JP2006044270A - Die with ultra-hard coating - Google Patents

Die with ultra-hard coating Download PDF

Info

Publication number
JP2006044270A
JP2006044270A JP2005224611A JP2005224611A JP2006044270A JP 2006044270 A JP2006044270 A JP 2006044270A JP 2005224611 A JP2005224611 A JP 2005224611A JP 2005224611 A JP2005224611 A JP 2005224611A JP 2006044270 A JP2006044270 A JP 2006044270A
Authority
JP
Japan
Prior art keywords
mold
carbon nitride
die
cubic lattice
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005224611A
Other languages
Japanese (ja)
Inventor
Shitetsu Kan
士哲 簡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Publication of JP2006044270A publication Critical patent/JP2006044270A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die which has oxidation resistance, diffusion resistance and high mechanical strength properties and is easy of mold releasing. <P>SOLUTION: The invention provides a die for manufacturing molded glass articles, which have a base with a molding surface and an ultra-hard coat coated on the molding surface. The ultra-hard coat comprises an amorphous nitrided carbon base and a cubic lattice nitrided carbon particle dispersed in the amorphous nitrided carbon base. The die is made easily mold releasable without adhering to an optical glass molded article due to good lubricity of the amorphous nitrided carbon, and increased in mechanical strength of the molded surface due to very high hardness of the cubic lattice nitrided carbon. Further, the ultra-hard coat can prevent die base metal elements from diffusion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金型に関し、特に、離型がし易い高硬度の金型に関するものである。   The present invention relates to a mold, and particularly to a high-hardness mold that can be easily released.

金型は、例えば非球面レンズ、球面レンズ、プリズムなどの光学ガラス成形品の製造過程に広く使用されていて、押出成形法(Direct Press-molding)による光学ガラス成形品は、砂まき、研磨などの精製加工をする必要がなく、生産効率及び生産量が大幅に向上し、且つ生産品の品質が良好である。しかし、押出成形法は金型の化学安定性、耐熱衝撃性、機械強度、及び表面平滑度などにおいて、かなりの要求がされている。従って、該押出成形技術の発展は、主に金型の材料及びその製造技術の進歩により決まる。一般に、押出成形法に使用される金型においては、以下のようなことが要求されている。
(a)高温時に良好な剛性、耐機械衝撃強度、及び十分な硬度を有し、
(b)急激な加熱や冷却を行うような熱衝撃過程において、金型はうねりや変形を起こさず、
(c)高温成形時に金型の成形面は光学ガラスと化学反応をせず、また光学ガラスと接着することなく、
(d)高温時に酸化反応をせず、
(e)高精度、高表面平滑度の成形面を得ることが容易であり、
(f)コストが低い。
Molds are widely used in the manufacturing process of optical glass moldings such as aspherical lenses, spherical lenses, and prisms, and optical glass moldings by direct press-molding are sanded and polished. No refining process is required, production efficiency and production volume are greatly improved, and the quality of the product is good. However, the extrusion molding method is considerably required in terms of the chemical stability, thermal shock resistance, mechanical strength, and surface smoothness of the mold. Therefore, the development of the extrusion technology is mainly determined by the progress of the mold material and the manufacturing technology thereof. In general, the following is required in a mold used for an extrusion molding method.
(A) has good rigidity at high temperatures, mechanical impact resistance, and sufficient hardness;
(B) In a thermal shock process such as rapid heating or cooling, the mold does not swell or deform,
(C) The molding surface of the mold does not chemically react with the optical glass during high-temperature molding, and does not adhere to the optical glass.
(D) No oxidation reaction at high temperatures,
(E) It is easy to obtain a molding surface with high accuracy and high surface smoothness,
(F) Cost is low.

