、耐圧容器10の外周面に設けられており、例えば耐圧容器10の外周に設置されたオイルバスであってもよい。   A heating device (not shown) is provided on the outer peripheral surface of the pressure vessel 10 so as to heat the solution 16 in the pressure vessel 10 to 100 ° C. or more and 250 ° C. or less. An oil bath installed on the outer periphery may be used.

次に、上記二酸化クロム薄膜の形成装置の動作について説明する。   Next, the operation of the chromium dioxide thin film forming apparatus will be described.

まず、耐圧容器10内に、所望のpH、例えば1.5以上4.0以下に調整された酸性の溶液16を充填させる。次いで、この溶液16内にクロムを表面に有する金属基板からなる第1位の電極12と対極となる第2の電極14とを浸漬させる。次に、バルブ20を開けて、不活性ガスである窒素ガスをガス導入路18を介して耐圧容器10内に導入して所望の圧力にあげると共に、加温装置を用いて耐圧容器10内を加温して、所望の高温高圧状態、例えば、上述した100℃以上250℃以下、この処理温度における水の飽和蒸気圧以上の圧力の高温高圧状態にする。続いて、第1の電極12に接続された白金線22および第2の電極14に接続された白金線24とを介して電位源26から両極に対して所望の電位、例えば−4.0V以上−2.0V以下の電位をかける。そして、第1の電極12上に所定の二酸化クロム単相薄膜の膜厚が形成されるまで、電位源26より通電される。   First, the pressure vessel 10 is filled with an acidic solution 16 adjusted to a desired pH, for example, 1.5 to 4.0. Next, the first electrode 12 made of a metal substrate having chromium on its surface and the second electrode 14 as a counter electrode are immersed in the solution 16. Next, the valve 20 is opened and nitrogen gas as an inert gas is introduced into the pressure vessel 10 through the gas introduction path 18 to raise the pressure to a desired pressure, and the inside of the pressure vessel 10 is heated using a heating device. Heating is performed to obtain a desired high-temperature and high-pressure state, for example, the above-described high-temperature and high-pressure state of 100 ° C. or higher and 250 ° C. or lower and a pressure higher than the saturated vapor pressure of water at this treatment temperature. Subsequently, a desired potential, for example, −4.0 V or more, is applied to both electrodes from the potential source 26 via the platinum wire 22 connected to the first electrode 12 and the platinum wire 24 connected to the second electrode 14. Apply a potential of -2.0V or less. And it supplies with electricity from the potential source 26 until the film thickness of a predetermined chromium dioxide single phase thin film is formed on the first electrode 12.

これにより、所望の膜厚の二酸化クロム単相薄膜が第1の電極12上に形成される。   Thereby, a chromium dioxide single-phase thin film having a desired thickness is formed on the first electrode 12.

[燃料電池用セパレータ]
本実施の形態の燃料電池用セパレータは、セパレータとして用いる基体の表面にCr層を形成した金属基板を一方の電極または第1の電極として、上述した本実施の形態の二酸化クロム薄膜の形成方法をおよび形成装置を用いて、セパレータ表面に二酸化クロム単相薄膜を簡便に形成することができる。
[Fuel cell separator]
The separator for a fuel cell according to the present embodiment uses the above-described method for forming a chromium dioxide thin film according to the present embodiment, using a metal substrate having a Cr layer formed on the surface of a substrate used as a separator as one electrode or the first electrode. In addition, a chromium dioxide single-phase thin film can be easily formed on the separator surface using the forming apparatus.

以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is hung up and demonstrated in more detail, this invention is not limited only to these Examples.

(実施例1〜11、比較例1〜11)
図1に示す装置を用い、耐圧容器10として内容積500mLのステンレス製(SUS316)のオートクレーブを用いて、このオートクレーブ中に、Cr基板を第1の電極12とし、白金電極を第2の電極14として、pH1.25〜4.5の硫酸溶液200mLをPTFE(ポリテトラフルオロエチレン)性のビーカ内に入れて、白金電極を基準として−4.0V〜+2.0Vの停電に電解処理を50〜300℃で16時間行った。その結果を表1に示す。なお、CrO2単相の生成確認は、X線回折装置を用いて結晶形からCrO2を同定した。
(Examples 1-11, Comparative Examples 1-11)
Using the apparatus shown in FIG. 1, a stainless steel (SUS316) autoclave having an internal volume of 500 mL is used as the pressure vessel 10. In this autoclave, the Cr substrate is used as the first electrode 12, and the platinum electrode is used as the second electrode 14. 200 mL of a sulfuric acid solution having a pH of 1.25 to 4.5 is placed in a PTFE (polytetrafluoroethylene) beaker, and electrolytic treatment is applied to a power failure of −4.0 V to +2.0 V with respect to a platinum electrode as a reference. The test was performed at 300 ° C. for 16 hours. The results are shown in Table 1. The generation confirmation of CrO 2 single phase was identified CrO2 from the crystalline form with an X-ray diffractometer.

