JP2006044829A - Non-contact type transportation system - Google Patents

Non-contact type transportation system Download PDF

Info

Publication number
JP2006044829A
JP2006044829A JP2004225028A JP2004225028A JP2006044829A JP 2006044829 A JP2006044829 A JP 2006044829A JP 2004225028 A JP2004225028 A JP 2004225028A JP 2004225028 A JP2004225028 A JP 2004225028A JP 2006044829 A JP2006044829 A JP 2006044829A
Authority
JP
Japan
Prior art keywords
tube
moving body
moving
air
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004225028A
Other languages
Japanese (ja)
Inventor
Sanai Kosugi
佐内 小杉
Takeshi Fukunaga
剛 福永
Kazuo Saito
和夫 斉藤
Koji Kira
浩二 吉良
Minoru Hasegawa
稔 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI SEKKEI KK
Nippon Steel Corp
Original Assignee
KANSAI SEKKEI KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI SEKKEI KK, Sumitomo Metal Industries Ltd filed Critical KANSAI SEKKEI KK
Priority to JP2004225028A priority Critical patent/JP2006044829A/en
Publication of JP2006044829A publication Critical patent/JP2006044829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact type transportation system capable of safely performing transportation when performing inspection along the predetermined transportation route and capable of using a relatively low-costed moving body. <P>SOLUTION: This non-contact type transportation system is structured of a tube body 1 arranged inside a tunnel, the moving body 2 arranged inside the tube body 1 freely to be moved in the tube axial direction by pneumatic transportation, a super-conductive magnet body 3 provided in the moving body 2, and a transporting body 4 provided with a permanent magnet 22 at a position corresponding to the super-conductive magnet 3 and floated in the outer surface of the tube body 1 by repulsion of both the magnet bodies 3 and 22 to each other and following movement of the moving body 2 with pin-up force thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁力を用いた非接触式移送システムに関するものである。   The present invention relates to a non-contact transfer system using magnetic force.

従来、トンネルの内壁面を検査する場合には、トンネル内を走行する走行車両の荷台に、例えばトンネル内壁面の検査装置を搭載し、そして走行車両を低速で走行させながら、例えば赤外線カメラなどの検査装置により、内壁面が検査されていた(例えば、特許文献1参照)。
特開平9−311029号公報
Conventionally, when inspecting the inner wall surface of a tunnel, for example, an inspection device for the inner wall surface of the tunnel is mounted on the loading platform of the traveling vehicle traveling in the tunnel, and the traveling vehicle is driven at a low speed, for example, an infrared camera or the like. The inner wall surface was inspected by the inspection device (see, for example, Patent Document 1).
JP 9-311029 A

ところで、トンネル内壁面の検査については、特に、その周囲の状態に配慮する必要はないが、例えば危険な環境下で検査を行わなければならないような場合、特に、走行車両については、何らかの対策を講じる必要がある。   By the way, with regard to the inspection of the tunnel inner wall surface, it is not particularly necessary to consider the surrounding conditions. However, for example, when the inspection must be performed in a dangerous environment, some measures should be taken especially for traveling vehicles. It is necessary to take.

例えば、爆発の危険がある雰囲気下では、走行車両を防爆仕様にする必要が生じたり、また動力源などを搭載する必要が生じるため、重量化および大型化するとともに走行車両の価格が高くなるという問題がある。   For example, in an atmosphere where there is a risk of explosion, it is necessary to make the traveling vehicle explosion-proof, or it is necessary to mount a power source, etc., which increases the weight and size and increases the price of the traveling vehicle There's a problem.

そこで、本発明は、所定の移送経路に沿って検査などを行う際に、その移送を安全に行い得るとともに、比較的安価な車両を採用し得る非接触式移送システムを提供することを目的とする。   Therefore, the present invention has an object to provide a non-contact type transfer system that can safely perform the inspection when performing inspection or the like along a predetermined transfer route and that can employ a relatively inexpensive vehicle. To do.