一般に、従来技術ではステンレスまたは耐熱合金を金型の材料としており、これらの金型は高温で酸化し易く、急激な加熱または冷却を行うような熱衝撃によって晶粒が大きくなる。従って、金型の表面は粗雑化し、光学ガラスを接着してしまう。   In general, in the prior art, stainless steel or heat-resistant alloy is used as a mold material, and these molds are easily oxidized at a high temperature, and crystal grains are enlarged by a thermal shock such as rapid heating or cooling. Accordingly, the surface of the mold becomes rough and the optical glass is bonded.

前記問題を解決するために、非金属及び超硬合金が金型の材料として使用されてきた。例えば、炭化ケイ素(SiC)、窒化ケイ素(Si)、チタンカーバイド(TiC)、タングステンカーバイド(WC)などが金型の製造に用いられている。しかし、前記炭化セラミックの硬度はかなり高く、例えば高精度な非球面等の所要の形状に加工し難い。また、超硬合金は、高温における一定時間の使用により酸化し易いものである。 In order to solve the above problems, nonmetals and cemented carbides have been used as mold materials. For example, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), titanium carbide (TiC), tungsten carbide (WC), and the like are used for manufacturing the mold. However, the hardness of the carbonized ceramic is quite high, and it is difficult to process it into a required shape such as a highly accurate aspherical surface. In addition, cemented carbide is easily oxidized when used at a high temperature for a predetermined time.

従って、炭化物または超硬合金からなる金型ベースと、該金型ベースの表面に形成されるメッキ膜または被膜とを含む複合金型が開発されている。例えば、特許文献1には、押出成形に用いられる光学ガラス成形品の複合金型が開示されており、そこでは、高強度の超硬合金及び炭化セラミック、金属セラミックを金型ベースとして、金型の成形面に(1)イリジウム(Ir)膜と、(2)白金(Pt)とレニウム(Re)とオスミウム(Os)とロジウム(Rh)とルテニウム(Ru)のうち少なくとも一つのものとイリジウムとからなる合金膜と、(3)ルテニウム膜と、(4)白金(Pt)とレニウム(Re)とオスミウム(Os)とロジウム(Rh)のうち少なくとも一つのものとルテニウムとからなる合金膜、のうち一つの膜が形成されている。   Therefore, a composite mold including a mold base made of carbide or cemented carbide and a plating film or coating formed on the surface of the mold base has been developed. For example, Patent Document 1 discloses a composite mold of an optical glass molded product used for extrusion molding, in which a mold is made using a high-strength cemented carbide, carbide ceramic, and metal ceramic as a mold base. (1) iridium (Ir) film, (2) platinum (Pt), rhenium (Re), osmium (Os), rhodium (Rh), ruthenium (Ru) and iridium An alloy film comprising: (3) a ruthenium film; and (4) an alloy film comprising at least one of platinum (Pt), rhenium (Re), osmium (Os), and rhodium (Rh) and ruthenium. One of the films is formed.

しかし、上記の金型ベースにおいては、前記貴金属またはその合金の被覆膜を使用したので、金型のコストが増加し、さらに、炭化セラミックまたは金属セラミック材料からなる金型ベースの焼結過程において、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)などの金属元素を添加する必要があり、これらの金型は、一定時間の使用の後、その添加された金属元素が前記貴金属膜から金型の外表面に拡散されて原料ガラスと反応し、金型の精度及び成形品の品質に影響を与えることがある。   However, in the above-mentioned mold base, since the coating film of the noble metal or its alloy is used, the cost of the mold increases, and further, in the sintering process of the mold base made of carbonized ceramic or metal ceramic material. It is necessary to add a metal element such as cobalt (Co), nickel (Ni), molybdenum (Mo), etc. These molds are used after a certain period of time, and the added metal element is removed from the noble metal film. It may be diffused on the outer surface of the mold and react with the raw glass, affecting the precision of the mold and the quality of the molded product.

