JP2006045005A - Dielectric ceramic composition and method for manufacturing the same - Google Patents

Dielectric ceramic composition and method for manufacturing the same Download PDF

Info

Publication number
JP2006045005A
JP2006045005A JP2004229217A JP2004229217A JP2006045005A JP 2006045005 A JP2006045005 A JP 2006045005A JP 2004229217 A JP2004229217 A JP 2004229217A JP 2004229217 A JP2004229217 A JP 2004229217A JP 2006045005 A JP2006045005 A JP 2006045005A
Authority
JP
Japan
Prior art keywords
ceramic composition
dielectric ceramic
dielectric
less
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004229217A
Other languages
Japanese (ja)
Inventor
Atsushi Inuzuka
敦 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004229217A priority Critical patent/JP2006045005A/en
Publication of JP2006045005A publication Critical patent/JP2006045005A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition which exhibits a stable dielectric constant when it is simultaneously fired together with an electrode containing silver in the form of Ag, Ag-Pd, Ag-Pt or the like, in the dielectric ceramic composition having a high relative density and containing titanium oxide as a main component; and to provide a method for manufacturing the same. <P>SOLUTION: In the dielectric ceramic composition containing titanium oxide as a main component and having a relative density of ≥99%, Cu is contained in an amount of 0.2-0.9 wt.%, expressed in terms of CuO, based on the amount of titanium oxide being the main component, and further at least one kind selected from Zn, Al and Co is contained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種電子機器等に用いる誘電体磁器組成物およびその製造方法に関するものである。   The present invention relates to a dielectric ceramic composition used for various electronic devices and a method for producing the same.

以下、従来の誘電体磁器組成物について、この材料を用いた積層セラミック電子部品を例にして説明する。   Hereinafter, a conventional dielectric ceramic composition will be described taking a multilayer ceramic electronic component using this material as an example.

従来の積層セラミック電子部品であるLCフィルタは磁性体磁器組成物で構成された磁性体層内にAgを含んだ電極を用いて形成されたコイルパターン層と誘電体磁器組成物で構成された誘電体層内にAgを含んだ電極を用いて形成されたコンデンサの電極パターン層を積層形成することにより図1に示されるような構成を有していた。   A conventional LC filter, which is a multilayer ceramic electronic component, has a coil pattern layer formed using an electrode containing Ag in a magnetic layer composed of a magnetic ceramic composition, and a dielectric composed of a dielectric ceramic composition. A capacitor electrode pattern layer formed by using an electrode containing Ag in the body layer was laminated to form a structure as shown in FIG.

図1は従来のLCフィルタの透視斜視図である。図1において、1は誘電体磁器組成物、2は磁性体磁器組成物、3はコイルの電極パターン、4はコンデンサの電極パターンである。   FIG. 1 is a perspective view of a conventional LC filter. In FIG. 1, 1 is a dielectric ceramic composition, 2 is a magnetic ceramic composition, 3 is an electrode pattern of a coil, and 4 is an electrode pattern of a capacitor.

ここで、コイルの電極パターン3とコンデンサの電極パターン4は大気雰囲気中での焼成が可能であり、電気伝導度の大きなAg,Ag−PdもしくはAg−Ptなどの銀を含んだ電極材料が主に用いられている。この誘電体磁器組成物1にはコイルの電極パターン3とコンデンサの電極パターン4と同時焼成をするために900℃前後の低温で焼結する酸化チタン系の誘電体セラミック材料が用いられている。   Here, the electrode pattern 3 of the coil and the electrode pattern 4 of the capacitor can be baked in the air atmosphere, and an electrode material containing silver such as Ag, Ag-Pd or Ag-Pt having a high electric conductivity is mainly used. It is used for. The dielectric ceramic composition 1 is made of a titanium oxide-based dielectric ceramic material that is sintered at a low temperature of about 900 ° C. for simultaneous firing of the electrode pattern 3 of the coil and the electrode pattern 4 of the capacitor.

また、この誘電体磁器組成物1に用いられる酸化チタン系の誘電体セラミック材料には銀などの融点の低い電極材料と同時焼成する必要性があることから、低温で焼成するために主成分である酸化チタンに対してCuを数%添加している。さらに誘電率と温度特性などの制御のために他の添加物を加える場合がある。   Further, since the titanium oxide-based dielectric ceramic material used for the dielectric ceramic composition 1 needs to be fired simultaneously with an electrode material having a low melting point such as silver, it is a main component for firing at a low temperature. Several percent of Cu is added to some titanium oxide. Further, other additives may be added to control the dielectric constant and temperature characteristics.

また、前記磁性体磁器組成物2には同様に900℃前後で焼成が可能であり、インダクタンス値を大きくするための磁性を有するNi−Zn−Cuフェライトが用いられている。   Similarly, the magnetic ceramic composition 2 can be fired at around 900 ° C., and Ni—Zn—Cu ferrite having magnetism for increasing the inductance value is used.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平5−234421号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-5-234421

しかしながら、前記従来の構成では、相対密度が99%以上の酸化チタンを主成分とする誘電体磁器組成物において、Ag,Ag−PdもしくはAg−Ptなどの銀を含んだ電極と同時焼成した場合に前記誘電体磁器組成物に生じる異常粒成長に起因した誘電率の変動が生じ、前記誘電体磁器組成物を誘電体層として利用したコンデンサ素子の容量値にばらつきが生じるという課題を有していた。   However, in the above-mentioned conventional configuration, when a dielectric ceramic composition mainly composed of titanium oxide having a relative density of 99% or more is co-fired with an electrode containing silver such as Ag, Ag-Pd or Ag-Pt. Variation of dielectric constant caused by abnormal grain growth occurring in the dielectric ceramic composition occurs, and the capacitance value of the capacitor element using the dielectric ceramic composition as a dielectric layer varies. It was.