Figure 2006045647
Figure 2006045647

表1および図2に一部に示すように、pH1.5以上4.0以下の溶液中で、−4.0V以上−2.0V以下の電極電位下で、100〜200℃で二酸化クロム(CrO2)単相薄膜が得られた。なお、図2には、Cr基板を第1の電極とし、Pt電極を第2の電極と指定、硫酸溶液でpH2、150℃で電位−4.0V〜−1.0Vvs.CEで16時間を行った後の、Cr基板上に形成された薄膜のパターンをXRD(X−Ray Diffractmeter:X線回折装置)を用いて測定した結果である。 As shown in part in Table 1 and FIG. 2, chromium dioxide (100 to 200 ° C.) at an electrode potential of −4.0 to −2.0 V in a solution having a pH of 1.5 to 4.0 A CrO 2 ) single phase thin film was obtained. In FIG. 2, the Cr substrate is designated as the first electrode, the Pt electrode is designated as the second electrode, the pH is 2 with sulfuric acid solution, and the potential is −4.0 V to −1.0 Vvs. It is the result of having measured the pattern of the thin film formed on Cr board | substrate after performing 16 hours by CE using XRD (X-Ray Diffractometer: X-ray diffractometer).

(実施例12)
実施例1におけるCr基板からなる第1の電極12の代わりに、スパッタリングによりCr層を表面に形成したステンレスSUS316Lのサンプル板を第1の電極12として用いた以外は、実施例1に準じて、水熱電気化学処理を行ったところ、同様に、pH1.5以上4.0以下の溶液中で、−4.0V以上−2.0V以下の電極電位下で、100〜200℃で二酸化クロム(CrO2)単相薄膜が得られた。
Example 12
Instead of the first electrode 12 made of the Cr substrate in Example 1, a sample plate of stainless steel SUS316L having a Cr layer formed on the surface by sputtering was used as the first electrode 12, according to Example 1, When hydrothermal electrochemical treatment was performed, similarly, in a solution having a pH of 1.5 or more and 4.0 or less, chromium dioxide (100 to 200 ° C.) was applied at an electrode potential of −4.0 V or more and −2.0 V or less. A CrO 2 ) single phase thin film was obtained.

(比較例12)
実施例1と同様に、pH1〜3の硫酸溶液で電位をかけずに処理を行ったが、pH1.06以上で観測されるピークは、Cr基板によるもののみであり、生成物は認められなかった。また、pH1.04以下の生成物の2θ=29.08°と42.32°に現れている主要なピークはCrO2に対応するものであったが、CrO2ピークと同レベルの強度を有する未知相のピークも認められ、CrO2の単相は得られなかった。
(Comparative Example 12)
As in Example 1, the treatment was carried out with a sulfuric acid solution having a pH of 1 to 3 without applying a potential, but the peak observed at pH 1.06 or higher was only due to the Cr substrate, and no product was observed. It was. In addition, the main peaks appearing at 2θ = 29.08 ° and 42.32 ° of the product having a pH of 1.04 or less correspond to CrO 2 , but have the same level of intensity as the CrO 2 peak. An unknown phase peak was also observed, and a single phase of CrO 2 was not obtained.

本発明の二酸化クロム薄膜の形成方法および形成装置は、燃料電池用のセパレータの製造、磁気記録媒体の製造などの用途に有用である。   The method and apparatus for forming a chromium dioxide thin film of the present invention is useful for applications such as production of a separator for a fuel cell and production of a magnetic recording medium.

本発明の二酸化クロム薄膜の形成装置の構成を示す概略図である。It is the schematic which shows the structure of the formation apparatus of the chromium dioxide thin film of this invention. X線回折装置により結晶形からCrO2の同定を行った結果を示す図である。The X-ray diffraction apparatus is a diagram showing the results of identification of the CrO 2 from the crystalline form.

符号の説明Explanation of symbols

10 耐圧容器、12 第1の電極、14 第2の電極、16 溶液、18 ガス導入路、20 バルブ、22,24 白金線、26 電位源、100 二酸化クロム薄膜の形成装置。   DESCRIPTION OF SYMBOLS 10 Pressure-resistant container, 12 1st electrode, 14 2nd electrode, 16 Solution, 18 Gas introduction path, 20 Valve, 22, 24 Platinum wire, 26 Potential source, 100 Chromium dioxide thin film formation apparatus.