また、プラズマCVD法(Plasma CVD)または熱CVD法(Thermal CVD)により炭化ケイ素または窒化ケイ素膜を形成することもできるが、これらの膜は400度の高温で光学ガラスの成形品が接着し易く、該成形品を離型するのが困難になる。
米国特許第4685948号明細書
Silicon carbide or silicon nitride films can also be formed by plasma CVD (plasma CVD) or thermal CVD (thermal CVD), but these films are easy to bond optical glass moldings at a high temperature of 400 degrees. , It becomes difficult to release the molded product.
U.S. Pat. No. 4,685,948

本発明は、耐酸化性および耐拡散性、高機械強度を有し、且つ、離型がし易い金型を提供することを目的とする。   An object of this invention is to provide the metal mold | die which has oxidation resistance, diffusion resistance, high mechanical strength, and is easy to release.

本発明の課題を解決するため、本発明は、所望の成形品に対応する成形面を有する金型ベースと、該成形面に被覆される超硬被膜を有する金型を提供する。   In order to solve the problems of the present invention, the present invention provides a mold base having a molding surface corresponding to a desired molded article and a mold having a super hard coating coated on the molding surface.

前記金型ベースは、例えばSiC、Si、Si、ZrO、Al、TiN、TiO、TiC、BC、WC、W、WC−Coなどのセラミック、金属セラミックまたは超硬合金材料からなるものである。 The mold base may be, for example, a ceramic such as SiC, Si, Si 3 N 4 , ZrO 2 , Al 2 O 3 , TiN, TiO 2 , TiC, B 4 C, WC, W, WC-Co, metal ceramic, or super It consists of a hard alloy material.

前記超硬合金は、窒化炭素を堆積してなるものであり、非晶質窒化炭素基材、及び該非晶質窒化炭素基材中に分布される立方格子窒化炭素粒子からなるものである。
非晶質窒化炭素は、立方格子窒化炭素粒子の分布用基材となる連続膜であり、該立方格子窒化炭素粒子は該非晶質炭窒化炭素基材中に離散するか部分的に連続して分布しており、且つ立方格子窒化炭素粒子の粒径はナノメートルオーダーである。
The cemented carbide is formed by depositing carbon nitride, and includes an amorphous carbon nitride base material and cubic lattice carbon nitride particles distributed in the amorphous carbon nitride base material.
Amorphous carbon nitride is a continuous film that serves as a substrate for the distribution of cubic lattice carbon nitride particles, and the cubic lattice carbon nitride particles are discrete or partially continuous in the amorphous carbon carbonitride substrate. The particle size of the cubic lattice carbon nitride particles is distributed in the order of nanometers.

前記超硬合金膜はプラズマCVD法により製造されている。   The cemented carbide film is manufactured by a plasma CVD method.

本発明の金型は、従来技術と比べて、金型ベースの高硬度表面に窒化炭素超硬被膜を形成することによって、成形する際に、該形成された非晶質窒化炭素の良好な潤滑性により光学ガラス成形品と接着せずに離型し易くなり、立方格子窒化炭素粒子の極めて高い硬度により成形面の機械強度を向上することができ、また、該超硬被膜は金型ベースの金属元素の拡散を防止し、ガラス成形品における不良要因が生じることを防止することができる。   Compared with the prior art, the mold of the present invention has a good lubrication of the formed amorphous carbon nitride during molding by forming a carbon nitride super hard film on the high hardness surface of the mold base. It becomes easy to release without adhering to the optical glass molded product due to the property, and the mechanical strength of the molded surface can be improved due to the extremely high hardness of the cubic lattice carbon nitride particles. It is possible to prevent the metal element from diffusing and to prevent a defective factor in the glass molded product.

次に、図面を用いて本発明を詳しく説明する。   Next, the present invention will be described in detail with reference to the drawings.