上記課題を解決するために、本発明の物体の非接触式移送システムは、移送経路に沿って配設された管体と、この管体内に配置されるとともに空気輸送により管軸方向で移動自在にされた移動体と、この移動体に設けられた超電導磁石体と、この超電導磁石体に対応する位置で永久磁石体が設けられ且つこれら両磁石体同士の反発力により管体の外面に浮遊されるとともにそのピン止め力により移動体の移動に追従するようにされた移送体とから構成したものである。   In order to solve the above-described problems, a non-contact transfer system for an object according to the present invention includes a tube disposed along a transfer path, and is disposed in the tube and is movable in the tube axis direction by pneumatic transportation. A moving body, a superconducting magnet body provided on the moving body, a permanent magnet body provided at a position corresponding to the superconducting magnet body, and floating on the outer surface of the tube body due to the repulsive force between the two magnet bodies. And a transfer body adapted to follow the movement of the moving body by the pinning force.

また、請求項2に係る非接触式移送システムは、請求項1に記載の移送システムにおける移送体に、検査装置を搭載したものである。   According to a second aspect of the present invention, there is provided a non-contact transfer system in which an inspection device is mounted on a transfer body in the transfer system according to the first aspect.

このように、案内体を移動させるための移動体を、管体内に配置したので、例えば案内体側が爆発などの危険がある雰囲気下(環境状態下)にある場合でも、駆動源である移動体をその雰囲気下から分離された管体内に配置しているため、移動体については特別な仕様にする必要がなく、したがって安価なものを用いることができる。   As described above, since the moving body for moving the guide body is arranged in the pipe body, for example, even when the guide body side is in an atmosphere (environmental state) where there is a risk of explosion or the like, the moving body that is a drive source Is arranged in a pipe body separated from the atmosphere, the mobile body does not need to have a special specification, and therefore, an inexpensive one can be used.

しかも、案内体については、超電導磁石体からの磁束による永久磁石体の反発力で管体の外側に浮上させるとともに超電導磁石体によるピン止め力により案内体を移動体側に追従させるようにしているため、当該案内体を駆動するための駆動源を必要とせず、また移動体については、空気輸送方式を用いているため、移動体自体に駆動源を具備させる必要がなく、したがって移動体自体の小型化および軽量化を図ることができる。   Moreover, the guide body is floated to the outside of the tube body by the repulsive force of the permanent magnet body due to the magnetic flux from the superconducting magnet body, and the guide body is made to follow the moving body side by the pinning force by the superconducting magnet body. In addition, a driving source for driving the guide body is not required, and since the moving body uses an air transportation method, it is not necessary to provide the driving source in the moving body itself. And weight reduction can be achieved.

[実施の形態]
以下、本発明の実施の形態に係る非接触式移送システムを、図1〜図6に基づき説明する。
[Embodiment]
Hereinafter, a non-contact transfer system according to an embodiment of the present invention will be described with reference to FIGS.

なお、本実施の形態に係る非接触式移送システムにおいては、例えばトンネル内壁面の検査を行うために、検査装置をその内壁面に沿って移送するものとして説明する。したがって、トンネル内検査システムと呼ぶこともできる。なお、この非接触式移送システムは、後述するように、空気圧を用いて移送を行うようにしているため、気流駆動式移送システムと称することもできる。   In the non-contact transfer system according to this embodiment, for example, in order to inspect the inner wall surface of the tunnel, the inspection apparatus is described as being transferred along the inner wall surface. Therefore, it can also be called an in-tunnel inspection system. In addition, since this non-contact-type transfer system is designed to perform transfer using air pressure, as will be described later, it can also be referred to as an airflow-driven transfer system.

この非接触式移送システムは、図1および図2に示すように、トンネルT内の検査範囲の全長に亘って配設された所定内径(すなわち、円筒形である)の非磁性体の例えば合成樹脂にて形成された管体1と、この管体1の内部に且つ空気輸送により管軸方向で移動自在に配置された移動体2と、この移動体2に搭載された超電導磁石体(超電導バルク体ともいう)3と、上記管体1の外側の上方に且つ上記移動体2に搭載された超電導磁石体3からの磁力(磁束)により所定距離(所定隙間)だけ浮上されるとともに超電導磁石体3すなわち移動体2の移動に伴って移動される案内体(被移動体ともいう)4と、上記管体1内に空気(圧縮空気である)を供給または空気を吸引して上記移動体2を管軸方向で移動させるための給排気装置5とから構成されており、また上記案内体4にトンネル内壁面Tsの検査装置6が搭載されている。   As shown in FIGS. 1 and 2, this non-contact transfer system is, for example, a synthesis of a non-magnetic material having a predetermined inner diameter (that is, a cylindrical shape) disposed over the entire length of the inspection range in the tunnel T. A tubular body 1 formed of resin, a movable body 2 disposed in the tubular body 1 so as to be movable in the axial direction of the pipe by pneumatic transportation, and a superconducting magnet body (superconducting body) mounted on the movable body 2 3) and a superconducting magnet that is levitated by a predetermined distance (predetermined gap) by the magnetic force (magnetic flux) from the superconducting magnet body 3 mounted on the movable body 2 and above the outer side of the tube body 1 The moving body 3, that is, the guide body (also referred to as the moving body) 4 that is moved along with the movement of the moving body 2, and the moving body by supplying air (which is compressed air) or sucking air into the tube body 1. An air supply / exhaust device 5 for moving 2 in the direction of the pipe axis; Are al configurations and inspection apparatus 6 of tunnel wall Ts to the guide member 4 is mounted.