本発明は前記従来の課題を解決するもので、Ag,Ag−PdもしくはAg−Ptなどの銀を含んだ電極と同時焼成した場合でも誘電率が安定した誘電体磁器組成物およびその製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a dielectric ceramic composition having a stable dielectric constant even when co-fired with an electrode containing silver such as Ag, Ag-Pd or Ag-Pt, and a method for producing the same. The purpose is to provide.

前記従来の課題を解決するために、本発明は、酸化チタンを主成分とし、相対密度が99%以上で構成された誘電体磁器組成物において、主成分である酸化チタンに対してCuO換算で0.2〜0.9wt%のCuを含有し、且つ少なくともZn,AlまたはCoのいずれか一つを含有した構成とするものである。   In order to solve the above-described conventional problems, the present invention provides a dielectric ceramic composition mainly composed of titanium oxide and having a relative density of 99% or more in terms of CuO with respect to titanium oxide as a main component. The composition contains 0.2 to 0.9 wt% of Cu and at least one of Zn, Al, and Co.

本発明の誘電体磁器組成物およびその製造方法は、AgもしくはAg−Pd、もしくはAg−Ptなどの銀を含んだ電極との同時焼成した時に生じる酸化チタン系の誘電体磁器組成物の異常粒成長を抑制することができるので、銀を含んだ電極と同時焼成した場合においても誘電率が安定した誘電体磁器組成物およびその製造方法を提供することができる。   The dielectric porcelain composition of the present invention and the method for producing the same are described as follows. Since growth can be suppressed, a dielectric ceramic composition having a stable dielectric constant even when co-fired with an electrode containing silver and a method for producing the same can be provided.

(実施の形態1)
以下、本発明の実施の形態1における誘電体磁器組成物およびその製造方法について説明する。
(Embodiment 1)
Hereinafter, the dielectric ceramic composition and the manufacturing method thereof according to Embodiment 1 of the present invention will be described.

本実施の形態1における誘電体磁器組成物およびその製造方法は、第一の工程として、主成分である平均粒子径が0.7μm以下の酸化チタン粉と、平均粒子径が0.1μm未満の酸化銅粉と、平均粒子径が0.1μm未満の酸化亜鉛粉、酸化コバルト粉もしくは酸化アルミニウムのいずれかをTiO2,CuO,ZnO,CoOおよびAl23換算で(表1)に示した組成になるように配合し、有機溶媒を適量加えて分散メディアである0.2mmΦのYTZビーズを用いた媒体攪拌ミルを用いて混合・分散してセラミックスラリーを作製した。 In the dielectric ceramic composition and the manufacturing method thereof in the first embodiment, as a first step, a titanium oxide powder having an average particle diameter of 0.7 μm or less as a main component and an average particle diameter of less than 0.1 μm Table 1 shows the copper oxide powder and any of zinc oxide powder, cobalt oxide powder or aluminum oxide having an average particle diameter of less than 0.1 μm in terms of TiO 2 , CuO, ZnO, CoO and Al 2 O 3 . It mix | blended so that it might become a composition, it mixed and disperse | distributed using the medium stirring mill using the YTZ bead of 0.2mm (PHI) which is a dispersion medium after adding a suitable amount of organic solvents, and produced the ceramic slurry.

次に、第二工程として、これにポリビニルブチラールなどの樹脂材料とDBPなどの可塑剤からなる有機バインダーを加えてスラリー化し、得られたセラミックスラリーを用いてドクターブレード法、リバースロール法あるいはダイコータ法などによってPETフィルムなどのベースフィルムの上に所定の厚みに塗布し、その後乾燥機にて乾燥することによりセラミックグリーンシートを作製した。   Next, as a second step, an organic binder composed of a resin material such as polyvinyl butyral and a plasticizer such as DBP is added to form a slurry, and a doctor blade method, a reverse roll method or a die coater method using the obtained ceramic slurry. A ceramic green sheet was prepared by applying a predetermined thickness on a base film such as a PET film and drying with a dryer.

次に、この誘電体磁器組成物の電気特性を評価するために内層にコンデンサ素子を形成するための電極パターンを印刷形成した積層構造のセラミックグリーンシートの積層体を作製する。   Next, in order to evaluate the electrical characteristics of the dielectric ceramic composition, a multilayer structure of ceramic green sheets having a multilayer structure in which an electrode pattern for forming a capacitor element is printed on the inner layer is prepared.

そのため、第二工程によって得られたセラミックグリーンシートの上にAgペーストを用いて所定の電極パターン形状に印刷形成した後、これらの複数のセラミックグリーンシートを積層して加熱圧着することにより積層体を作製した。   Therefore, after printing and forming in a predetermined electrode pattern shape using Ag paste on the ceramic green sheet obtained in the second step, the plurality of ceramic green sheets are laminated and thermocompression bonded. Produced.

このようにして作製した積層体を第三工程として、大気中雰囲気にて900℃、保持時間2時間の焼成条件にて焼成した。この積層体の内層には2枚の電極パターンによって対向電極を内蔵するコンデンサ素子内蔵の誘電体セラミックを作製した。   The laminate thus produced was fired as a third step in the air atmosphere at 900 ° C. under a firing condition of 2 hours. A dielectric ceramic with a built-in capacitor element having a built-in counter electrode was produced by using two electrode patterns in the inner layer of the laminate.