図1を参照すると、本発明の第一実施例において、非球面光学レンズを成形するための金型10は金型ベース12、及び金型ベース12の成形面に形成される膜14を含む。金型ベース12は、例えばSiC、Si、Si、ZrO、Al、TiN、TiO、TiC、BC、WC、W、WC−Coなどのセラミック、金属セラミックまたは超硬合金材料を焼結して形成されている。金型ベース12の成形面は、所要の非球面光学成形品の形状に対応する非球面形状である。膜14は、金型ベース12の成形面に被覆され、非晶質窒化炭素16(Amorphous Carbon Nitride,a-CN)及び立方格子窒化炭素粒子17(Cubic Crystal Carbon Nitride,c-C34)を含む炭素材料を堆積して形成されている。非晶質窒化炭素16は、立方格子窒化炭素粒子17の分布用基材となる連続膜であり、立方格子窒化炭素粒子17は、膜14全体の10〜60%(モル百分率)で非晶質窒化炭素基材16全体に離散されるか、または部分的に連続して分布されるものである。立方格子窒化炭素17の粒径はナノメートルオーダーであり、5〜100nmが好ましい。膜14の厚さは1〜100μmである。 Referring to FIG. 1, in a first embodiment of the present invention, a mold 10 for molding an aspheric optical lens includes a mold base 12 and a film 14 formed on the molding surface of the mold base 12. The mold base 12 is made of, for example, ceramic such as SiC, Si, Si 3 N 4 , ZrO 2 , Al 2 O 3 , TiN, TiO 2 , TiC, B 4 C, WC, W, WC-Co, metal ceramic, or super It is formed by sintering a hard alloy material. The molding surface of the mold base 12 has an aspheric shape corresponding to the shape of a required aspheric optical molded product. The film 14 is coated on the molding surface of the mold base 12, and amorphous carbon nitride 16 (Amorphous Carbon Nitride, a-CN) and cubic lattice carbon nitride particles 17 (Cubic Crystal Carbon Nitride, c-C 3 N 4 ). It is formed by depositing a carbon material containing. The amorphous carbon nitride 16 is a continuous film serving as a base material for the distribution of the cubic lattice carbon nitride particles 17, and the cubic lattice carbon nitride particles 17 are amorphous in 10 to 60% (molar percentage) of the entire film 14. The carbon nitride substrate 16 is dispersed throughout or partially continuously distributed. The particle size of the cubic lattice carbon nitride 17 is on the order of nanometers, and is preferably 5 to 100 nm. The thickness of the film 14 is 1 to 100 μm.

勿論、本発明は、異なった形状及び用途を有する他の成形品を製造するための金型にも使用される。   Of course, the present invention can also be used in molds for producing other molded articles having different shapes and applications.

図2を参照すると、本発明の第二実施例において、平面光学ガラスを成形するための金型20は平滑な表面を有する金型ベース22、及び金型ベース22の成形面に形成される膜24を含む。金型ベース22は、例えばSiC、Si、Si、ZrO、Al、TiN、TiO、TiC、BC、WC、W、WC−Coなどのセラミック、金属セラミックまたは超硬合金材料を焼結して形成されている。膜24は非晶質窒化炭素26及び立方格子窒化炭素粒子27を含む炭素材料を堆積して形成されている。非晶質窒化炭素26は、立方格子窒化炭素粒子27の分布用基材とする連続膜であり、立方格子窒化炭素粒子27は、膜24全体の10〜60%(モル百分率)で非晶質窒化炭素基材26全体に離散されるか、または部分的に連続して分布されるものである。立方格子窒化炭素粒子27の粒径はナノメートルオーダーであり、5〜100nmが好ましい。膜14の厚さは1〜100μmである。 Referring to FIG. 2, in a second embodiment of the present invention, a mold 20 for molding planar optical glass is a mold base 22 having a smooth surface, and a film formed on the molding surface of the mold base 22. 24. The mold base 22 is made of, for example, ceramics such as SiC, Si, Si 3 N 4 , ZrO 2 , Al 2 O 3 , TiN, TiO 2 , TiC, B 4 C, WC, W, WC-Co, metal ceramic, or super It is formed by sintering a hard alloy material. The film 24 is formed by depositing a carbon material including amorphous carbon nitride 26 and cubic lattice carbon nitride particles 27. The amorphous carbon nitride 26 is a continuous film used as a base material for the distribution of cubic lattice carbon nitride particles 27, and the cubic lattice carbon nitride particles 27 are amorphous in 10 to 60% (molar percentage) of the entire film 24. The carbon nitride base material 26 is dispersed or partially continuously distributed. The particle size of the cubic lattice carbon nitride particles 27 is on the order of nanometers, and is preferably 5 to 100 nm. The thickness of the film 14 is 1 to 100 μm.