上記移動体2は、図3〜図5に示すように、管軸方向で長くされるとともに液体窒素11aが封入された冷却剤容器11と、この冷却剤容器11の前後面に管軸方向で突設された軸体部12と、この軸体部12の周囲四方に放射状に突設された取付ブラケット13の先端に回転自在に設けられた移動輪14と、上記冷却剤容器11の前後端面に設けられて空気圧を受けるための環状の空気受け板15とから構成されている。なお、この空気受け板15の外周面は、管体1内を移動するため、当該管体1の内壁面1aとの間には、少しの隙間が設けられている。勿論、空気が逃げるのを防止するために、空気受け板15側にシール材を取り付けるようにしてもよい。   As shown in FIGS. 3 to 5, the moving body 2 is elongated in the tube axis direction and filled with the liquid nitrogen 11 a, and the front and rear surfaces of the coolant container 11 are arranged in the tube axis direction. A projecting shaft body portion 12, a movable wheel 14 rotatably provided at the tip of a mounting bracket 13 projecting radially around the shaft body portion 12, and front and rear end surfaces of the coolant container 11 And an annular air receiving plate 15 for receiving air pressure. In addition, since the outer peripheral surface of the air receiving plate 15 moves in the tube body 1, a small gap is provided between the air receiving plate 15 and the inner wall surface 1 a of the tube body 1. Of course, in order to prevent the air from escaping, a sealing material may be attached to the air receiving plate 15 side.

また、上記案内体4は、管体1の上面に覆い被さるような樋状(断面が円弧状)にされた案内本体21と、この案内本体21に且つ上記超電導磁石体3に対応する位置に設けられた永久磁石体22とから構成されており、またこの案内本体21の上面に、載置台23を介して検査装置6が搭載されている。   Further, the guide body 4 has a guide body 21 that has a bowl shape (a cross section is an arc shape) so as to cover the upper surface of the tube body 1, and a position corresponding to the guide body 21 and the superconducting magnet body 3. The inspection device 6 is mounted on the upper surface of the guide main body 21 via the mounting table 23.

ところで、上記超電導磁石体3は、超電導バルク体ともいい、イットリウム、バリウム、銅、酸素(YBCOとも呼ばれている)などから構成されており、超低温状態では永久に電流が流れるものであり、マイスナー効果およびピン止め効果により、当該超電導磁石体3に対向して配置された永久磁石体22は、浮上力とともに案内方向(管軸方向)が拘束され、したがって超電導磁石体3を移動させると、永久磁石体22が浮上した状態で当該超電導磁石体3に追従することになる。すなわち、移動体2が移動すれば、管体1の外側に配置される案内体4が管体1から浮上した状態で当該移動体2に追従して移動することになる。勿論、冷却剤容器11に封入された液体窒素11aにより超電導磁石体3の超低温状態が維持されている。   By the way, the superconducting magnet body 3 is also referred to as a superconducting bulk body, and is composed of yttrium, barium, copper, oxygen (also referred to as YBCO), and the like. Due to the effect and the pinning effect, the permanent magnet body 22 arranged opposite to the superconducting magnet body 3 is restrained in the guide direction (tube axis direction) together with the levitation force. Therefore, if the superconducting magnet body 3 is moved, it becomes permanent. The magnet body 22 follows the superconducting magnet body 3 in a floating state. That is, if the moving body 2 moves, the guide body 4 arranged outside the tubular body 1 moves following the moving body 2 in a state where it floats from the tubular body 1. Of course, the ultra-low temperature state of the superconducting magnet body 3 is maintained by the liquid nitrogen 11a sealed in the coolant container 11.