Claims (10)

クロムを表面に有する金属基板を一方の電極とし、pH1.5以上4.0以下の溶液中で、他方の電極に対して、−4.0V以上−2.0V以下の電極電位下で、水熱電気化学処理を行うことにより、前記クロムを表面に有する金属基板上に二酸化クロム薄膜を形成させることを特徴とする二酸化クロム薄膜の形成方法。   A metal substrate having chromium on its surface is used as one electrode, and in a solution having a pH of 1.5 or higher and 4.0 or lower, water is applied to the other electrode at an electrode potential of −4.0 V or higher and −2.0 V or lower. A method for forming a chromium dioxide thin film, comprising performing a thermoelectrochemical treatment to form a chromium dioxide thin film on a metal substrate having chromium on the surface. 請求項1に記載の二酸化クロム薄膜の形成方法において、
前記他方の電極は、白金電極であることを特徴とする二酸化クロム薄膜の形成方法。
In the formation method of the chromium dioxide thin film of Claim 1,
The method of forming a chromium dioxide thin film, wherein the other electrode is a platinum electrode.
請求項1または請求項2に記載の二酸化クロム薄膜の形成方法において、
前記溶液は、硫酸溶液であることを特徴とする二酸化クロム薄膜の形成方法。
In the formation method of the chromium dioxide thin film of Claim 1 or Claim 2,
The method for forming a chromium dioxide thin film, wherein the solution is a sulfuric acid solution.
請求項1から請求項3のいずれか1項に記載の二酸化クロム薄膜の形成方法において、
前記水熱電気化学処理は、100℃以上250℃以下で圧力が処理温度における水の飽和蒸気圧以上の圧力の高温高圧の水を関与させて電気化学処理を行うことを特徴とする二酸化クロム薄膜の形成方法。
In the formation method of the chromium dioxide thin film of any one of Claims 1-3,
The hydrothermal electrochemical treatment is carried out by involving high temperature and high pressure water having a pressure of 100 ° C. or higher and 250 ° C. or lower and a pressure equal to or higher than the saturated vapor pressure of water at the treatment temperature. Forming method.
pH1.5以上4.0以下の溶液が充填された耐圧容器と、
前記耐圧容器内に設置され前記溶液内に浸漬されるクロムを表面に有する金属基板からなる第1の電極と、
前記耐圧容器内に設置され前記溶液内に浸漬される前記第1の電極と対極となる第2の電極と、
前記第1の電極と第2の電極との電極電位を調整する電位源と、
前記耐圧容器内の溶液を加温する加温装置と、
を有することを特徴とする二酸化クロム薄膜形成装置。
a pressure resistant container filled with a solution having a pH of 1.5 or more and 4.0 or less,
A first electrode comprising a metal substrate having chromium on its surface, which is placed in the pressure vessel and immersed in the solution;
A second electrode that is installed in the pressure-resistant container and that is counter to the first electrode that is immersed in the solution;
A potential source for adjusting an electrode potential between the first electrode and the second electrode;
A heating device for heating the solution in the pressure vessel;
An apparatus for forming a chromium dioxide thin film, comprising:
請求項5に記載の二酸化クロム薄膜の形成装置において、
前記電位源は、第1の電極と第2の電極との電極電位を−4.0V以上−2.0V以下に調整することを特徴とする二酸化クロム薄膜の形成装置。
The apparatus for forming a chromium dioxide thin film according to claim 5,
The said potential source adjusts the electrode potential of a 1st electrode and a 2nd electrode to -4.0V or more and -2.0V or less, The formation apparatus of the chromium dioxide thin film characterized by the above-mentioned.
請求項5または請求項6に記載の二酸化クロム薄膜の形成装置において、
前記第1の電極が白金電極であることを特徴とする二酸化クロム薄膜の形成装置。
In the formation apparatus of the chromium dioxide thin film of Claim 5 or Claim 6,
The apparatus for forming a chromium dioxide thin film, wherein the first electrode is a platinum electrode.
請求項5から請求項7のいずれか1項に記載の二酸化クロム薄膜の形成装置において、
前記溶液が硫酸溶液であることを特徴とする二酸化クロム薄膜の形成装置。
In the formation apparatus of the chromium dioxide thin film of any one of Claims 5-7,
An apparatus for forming a chromium dioxide thin film, wherein the solution is a sulfuric acid solution.
請求項5または請求項8のいずれか1項に記載の二酸化クロム薄膜の形成装置において、
前記加温装置は、100℃以上250℃以下に前記耐圧容器内の溶液を加温することを特徴とする二酸化クロム薄膜の形成装置。
In the formation apparatus of the chromium dioxide thin film of any one of Claim 5 or Claim 8,
The said heating apparatus heats the solution in the said pressure-resistant container to 100 to 250 degreeC, The chromium dioxide thin film formation apparatus characterized by the above-mentioned.
請求項1から請求項4のいずれか1項に記載の二酸化クロム薄膜の形成方法により形成された二酸化クロム薄膜を有する燃料電池用セパレータ。   The fuel cell separator which has the chromium dioxide thin film formed by the formation method of the chromium dioxide thin film of any one of Claims 1-4.
JP2004231472A 2004-08-06 2004-08-06 Method and device for forming chromium dioxide thin film Withdrawn JP2006045647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231472A JP2006045647A (en) 2004-08-06 2004-08-06 Method and device for forming chromium dioxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231472A JP2006045647A (en) 2004-08-06 2004-08-06 Method and device for forming chromium dioxide thin film