以上のような製造方法によって作製した誘電体セラミックの誘電体特性の評価結果を(表1)に比較して示す。   The evaluation results of the dielectric properties of the dielectric ceramic produced by the manufacturing method as described above are shown in comparison with (Table 1).

ここで、誘電体磁器組成物の相対密度は、Ag電極が内蔵されていない焼成体の重量・寸法から算出し、酸化チタンの密度(4.2g/cm3)を基準にして相対密度(%)として示した。 Here, the relative density of the dielectric ceramic composition is calculated from the weight and dimensions of the fired body in which no Ag electrode is incorporated, and the relative density (%) based on the density of titanium oxide (4.2 g / cm 3 ). ).

また、焼成された誘電体磁器組成物の平均粒子径の測定と異常粒成長の観察は焼成された誘電体セラミックの断面をSEMで観察して行った。   The average particle size of the fired dielectric ceramic composition and the observation of abnormal grain growth were observed by observing the cross section of the fired dielectric ceramic with an SEM.

また、誘電率はインピーダンスマテリアルアナライザー(E4991A;Agilent)を用いて内蔵されているコンデンサ素子の500MHzでの静電容量を測定し、内層に形成した誘電体層の厚みと対向する電極パターン面積から算出した。   The dielectric constant is calculated from the capacitance of the built-in capacitor element using an impedance material analyzer (E4991A; Agilent) at 500 MHz, and the thickness of the dielectric layer formed on the inner layer and the electrode pattern area facing it. did.

また、用いた各種原料粉末の平均粒子径はレーザー式粒度分布計(LS13320;BECKMAN COULTER)を用いて測定を行った。   Moreover, the average particle diameter of the used various raw material powders was measured using a laser type particle size distribution meter (LS13320; BECKMAN COULTER).

Figure 2006045005
Figure 2006045005

(表1)の結果より、異常粒成長が生じていない組成の試料(実施例1〜実施例9)では、誘電率が安定していることがわかる。ここで、酸化銅は主成分である酸化チタンの焼結性を高めることに効果があり、酸化亜鉛、酸化コバルトもしくは酸化アルミニウムの添加は異常粒成長を抑制する効果を発揮する添加物である。   From the results of (Table 1), it can be seen that the dielectric constant is stable in the samples (Examples 1 to 9) having compositions in which abnormal grain growth does not occur. Here, copper oxide is effective in enhancing the sinterability of titanium oxide, which is the main component, and the addition of zinc oxide, cobalt oxide or aluminum oxide is an additive that exhibits the effect of suppressing abnormal grain growth.

一方、比較例1〜6に示したように酸化銅粉の添加量が0.1wt%以下では相対密度99%以上の誘電体磁器組成物が得られず誘電率は安定するものの相対密度の低下に起因して誘電率の平均値が低下してしまうので望ましくない。酸化銅粉の添加量が1.0wt%以上の場合には酸化亜鉛、酸化コバルトもしくは酸化アルミニウムの添加による異常粒成長の抑制効果が発揮できず、誘電率のばらつきが大きくなってしまう。従って、酸化銅粉の好適な添加量は0.20〜0.90wt%であった。   On the other hand, as shown in Comparative Examples 1 to 6, when the addition amount of the copper oxide powder is 0.1 wt% or less, a dielectric ceramic composition having a relative density of 99% or more cannot be obtained and the dielectric constant is stabilized, but the relative density is lowered. This is not desirable because the average value of the dielectric constant decreases due to the above. When the addition amount of copper oxide powder is 1.0 wt% or more, the effect of suppressing abnormal grain growth due to the addition of zinc oxide, cobalt oxide, or aluminum oxide cannot be exhibited, and the variation in dielectric constant becomes large. Therefore, the suitable addition amount of copper oxide powder was 0.20-0.90 wt%.

さらに、比較のために実施例2,5,8の組成で平均粒子径が0.3μmの酸化銅粉を用いて前記と同様な製造工程を経て試料を作製したところ、最大粒子径が20〜30μmの異常粒成長が観察され、誘電率のばらつきも15〜25%と大きくなっていることが確認された。この異常粒成長は銀電極の近傍に多く発生しており、このことから銀と酸化銅と酸化チタンの存在下において焼結反応が進むと異常粒成長を発生させるものと考えられる。従って、酸化銅の添加方法として全体の添加量としては最適であっても、微視的な領域においては酸化銅の含有率が高くなっており、このような微視的な領域においては酸化亜鉛、酸化コバルトもしくは酸化アルミニウムの添加による異常粒成長の抑制効果が得られにくいことから、酸化銅粉の平均粒子径は0.1μm未満の微粉を用いて十分均一に分散させて存在させることが望ましく、さらに酸化亜鉛、酸化コバルトもしくは酸化アルミニウムの平均粒子径も0.1μm未満の微粉を用いることが効果的であることが分かった。   For comparison, a sample was prepared through the same manufacturing process as described above using copper oxide powder having the composition of Examples 2, 5 and 8 and an average particle size of 0.3 μm. Abnormal grain growth of 30 μm was observed, and it was confirmed that the variation in dielectric constant was as large as 15 to 25%. This abnormal grain growth occurs frequently in the vicinity of the silver electrode, and it is considered that abnormal grain growth occurs when the sintering reaction proceeds in the presence of silver, copper oxide, and titanium oxide. Therefore, even if the addition amount of copper oxide is optimal as an overall addition amount, the copper oxide content is high in the microscopic region, and in such a microscopic region, zinc oxide is high. In addition, since it is difficult to obtain an effect of suppressing abnormal grain growth by adding cobalt oxide or aluminum oxide, it is desirable that the average particle diameter of the copper oxide powder be sufficiently uniformly dispersed using fine powder of less than 0.1 μm. Furthermore, it has been found that it is effective to use fine powder having an average particle diameter of zinc oxide, cobalt oxide or aluminum oxide of less than 0.1 μm.