なお、常温中で外部磁界中に置かれた超電導バルク体を臨界温度以下に冷却すると、超電導化した部分からマイスナー効果によりはじかれた磁束が、格子欠陥や不純物など超電導化しない部分に拘束される。このとき、超電導バルク体に外力が働いて、その位置を変えようとすると、拘束した磁束分布と外部磁界のパターンが一致する空間に戻ろうとする復元力が発生し、これをピン止め力という。   When a superconducting bulk body placed in an external magnetic field at room temperature is cooled below the critical temperature, the magnetic flux repelled by the Meissner effect from the superconducting part is constrained to the part that is not superconducting such as lattice defects and impurities. . At this time, if an external force acts on the superconducting bulk body and attempts to change its position, a restoring force is generated to return to a space where the constrained magnetic flux distribution matches the pattern of the external magnetic field, which is called pinning force.

次に、給排気装置5について説明する。
この給排気装置(空気輸送装置ともいう)5は、図1に示すように、上記管体1の一端側(閉塞側)に接続された空気配管31と、この空気配管31の途中に設けられた送風機32と、この送風機32の吐出側空気配管31aと吸込側空気配管31bとを接続する第1バイパス管33と、同じく送風機32の吐出側空気配管31aと吸込側空気配管31bとを接続する第2バイパス管34と、これら各バイパス管32,33の途中に設けられた第1および第2開閉弁35,36と、各空気配管31a,31bにおける両バイパス管33,34の接続部分間に設けられた第3および第4開閉弁37,38とから構成されている。なお、空気配管31の先端にはサイレンサー39が取り付けられている。
Next, the air supply / exhaust device 5 will be described.
As shown in FIG. 1, the air supply / exhaust device (also referred to as an air transport device) 5 is provided in the middle of the air pipe 31 connected to one end side (closed side) of the tube body 1 and the air pipe 31. The blower 32, the first bypass pipe 33 that connects the discharge-side air pipe 31a and the suction-side air pipe 31b of the blower 32, and the discharge-side air pipe 31a and the suction-side air pipe 31b of the blower 32 are also connected. Between the second bypass pipe 34, the first and second on-off valves 35, 36 provided in the middle of each of the bypass pipes 32, 33, and the connection portions of both bypass pipes 33, 34 in the air pipes 31 a, 31 b The third and fourth on-off valves 37 and 38 are provided. A silencer 39 is attached to the tip of the air pipe 31.

したがって、第1および第2開閉弁35,36を開けるとともに第3および第4開閉弁37,38を閉じて送風機32を駆動すれば、矢印aにて示すように、空気が管体1内に供給されて移動体2は矢印方向bに移動される。   Therefore, when the first and second on-off valves 35 and 36 are opened and the third and fourth on-off valves 37 and 38 are closed and the blower 32 is driven, air is introduced into the tube 1 as indicated by an arrow a. The supplied moving body 2 is moved in the arrow direction b.

また、逆に、第3および第4開閉弁37,38を開けるとともに第1および第2開閉弁35,36を閉じて送風機32を駆動すれば、矢印cにて示すように、管体1から空気が吸引されて移動体2は矢印方向dに移動される。
次に、上記構成によるトンネル内壁面1aの検査作業について説明する。
Conversely, when the third and fourth on-off valves 37 and 38 are opened and the first and second on-off valves 35 and 36 are closed and the blower 32 is driven, as shown by the arrow c, the tube 1 Air is sucked and the moving body 2 is moved in the arrow direction d.
Next, the inspection work of the tunnel inner wall surface 1a configured as described above will be described.

まず、移動体2に設けられた超電導磁石体3に磁力を与えて磁束を発生させた状態にする。すると、この超電導磁石体3からの磁束により、管体1の外側に配置された案内体4は、その案内本体21に設けられた永久磁石体22の反発力により、僅かに、浮上した状態となる。   First, a magnetic force is applied to the superconducting magnet body 3 provided on the moving body 2 to generate a magnetic flux. Then, due to the magnetic flux from the superconducting magnet body 3, the guide body 4 arranged outside the tube body 1 is slightly lifted by the repulsive force of the permanent magnet body 22 provided in the guide body 21. Become.