Publications (1)

Publication Number Publication Date
JP2006045647A true JP2006045647A (en) 2006-02-16

Family

ID=36024569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231472A Withdrawn JP2006045647A (en) 2004-08-06 2004-08-06 Method and device for forming chromium dioxide thin film

Country Status (1)

Country Link
JP (1) JP2006045647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242576A (en) * 2006-03-13 2007-09-20 Toyota Motor Corp Separator for fuel cell and manufacturing method of separator for fuel cell
JP2014078506A (en) * 2012-09-24 2014-05-01 Ngk Insulators Ltd Separator and fuel cell
CN108998819A (en) * 2018-05-29 2018-12-14 深圳大学 The preparation method of microwave hydrothermal electro-deposition system and calcium phosphorus biological coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242576A (en) * 2006-03-13 2007-09-20 Toyota Motor Corp Separator for fuel cell and manufacturing method of separator for fuel cell
WO2007105486A1 (en) * 2006-03-13 2007-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for manufacturing fuel cell separator
US8080146B2 (en) 2006-03-13 2011-12-20 Toyota Jidosha Kabushiki Kaisha Separator for use in fuel cell and manufacturing method therefor
JP2014078506A (en) * 2012-09-24 2014-05-01 Ngk Insulators Ltd Separator and fuel cell
CN108998819A (en) * 2018-05-29 2018-12-14 深圳大学 The preparation method of microwave hydrothermal electro-deposition system and calcium phosphorus biological coating

Similar Documents

Publication Publication Date Title
Yu et al. Effects of Nb and Zr alloying additions on the activation behavior of Ti in hydrochloric acid
Stoerzinger et al. Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis
JP5847782B2 (en) Method for forming boron-containing thin film
Yin et al. Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10 wt% NaNO3 solution
Wang et al. Effect of sodium chloride on the electrochemical corrosion of Inconel 625 at high temperature and pressure
WO2021182385A1 (en) Alkaline water electrolysis method, and anode for alkaline water electrolysis
Machmudah et al. Magnetite thin film on mild steel formed by hydrothermal electrolysis for corrosion prevention
Fayette et al. In situ stress measurements during cobalt electrodeposition on (111)-textured Au
Szklarska-Smialowska et al. Oxide films formed on alloy 600 in lithiated water at 25 to 350 C
US20100330390A1 (en) Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same
JP2006045647A (en) Method and device for forming chromium dioxide thin film
Setare et al. The structure and corrosion barrier performance of nanocrystalline zirconia electrodeposited coating
JP2514032B2 (en) Metal electrolytic treatment method
Protsenko et al. Hydrogen evolution reaction on Cr–C electrocatalysts electrodeposited from a choline chloride based trivalent chromium plating bath
TWI490372B (en) Electrode for electrolytic processes with controlled crystalline structure
MX2011003012A (en) Cathode member and bipolar plate for hypochlorite cells.
JPH03138393A (en) Thin film of multi component oxide
TW202002041A (en) Anodic oxidation device, anodic oxidation method, and method for manufacturing cathode for anodic oxidation device
Kozejova et al. Structural dependence of hydrogen evolution reaction on transition metal catalysts sputtered at different temperatures in alkaline media
Alanazi et al. Electrochemical properties of IrO2-Ti2O5-Co3O4 coated Ti anode in acid media
JP4406312B2 (en) Diamond electrode for electrolysis
Nemes et al. Porous anodic alumina films obtained by two step anodization
Pujar et al. Some aspects of corrosion and film formation of austenitic stainless steel type 316LN using electrochemical impedance spectroscopy (EIS)
Singh et al. Characterization and performance of magnetron-sputtered zirconium coatings deposited on 9Cr-1Mo steel
JP2006265716A (en) Plating solution and production method of plating structure using the plating solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071207