このような構成(実施例1〜実施例9)とすることにより、銀を含む電極と同時焼成したとしても異常粒成長は発生しないことが分かった。   It was found that by adopting such a configuration (Example 1 to Example 9), abnormal grain growth does not occur even when co-firing with an electrode containing silver.

また、平均粒子径が0.1μm未満の酸化銅粉を用いてもボールミル程度の分散能力では、0.2μm程度の酸化銅粉の2次粒子が存在し、同様に異常粒成長が観察されることから、この現象は、粒子径の大きな酸化銅粒を起点に異常粒成長が生じてしまうと推測される。このことより、媒体攪拌ミルなどを用いて混合・分散してセラミックスラリーを作製することが好ましい。   Further, even when copper oxide powder having an average particle diameter of less than 0.1 μm is used, secondary particles of copper oxide powder of about 0.2 μm are present with a dispersion capacity of about 0.2 μm, and abnormal grain growth is similarly observed. From this, it is assumed that this phenomenon causes abnormal grain growth starting from copper oxide grains having a large grain size. Therefore, it is preferable to prepare a ceramic slurry by mixing and dispersing using a medium stirring mill or the like.

また、酸化チタン粉の平均粒子径を0.7μm以下としたのは、0.7μmよりも大きい場合には900℃の焼成温度で相対密度が99%以上の誘電体磁器組成物が得られなかったためである。また酸化銅の添加量を1wt%以上にすれば相対密度99%以上の誘電体磁器組成物は得られるが、異常粒成長が生じてしまうので望ましくない。   Also, the average particle diameter of the titanium oxide powder is set to 0.7 μm or less because when it is larger than 0.7 μm, a dielectric ceramic composition having a relative density of 99% or more cannot be obtained at a firing temperature of 900 ° C. This is because. Further, if the addition amount of copper oxide is 1 wt% or more, a dielectric ceramic composition having a relative density of 99% or more can be obtained, but it is not desirable because abnormal grain growth occurs.

また、相対密度が99%を下回るような誘電体磁器組成物を用いて銀を含む電極とコンデンサ素子を形成した場合においては絶縁の信頼性が不十分であり、特に耐湿試験などにおいて、銀のマイグレーションなどの発生による短絡不良が発生したりする。従って、銀を含む電極材料を用いてコンデンサ素子を形成するための磁器誘電体組成物としては99%以上の相対密度が不可欠である。   In addition, in the case where an electrode containing silver and a capacitor element are formed using a dielectric porcelain composition having a relative density of less than 99%, the insulation reliability is insufficient. Short circuit failure may occur due to migration. Therefore, a relative density of 99% or more is indispensable as a ceramic dielectric composition for forming a capacitor element using an electrode material containing silver.

以上説明してきたように、主成分である酸化チタンの焼結性を高めるために酸化銅を添加し、この酸化銅の添加と電極に銀を含んだ電極材料とが存在する局部的な箇所において粒界拡散による異常粒成長の発生を抑制する作用を有するZn,Al,Coの少なくとも一つを添加することにより、銀を含む電極との同時焼結性を高めながら局部的な異常粒成長を抑制した相対密度が99%以上の誘電体磁器組成物を得ることができる。このことによって、この誘電体磁器組成物を積層セラミック電子部品などの誘電体層に用いることによりばらつきの少ないコンデンサ素子を内蔵することが可能となる。   As described above, copper oxide is added to enhance the sinterability of titanium oxide, which is the main component, and in the local location where the addition of this copper oxide and the electrode material containing silver are present in the electrode. By adding at least one of Zn, Al, and Co, which has the effect of suppressing the occurrence of abnormal grain growth due to grain boundary diffusion, local abnormal grain growth can be achieved while enhancing the co-sinterability with the electrode containing silver. A dielectric ceramic composition having a suppressed relative density of 99% or more can be obtained. This makes it possible to incorporate capacitor elements with little variation by using this dielectric ceramic composition in a dielectric layer such as a multilayer ceramic electronic component.

また、結晶粒子径を3μm以下とすることにより、誘電特性のばらつきの少ない誘電体磁器組成物とすることができる。   Further, by setting the crystal particle diameter to 3 μm or less, a dielectric ceramic composition with little variation in dielectric characteristics can be obtained.