この状態で、給排気装置5の送風機32を駆動して空気を管体1内に供給すると、移動体2は矢印方向bで移動するとともに、超電導磁石体3のピン止め力により、案内体4側に設けられた永久磁石体22が、移動する超電導磁石体3と一体になろうとするため、当該案内体4は移動体2に追従して管体1に沿って移動する。すなわち、案内体4は、移動体2が移動する管体1内とは別な空間である外側で且つ他の部材とは非接触でもって移動案内される。   In this state, when the air blower 32 of the air supply / exhaust device 5 is driven to supply air into the pipe body 1, the moving body 2 moves in the arrow direction b, and the guide body 4 is driven by the pinning force of the superconducting magnet body 3. Since the permanent magnet body 22 provided on the side tends to be integrated with the moving superconducting magnet body 3, the guide body 4 follows the moving body 2 and moves along the tube body 1. That is, the guide body 4 is moved and guided outside the tubular body 1 in which the moving body 2 moves and in a non-contact manner with other members.

そして、当然に、この案内体4に搭載された検査装置6により、トンネル内壁面Tsの検査が行われる。そして、この検査データについては、例えば無線通信などにより、データ収集箇所7に送られる。勿論、検査データを案内体4側に保持しておき、後で回収するようにしてもよい。   Naturally, the inspection of the tunnel inner wall surface Ts is performed by the inspection device 6 mounted on the guide body 4. And about this test | inspection data, it sends to the data collection location 7 by wireless communication etc., for example. Of course, the inspection data may be held on the guide body 4 side and collected later.

このように、案内体4を移動させるための移動体2を、管体1内に配置したので、例えば案内体4側が爆発などの危険がある雰囲気下(環境状態下)にある場合でも、駆動源である移動体2をその雰囲気下から分離された管体1内に配置しているため、安全に移動させてトンネル内を検査することができる。   As described above, since the moving body 2 for moving the guide body 4 is arranged in the tube body 1, for example, even when the guide body 4 side is in an atmosphere (environmental state) where there is a risk of explosion or the like, the driving body 2 is driven. Since the moving body 2 which is a source is disposed in the tube body 1 separated from the atmosphere, the inside of the tunnel can be inspected safely.

しかも、案内体4については、超電導磁石体3からの磁束による永久磁石体22の反発力で管体1の外側に浮上させるとともに超電導磁石体3によるピン止め力により案内体4を移動体2側に追従させるようにしているため、当該案内体4を駆動するための駆動源を必要とせず、また移動体2については、空気輸送方式を用いているため、移動体2自体に駆動源を具備させる必要がなく、したがって移動体2自体の小型化および軽量化を図ることができる。   Moreover, with respect to the guide body 4, the guide body 4 is floated to the outside of the tube body 1 by the repulsive force of the permanent magnet body 22 due to the magnetic flux from the superconducting magnet body 3 and the guide body 4 is moved to the moving body 2 side by the pinning force of the superconducting magnet body 3. Therefore, a driving source for driving the guide body 4 is not required, and since the moving body 2 uses an air transportation system, the moving body 2 itself has a driving source. Therefore, the mobile body 2 itself can be reduced in size and weight.

ところで、上記実施の形態においては、管体の一端側から空気の供給および排出を行うことにより移動体を往復方向で移動させるように説明したが、例えば空気配管を管体の両端部に接続しておき、移動体の移動方向に応じた端部から管体内に空気を供給させることにより、当該移動体を所定方向(往方向または復方向)に移動させるようにしてもよい。   By the way, in the above-described embodiment, it has been described that the moving body is moved in the reciprocating direction by supplying and discharging air from one end side of the tubular body. For example, an air pipe is connected to both ends of the tubular body. In addition, the moving body may be moved in a predetermined direction (forward or backward direction) by supplying air into the pipe body from the end corresponding to the moving direction of the moving body.

また、上記実施の形態においては、管体を円筒形として、すなわち断面形状を円形(環状)として説明したが、円形以外の形状でもよく、例えば断面形状が正方形、長方形などの矩形状であってもよい。   In the above embodiment, the tubular body is described as a cylindrical shape, that is, the cross-sectional shape is circular (annular). However, the cross-sectional shape may be other than a circular shape, for example, a rectangular shape such as a square or a rectangle. Also good.