また、その誘電体磁器組成物を製造する方法として、平均粒子径が0.7μm以下の酸化チタン粉に対して、平均粒子径が0.1μm未満の酸化銅粉をCuO換算で0.2〜0.9wt%添加し、さらに平均粒子径が0.1μm未満の酸化亜鉛粉をZnO換算で0.20wt%、もしくは酸化コバルト粉をCoO換算で0.20wt%、もしくは酸化アルミニウム粉をAl23換算で0.05wt%添加して配合・混合・分散した後、グリーンシート成形した成形体を銀を含んだ電極と1000℃以下の焼成温度で同時焼成することにより、異常粒成長が発生しない相対密度が99%以上の酸化チタン系の誘電体磁器組成物を製造することができる。 In addition, as a method for producing the dielectric ceramic composition, with respect to titanium oxide powder having an average particle diameter of 0.7 μm or less, copper oxide powder having an average particle diameter of less than 0.1 μm is 0.2 to 0.2 in terms of CuO. Add 0.9 wt%, and zinc oxide powder with an average particle size of less than 0.1 μm is 0.20 wt% in terms of ZnO, or cobalt oxide powder is 0.20 wt% in terms of CoO, or aluminum oxide powder is Al 2 O. After adding, mixing, and dispersing 0.05wt% in terms of 3 and then co-firing the green sheet molded body with an electrode containing silver at a firing temperature of 1000 ° C or less, no abnormal grain growth occurs A titanium oxide based dielectric ceramic composition having a relative density of 99% or more can be produced.

その結果、誘電率のばらつきの少ない誘電体磁器組成物およびその製造方法を実現することができる。さらに、このような誘電体磁器組成物を用いて銀を含んだ電極を用いて高精度なコンデンサ素子を内蔵したLCフィルタ、ノイズ対策部品および高周波モジュール部品などの積層型セラミック電子部品を実現することができる。   As a result, it is possible to realize a dielectric ceramic composition with little variation in dielectric constant and a method for manufacturing the same. Furthermore, a multilayer ceramic electronic component such as an LC filter, a noise countermeasure component and a high-frequency module component incorporating a high-accuracy capacitor element using an electrode containing silver using such a dielectric ceramic composition is realized. Can do.

なお、本実施の形態においては第一工程に用いる原料は酸化物を例として説明してきたが、これ以外にも焼成段階で酸化物となる原料であれば良く、水酸化物および炭酸化物などを用いることが可能である。   In the present embodiment, the raw material used in the first step has been described using an oxide as an example. However, any raw material that becomes an oxide in the firing step may be used, such as a hydroxide and a carbonate. It is possible to use.

また、第二工程における成形方法としてセラミックグリーンシートを例に説明してきたが、この成形方法は乾式成形、押出成形などの成形法によっても同様の効果を得られることを確認している。   Moreover, although the ceramic green sheet has been described as an example of the forming method in the second step, it has been confirmed that the same effect can be obtained by a forming method such as dry forming or extrusion forming.

また、第三工程における焼成方法として大気中焼成を例に説明してきたが、この焼成方法は必要に応じて雰囲気焼成によっても同様の効果が得られる。   In addition, although the firing in the air has been described as an example of the firing method in the third step, the same effect can be obtained by firing in the atmosphere if necessary.

(実施の形態2)
以下、本発明の実施の形態2における誘電体磁器組成物およびその製造方法について説明する。
(Embodiment 2)
Hereinafter, the dielectric ceramic composition and the manufacturing method thereof according to Embodiment 2 of the present invention will be described.

本実施の形態2における誘電体磁器組成物は(表2)で示した配合組成の粉末を実施の形態1と同様のプロセスを経て積層型の誘電体磁器組成物を作製した。   As the dielectric ceramic composition in the present embodiment 2, a laminated dielectric ceramic composition was prepared by using the powder having the composition shown in Table 2 through the same process as in the first embodiment.

得られた積層型の誘電体磁器組成物の評価結果を(表2)に比較して示す。   The evaluation results of the obtained multilayer dielectric ceramic composition are shown in comparison with (Table 2).

Figure 2006045005
Figure 2006045005

(表2)の結果より、異常粒成長が生じていない組成の試料(実施例10、実施例11)では誘電率が安定していることがわかる。また酸化亜鉛粉の添加量が0.05wt%以下(比較例7)では誘電体磁器組成物の異常粒成長の抑制効果がなく、酸化亜鉛粉の添加量が0.30wt%以上(比較例8)の場合には相対密度99%以上の誘電体磁器組成物が得られず、相対密度の低下に起因して誘電率の平均値が低下してしまうので望ましくない。従って、酸化亜鉛粉は0.10〜0.25wt%の範囲が好ましい。   From the results of (Table 2), it can be seen that the dielectric constant is stable in the samples (Examples 10 and 11) having compositions in which abnormal grain growth does not occur. Further, when the added amount of zinc oxide powder is 0.05 wt% or less (Comparative Example 7), there is no effect of suppressing abnormal grain growth of the dielectric ceramic composition, and the added amount of zinc oxide powder is 0.30 wt% or more (Comparative Example 8). ) Is not desirable because a dielectric ceramic composition having a relative density of 99% or more cannot be obtained, and the average value of the dielectric constant decreases due to the decrease in relative density. Accordingly, the zinc oxide powder is preferably in the range of 0.10 to 0.25 wt%.

さらに、比較のために実施例10,11の組成で平均粒子径が0.15μmの酸化亜鉛粉を用いて前記と同様なプロセスを経て試料を作製したところ、最大粒子径が20〜30μmの異常粒成長が観察され、誘電率のばらつきも15〜25%と大きくなっていることが確認された。平均粒子径の大きな酸化亜鉛粉では異常粒成長抑制効果が得られないことから、酸化亜鉛粉の平均粒子径は0.1μm未満であることが望ましい。さらに、媒体攪拌ミルで分散を進めるほど、異常粒成長抑制効果は大きくなることが分かった。   For comparison, a sample was prepared through the same process as described above using the zinc oxide powder having the composition of Examples 10 and 11 and an average particle size of 0.15 μm, and the maximum particle size was 20 to 30 μm. Grain growth was observed and it was confirmed that the variation in dielectric constant was as large as 15 to 25%. Since zinc oxide powder having a large average particle size cannot provide an effect of suppressing abnormal grain growth, the average particle size of zinc oxide powder is preferably less than 0.1 μm. Furthermore, it has been found that the effect of suppressing abnormal grain growth increases as the dispersion proceeds with a medium stirring mill.

(実施の形態3)
以下、本発明の実施の形態3における誘電体磁器組成物およびその製造方法について説明する。
(Embodiment 3)
Hereinafter, the dielectric ceramic composition and the manufacturing method thereof according to Embodiment 3 of the present invention will be described.

本実施の形態3における誘電体磁器組成物は(表3)で示した配合組成の粉末を実施の形態1と同様のプロセスを経て積層型の誘電体磁器組成物を作製した。   As the dielectric ceramic composition in the present third embodiment, a laminated dielectric ceramic composition was prepared by using the powder having the composition shown in Table 3 through the same process as in the first embodiment.

得られた積層型の誘電体磁器組成物の評価結果を(表3)に比較して示す。   The evaluation results of the obtained multilayer dielectric ceramic composition are shown in comparison with (Table 3).

Figure 2006045005
Figure 2006045005

(表3)の結果より、異常粒成長が生じていない組成の試料(実施例12、実施例13)では、誘電率が安定していることがわかる。酸化コバルト粉の添加量が0.10wt%以下(比較例9)では誘電体磁器組成物の異常粒成長の抑制効果がなく、酸化コバルト粉の添加量が0.25wt%以上(比較例10)の場合には相対密度99%以上の誘電体磁器組成物が得られず、相対密度の低下に起因して誘電率の平均値が低下してしまうので望ましくない。したがって、酸化コバルト粉は0.15〜0.20wt%とした。   From the results of (Table 3), it can be seen that the dielectric constant is stable in the samples (Example 12 and Example 13) having a composition in which no abnormal grain growth occurs. When the addition amount of cobalt oxide powder is 0.10 wt% or less (Comparative Example 9), there is no effect of suppressing abnormal grain growth of the dielectric ceramic composition, and the addition amount of cobalt oxide powder is 0.25 wt% or more (Comparative Example 10). In this case, a dielectric ceramic composition having a relative density of 99% or more cannot be obtained, and the average value of the dielectric constant decreases due to a decrease in the relative density, which is not desirable. Therefore, the cobalt oxide powder was 0.15 to 0.20 wt%.

さらに、比較のため実施例12,13の組成で平均粒子径が0.30μmの酸化コバルト粉を用いて同様なプロセスを経て試料を作製したところ、最大粒子径が20〜30μmの異常粒成長が観察され、誘電率のばらつきも15から25%と大きくなっていることが確認された。   For comparison, when a sample was prepared through the same process using cobalt oxide powder having the composition of Examples 12 and 13 and an average particle size of 0.30 μm, abnormal grain growth with a maximum particle size of 20 to 30 μm was observed. Observed, it was confirmed that the variation in dielectric constant was as large as 15 to 25%.

この結果より、粒子径の大きな酸化コバルト粉では異常粒成長抑制効果が得られないことから、酸化コバルト粉の平均粒子径は0.1μm未満であることが望ましい。さらに、媒体攪拌ミルで分散を進めるほど、異常粒成長抑制効果は大きくなる。   From this result, it is desirable that the average particle diameter of the cobalt oxide powder is less than 0.1 μm because the effect of suppressing abnormal grain growth cannot be obtained with the cobalt oxide powder having a large particle diameter. Further, the effect of suppressing abnormal grain growth increases as the dispersion is advanced by the medium stirring mill.

(実施の形態4)
以下、本発明の実施の形態4における誘電体磁器組成物およびその製造方法について説明する。
(Embodiment 4)
Hereinafter, a dielectric ceramic composition and a manufacturing method thereof according to Embodiment 4 of the present invention will be described.

本実施の形態4における誘電体磁器組成物は(表4)で示した配合組成の粉末を実施の形態1と同様のプロセスを経て積層型の誘電体磁器組成物を作製した。   The dielectric ceramic composition according to the fourth embodiment is a laminated dielectric ceramic composition produced by using the powder having the composition shown in Table 4 through the same process as in the first embodiment.

得られた積層型の誘電体磁器組成物の評価結果を(表4)に比較して示す。   The evaluation results of the obtained multilayer dielectric ceramic composition are shown in comparison with (Table 4).

Figure 2006045005
Figure 2006045005

(表4)の結果より、異常粒成長が生じていない組成の試料(実施例14、実施例15)では、誘電率が安定していることがわかる。酸化アルミニウム粉の添加量が0.01wt%以下(比較例11)では誘電体磁器組成物の異常粒成長の抑制効果がなく、酸化アルミニウム粉の添加量が0.15wt%以上(比較例12)の場合には相対密度99%以上の誘電体磁器組成物が得られず、相対密度の低下に起因して誘電率の平均値が低下してしまうので望ましくない。従って、酸化アルミニウム粉は0.05〜0.10wt%とした。   From the results of (Table 4), it can be seen that the dielectric constant is stable in the samples (Examples 14 and 15) having compositions in which abnormal grain growth does not occur. When the added amount of aluminum oxide powder is 0.01 wt% or less (Comparative Example 11), there is no effect of suppressing abnormal grain growth of the dielectric ceramic composition, and the added amount of aluminum oxide powder is 0.15 wt% or more (Comparative Example 12). In this case, a dielectric ceramic composition having a relative density of 99% or more cannot be obtained, and the average value of the dielectric constant decreases due to a decrease in the relative density, which is not desirable. Therefore, the aluminum oxide powder was set to 0.05 to 0.10 wt%.