さらに、上記実施の形態においては、非接触式移送システムを、トンネル内壁面の検査を行うものに適用して説明したが、例えばクリーンルーム内における物品の移送システム、高放射線レベル下での検査用システムまたは移送用システムにも利用することができる。場合によっては、水中での検査用システムまたは移送用システムにも利用することができる。   Further, in the above embodiment, the non-contact transfer system has been described as applied to the inspection of the inner wall surface of the tunnel. For example, an article transfer system in a clean room, an inspection system under a high radiation level. Or it can utilize also for the system for transfer. In some cases, it can also be used for underwater inspection systems or transfer systems.

本発明の実施の形態に係る非接触式移送システムの概略全体構成を示す断面図である。It is sectional drawing which shows the schematic whole structure of the non-contact-type transfer system which concerns on embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 同搬送システムにおける移動体および移送体の構成を示す断面図である。It is sectional drawing which shows the structure of the mobile body and transfer body in the conveyance system. 同搬送システムにおける移動体および移送体の構成を示す一部切欠平面図である。It is a partially cutaway top view which shows the structure of the moving body and transfer body in the conveyance system. 図3のB−B断面図である。It is BB sectional drawing of FIG. 図3のC−C断面図である。It is CC sectional drawing of FIG.

符号の説明Explanation of symbols

1 管体
2 移動体
3 超電導磁石体
4 案内体
5 給排気装置
6 検査装置
11 冷却剤容器
15 空気受け板
21 案内本体
22 永久磁石体
31 空気配管
32 送風機
33 第1バイパス管
34 第2バイパス管
35〜38 開閉弁
DESCRIPTION OF SYMBOLS 1 Tubing body 2 Moving body 3 Superconducting magnet body 4 Guide body 5 Supply / exhaust device 6 Inspection device 11 Coolant container 15 Air receiving plate 21 Guide body 22 Permanent magnet body 31 Air pipe 32 Blower 33 First bypass pipe 34 Second bypass pipe 35-38 On-off valve

Claims (2)

移送経路に沿って配設された管体と、この管体内に配置されるとともに空気輸送により管軸方向で移動自在にされた移動体と、この移動体に設けられた超電導磁石体と、この超電導磁石体に対応する位置で永久磁石体が設けられ且つこれら両磁石体同士の反発力により管体の外面に浮遊されるとともにそのピン止め力により移動体の移動に追従するようにされた移送体とから構成したことを特徴とする非接触式移送システム。   A tube disposed along the transfer path, a movable body disposed in the tubular body and movable in the direction of the tube axis by pneumatic transportation, a superconducting magnet body provided on the movable body, A transfer in which a permanent magnet body is provided at a position corresponding to the superconducting magnet body and is floated on the outer surface of the tube body by the repulsive force between the two magnet bodies, and the movement of the moving body is followed by the pinning force. A non-contact transfer system comprising a body. 移送体に検査装置を搭載したことを特徴とする請求項1に記載の非接触式移送システム。   The non-contact transfer system according to claim 1, wherein an inspection device is mounted on the transfer body.
JP2004225028A 2004-08-02 2004-08-02 Non-contact type transportation system Pending JP2006044829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225028A JP2006044829A (en) 2004-08-02 2004-08-02 Non-contact type transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225028A JP2006044829A (en) 2004-08-02 2004-08-02 Non-contact type transportation system

Publications (1)

Publication Number Publication Date
JP2006044829A true JP2006044829A (en) 2006-02-16

Family

ID=36023850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225028A Pending JP2006044829A (en) 2004-08-02 2004-08-02 Non-contact type transportation system

Country Status (1)