さらに、比較のため実施例2,5,8の組成で平均粒子径が0.30μmの酸化アルミニウム粉を用いて同様なプロセスを経て試料を作製したところ、最大粒子径が20〜30μmの異常粒成長が観察され、誘電率のばらつきも15から25%と大きくなっていることが確認された。   For comparison, a sample was prepared through the same process using aluminum oxide powder having the composition of Examples 2, 5 and 8 and an average particle size of 0.30 μm. As a result, abnormal particles having a maximum particle size of 20 to 30 μm were prepared. Growth was observed, and it was confirmed that the variation in dielectric constant was as large as 15 to 25%.

これらの結果より、粒子径の大きな酸化アルミニウム粉では異常粒成長抑制効果が得られないことから、酸化アルミニウム粉の平均粒子径は0.1μm未満であることが望ましい。さらに、媒体攪拌ミルで分散を進めるほど、異常粒成長抑制効果は大きくなることが分かった。   From these results, since the effect of suppressing abnormal grain growth cannot be obtained with aluminum oxide powder having a large particle size, the average particle size of aluminum oxide powder is preferably less than 0.1 μm. Furthermore, it has been found that the effect of suppressing abnormal grain growth increases as the dispersion proceeds with a medium stirring mill.

以上説明してきたように、主成分である酸化チタンの焼結性を高めるために酸化銅を添加し、この酸化銅の添加と電極に銀を含んだ電極材料とが存在する局部的な箇所において粒界拡散による異常粒成長の発生を抑制する作用を有するZn,Al,Coの少なくともいずれか一つを添加することにより、銀を含む電極との同時焼結性を高めながら局部的な異常粒成長を抑制した相対密度が99%以上の誘電体磁器組成物を得ることができる。   As described above, copper oxide is added to enhance the sinterability of titanium oxide, which is the main component, and in the local location where the addition of this copper oxide and the electrode material containing silver are present in the electrode. By adding at least one of Zn, Al, and Co, which has the effect of suppressing the occurrence of abnormal grain growth due to grain boundary diffusion, local abnormal grains are enhanced while improving the co-sinterability with the electrode containing silver. A dielectric ceramic composition having a relative density of 99% or more with suppressed growth can be obtained.

また、その誘電体磁器組成物を製造する方法として、平均粒子径が0.7μm以下の酸化チタン粉に対して、平均粒子径が0.1μm未満の酸化銅粉をCuO換算で0.2〜0.9wt%添加し、さらに平均粒子径が0.1μm未満の酸化亜鉛粉をZnO換算で0.10〜0.25wt%、もしくは酸化コバルト粉をCoO換算で0.15〜0.20wt%もしくは酸化アルミニウム粉をAl23換算で0.05〜0.10wt%添加して配合・混合・分散させたのち成形した成形体を銀を含んだ電極と1000℃以下の焼成温度で同時焼成した場合においても、相対密度が99%以上の酸化チタン系の誘電体磁器組成物を製造することができる。その結果、誘電率および温度特性などの誘電特性に安定した性能を示す誘電体磁器組成物およびその製造方法を実現することができる。さらに、このような誘電体磁器組成物を用いて銀を含んだ電極を用いてコンデンサ素子を内蔵した高均質なLCフィルタ、ノイズ対策部品、高周波モジュールなどの積層型セラミック電子部品を実現することができる。 In addition, as a method for producing the dielectric ceramic composition, with respect to titanium oxide powder having an average particle size of 0.7 μm or less, copper oxide powder having an average particle size of less than 0.1 μm is 0.2 to 0.2 in terms of CuO. 0.9 wt% is added, and zinc oxide powder having an average particle size of less than 0.1 μm is 0.10 to 0.25 wt% in terms of ZnO, or cobalt oxide powder is 0.15 to 0.20 wt% in terms of CoO, or Aluminum oxide powder was added in an amount of 0.05 to 0.10 wt% in terms of Al 2 O 3 and blended, mixed and dispersed, and then the molded body was co-fired at a firing temperature of 1000 ° C. or less with a silver-containing electrode. Even in this case, a titanium oxide based dielectric ceramic composition having a relative density of 99% or more can be produced. As a result, it is possible to realize a dielectric ceramic composition that exhibits performance stable in dielectric characteristics such as dielectric constant and temperature characteristics, and a manufacturing method thereof. Furthermore, it is possible to realize a multilayer ceramic electronic component such as a high-homogeneous LC filter, a noise countermeasure component, a high-frequency module, etc. with a built-in capacitor element using an electrode containing silver using such a dielectric ceramic composition. it can.

本発明にかかる誘電体磁器組成物およびその製造方法は、Ag,Ag−PdもしくはAg−Ptなどの銀を含んだ電極との同時焼成時に生じる酸化チタン系の誘電体磁器組成物の異常粒成長を抑制して誘電率のばらつきを抑制することが可能となり、各種電子機器等に用いる高精度な積層セラミック電子部品として有用である。   The dielectric ceramic composition and method for producing the same according to the present invention includes abnormal grain growth of a titanium oxide-based dielectric ceramic composition that occurs during simultaneous firing with an electrode containing silver such as Ag, Ag-Pd, or Ag-Pt. It is possible to suppress variations in dielectric constant by suppressing the above, and it is useful as a highly accurate multilayer ceramic electronic component used in various electronic devices.

従来のLCフィルタの透視斜視図A perspective view of a conventional LC filter

符号の説明Explanation of symbols

1 誘電体磁器組成物
2 磁性体磁器組成物
3 コイルの電極パターン
4 コンデンサの電極パターン
DESCRIPTION OF SYMBOLS 1 Dielectric ceramic composition 2 Magnetic ceramic composition 3 Coil electrode pattern 4 Capacitor electrode pattern

Claims (6)

酸化チタンを主成分とし、相対密度が99%以上で構成された誘電体磁器組成物において、主成分である酸化チタンに対してCuO換算で0.2〜0.9wt%のCuを含有し、且つ少なくともZn,AlまたはCoのいずれか一つを含有した誘電体磁器組成物。 In the dielectric ceramic composition composed mainly of titanium oxide and having a relative density of 99% or more, containing 0.2 to 0.9 wt% of Cu in terms of CuO with respect to titanium oxide as the main component, A dielectric ceramic composition containing at least one of Zn, Al, and Co. ZnをZnO換算で0.10〜0.25wt%を含有した請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein Zn is contained in an amount of 0.10 to 0.25 wt% in terms of ZnO. AlをAl23換算で0.05〜0.10wt%を含有した請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein the Al containing 0.05~0.10Wt% in terms of Al 2 O 3. CoをCoO換算で0.15〜0.20wt%を含有した請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein Co is contained in an amount of 0.15 to 0.20 wt% in terms of CoO. 結晶粒子径を3μm以下とした請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein the crystal particle diameter is 3 μm or less. 請求項1に記載の誘電体磁器組成物を、酸化チタンと、酸化銅と、少なくとも酸化亜鉛、酸化アルミニウムまたは酸化コバルトのいずれか一つと、溶媒を所定の配合組成になるように配合した後混合・分散する第一工程と、この第一工程で得られた配合組成に有機バインダーを加えたのち成形体を作製する第二工程と、この第二工程から得られた成形体を1000℃以下の温度で焼成する第三工程により製造する誘電体磁器組成物の製造方法であって、第一工程で用いる酸化チタンの平均粒子径が0.7μm以下であり、平均粒子径が0.1μm未満である酸化銅、酸化亜鉛、酸化アルミニウムまたは酸化コバルトを用いる誘電体磁器組成物の製造方法。 The dielectric ceramic composition according to claim 1 is blended after blending titanium oxide, copper oxide, at least one of zinc oxide, aluminum oxide, or cobalt oxide and a solvent so as to have a predetermined blending composition. The first step to disperse, the second step of producing a molded body after adding an organic binder to the blend composition obtained in the first step, and the molded body obtained from the second step at 1000 ° C. or less A method for producing a dielectric ceramic composition produced by a third step of firing at a temperature, wherein the titanium oxide used in the first step has an average particle size of 0.7 μm or less and an average particle size of less than 0.1 μm. A method for producing a dielectric ceramic composition using a certain copper oxide, zinc oxide, aluminum oxide or cobalt oxide.
JP2004229217A 2004-08-05 2004-08-05 Dielectric ceramic composition and method for manufacturing the same Pending JP2006045005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229217A JP2006045005A (en) 2004-08-05 2004-08-05 Dielectric ceramic composition and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229217A JP2006045005A (en) 2004-08-05 2004-08-05 Dielectric ceramic composition and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006045005A true JP2006045005A (en) 2006-02-16

Family

ID=36024012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229217A Pending JP2006045005A (en) 2004-08-05 2004-08-05 Dielectric ceramic composition and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006045005A (en)

Similar Documents

Publication Publication Date Title
JP5230429B2 (en) COG dielectric composition used for copper electrodes
JP2005306696A (en) Magnetic ferrite, and common mode noise filter and chip transformer using the same
JP2010018482A (en) Ferrite, and manufacturing method thereof
JP2010235327A (en) Dielectric ceramic composition
CN1983478B (en) Electronic part, dielectric porcelain composition and producing method thereof
KR101086804B1 (en) Low-temperature fired ceramic circuit board
JP2007195060A (en) Laminated filter
JP4303715B2 (en) Conductive paste and method for manufacturing multilayer electronic component
JP2011151089A (en) Laminated ceramic electronic component, and method of manufacturing the same
JP2019210204A (en) Composite magnetic material and electronic component using the same
JP2002015913A (en) Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP7255510B2 (en) Laminated coil parts
JP7206671B2 (en) Conductive paste, electronic parts and laminated ceramic capacitors
EP3778530A1 (en) Dielectric ceramic composition and ceramic electronic component
EP3778531A1 (en) Dielectric ceramic composition and ceramic electronic component
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
US11142482B2 (en) Ceramic composition and electronic component using the ceramic composition
KR100804925B1 (en) Producing method of dielectric powder, composite electronic part and producing method thereof
CN112955980B (en) Ni paste and multilayer ceramic capacitor
JP2006045005A (en) Dielectric ceramic composition and method for manufacturing the same
KR101408525B1 (en) Multilayered coil elements
JP2010062261A (en) Composite electronic component
JP2021108326A (en) Multilayer coil component
JP4373968B2 (en) CERAMIC GREEN SHEET COATING AND ITS MANUFACTURING METHOD, CERAMIC GREEN SHEET, AND ELECTRONIC COMPONENT EQUIPPED WITH THE SAME
JP2021108324A (en) Multilayer coil component