Country Link
JP (1) JP2006044829A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895755B1 (en) 2008-07-28 2009-04-30 김웅배 Sheet pattern molding appartus
CN103693447A (en) * 2013-12-30 2014-04-02 中国科学院西安光学精密机械研究所 Magnetic force transmission device
EP2460446A4 (en) * 2009-07-31 2016-03-02 Ishino Seisakusyo Co Ltd Food and drink conveying device
EP3168976A1 (en) * 2015-11-11 2017-05-17 Airbus Operations GmbH Inspection apparatus and inspection system for inspecting access-restricted spaces and areas
WO2019038234A1 (en) * 2017-08-23 2019-02-28 Studer Maschinenbau Ag Transport system and uses thereof
WO2020241081A1 (en) * 2019-05-30 2020-12-03 日本金銭機械株式会社 Paper sheet transport mechanism and airflow control device
JP2020196630A (en) * 2020-08-11 2020-12-10 日本金銭機械株式会社 Air stream control device
JP2022060767A (en) * 2020-10-05 2022-04-15 日本金銭機械株式会社 Conveyance body passage tube, and connection part structure of blast pipe
CN117284778A (en) * 2023-10-18 2023-12-26 成都德力斯实业有限公司 Contactless power transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140928A (en) * 1985-12-13 1987-06-24 Toshiba Corp Conveying system
JPS62173907A (en) * 1986-01-24 1987-07-30 Daifuku Co Ltd Magnetic levitationary transporting facilities by use of linear motor
JPH04365722A (en) * 1991-06-14 1992-12-17 Hitachi Ltd Magnetic levitation transport apparatus
JPH06144567A (en) * 1992-03-21 1994-05-24 Ulvac Japan Ltd Magnetic levitation transport device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140928A (en) * 1985-12-13 1987-06-24 Toshiba Corp Conveying system
JPS62173907A (en) * 1986-01-24 1987-07-30 Daifuku Co Ltd Magnetic levitationary transporting facilities by use of linear motor
JPH04365722A (en) * 1991-06-14 1992-12-17 Hitachi Ltd Magnetic levitation transport apparatus
JPH06144567A (en) * 1992-03-21 1994-05-24 Ulvac Japan Ltd Magnetic levitation transport device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895755B1 (en) 2008-07-28 2009-04-30 김웅배 Sheet pattern molding appartus
EP2460446A4 (en) * 2009-07-31 2016-03-02 Ishino Seisakusyo Co Ltd Food and drink conveying device
CN103693447A (en) * 2013-12-30 2014-04-02 中国科学院西安光学精密机械研究所 Magnetic force transmission device
EP3168976A1 (en) * 2015-11-11 2017-05-17 Airbus Operations GmbH Inspection apparatus and inspection system for inspecting access-restricted spaces and areas
US9934896B2 (en) 2015-11-11 2018-04-03 Airbus Operations Gmbh Inspection apparatus and inspection system for inspecting access-restricted spaces and areas
WO2019038234A1 (en) * 2017-08-23 2019-02-28 Studer Maschinenbau Ag Transport system and uses thereof
WO2020241081A1 (en) * 2019-05-30 2020-12-03 日本金銭機械株式会社 Paper sheet transport mechanism and airflow control device
JP2020192241A (en) * 2019-05-30 2020-12-03 日本金銭機械株式会社 Paper sheet conveyance mechanism
JP2020196630A (en) * 2020-08-11 2020-12-10 日本金銭機械株式会社 Air stream control device
JP2022060767A (en) * 2020-10-05 2022-04-15 日本金銭機械株式会社 Conveyance body passage tube, and connection part structure of blast pipe
JP7138681B2 (en) 2020-10-05 2022-09-16 日本金銭機械株式会社 Conveyor path pipe and blower pipe joint structure
CN117284778A (en) * 2023-10-18 2023-12-26 成都德力斯实业有限公司 Contactless power transmission device

Similar Documents

Publication Publication Date Title
US5234303A (en) In-vacuum conveyance robot
JP2006044829A (en) Non-contact type transportation system
JP2009083954A (en) Vacuum transportation system
JP2003197709A (en) Transfer mechanism for body to be treated and treatment system
US20120121371A1 (en) Device for particle free handling of substrates
WO2008075616A1 (en) Running gear utilizing permanent magnet
JP2014144527A (en) Industrial robot
KR20100116209A (en) Article conveying robot device
US9934896B2 (en) Inspection apparatus and inspection system for inspecting access-restricted spaces and areas
CN116620859A (en) Mechanical arm device for storing and carrying wafers
JPH03223021A (en) Carrier device used in special environment
JPH0779507A (en) Carrying system
JP4180128B2 (en) Magnetic levitation transport device
JP2547403B2 (en) Magnetic levitation transport device for vacuum equipment
JPH0465853A (en) Conveying robot in vacuum
JP2807778B2 (en) Vertical transfer device in vacuum
JPH07109024A (en) Carrying device
US20050220545A1 (en) Apparatus for transferring flowable material
CN215159131U (en) Auxiliary device for increasing compressed air propelling force of logistics system
JPH03121971A (en) Conveyor device
JPH03284106A (en) Conveyer
CN220537981U (en) Conveying device and epitaxial furnace
JP3447103B2 (en) Magnetically levitated transfer device
JPH06255775A (en) Carrying device
JP3044110U (en) Capsule carrier using compressed air

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118