前記両実施例において、金型ベース12及び22は焼結、または他の方法により加工して形成され、膜14及び24は例えばマイクロウエーブプラズマCVD法等のプラズマCVD法またはスパッタ法により堆積して形成されている。   In both embodiments, the mold bases 12 and 22 are formed by sintering or other methods, and the films 14 and 24 are deposited by a plasma CVD method such as a microwave plasma CVD method or a sputtering method. Is formed.

本発明の金型10(20)は、高硬度および高機械強度の金型ベース12(22)によって構成することで、高温成形過程による圧力及び応力に耐えることができる。金型ベース12(22)の成形面に被覆される膜14(24)は、より柔らかい非晶質窒化炭素16(26)、及び高硬度の立方格子窒化炭素粒子17(27)を含む酸化し難い炭素材料からなるものであり、その非晶質窒化炭素16(26)の炭素原子がsp混成軌道の構造であるので、よい潤滑性を有して離型し易くなる。高硬度および小粒径の立方格子窒化炭素粒子17(27)は、金型表面の機械強度及び精度を向上することができる。また、膜14(24)は金型ベース12(22)内の金属元素の拡散を防止し、ガラス成形品における不良要因が生じることを防止することができる。これによって、本発明の金型は、耐酸化性および耐拡散性、高機械強度を有し、且つ、離型がし易いという長所を有することが分かる。 The mold 10 (20) of the present invention is configured by the mold base 12 (22) having high hardness and high mechanical strength, and can withstand pressure and stress due to a high temperature molding process. The film 14 (24) coated on the molding surface of the mold base 12 (22) is oxidized including softer amorphous carbon nitride 16 (26) and high hardness cubic lattice carbon nitride particles 17 (27). Since it is made of a difficult carbon material and the carbon atoms of the amorphous carbon nitride 16 (26) have a sp 2 hybrid orbital structure, it has good lubricity and is easy to release. The cubic lattice carbon nitride particles 17 (27) with high hardness and small particle size can improve the mechanical strength and accuracy of the mold surface. Further, the film 14 (24) can prevent the diffusion of the metal element in the mold base 12 (22) and can prevent the occurrence of a defect factor in the glass molded product. Thus, it can be seen that the mold of the present invention has the advantages of having oxidation resistance, diffusion resistance, high mechanical strength, and easy release.

本発明の第一実施例の非球面光学ガラス成形品を製造するための金型の概略構成図である。It is a schematic block diagram of the metal mold | die for manufacturing the aspherical optical glass molded product of the 1st Example of this invention. 本発明の第二実施例の平面光学ガラス成形品を製造するための金型の概略構成図である。It is a schematic block diagram of the metal mold | die for manufacturing the planar optical glass molded product of the 2nd Example of this invention.

符号の説明Explanation of symbols

10、20 金型
12、22 金型ベース
14、24 膜
16、26 非晶質窒化炭素
17、27 立方格子窒化炭素粒子
10, 20 Mold 12, 22 Mold base 14, 24 Film 16, 26 Amorphous carbon nitride 17, 27 Cubic lattice carbon nitride particles

Claims (5)

成形面を有する金型ベースと、該成形面に被覆される超硬被膜とを備え、該超硬被膜は非晶質窒化炭素基材、及び該非晶質窒化炭素基材中に分布される立方格子窒化炭素粒子を有することを特徴とする超硬被膜を有する金型。   A mold base having a molding surface and a super hard coating coated on the molding surface, the super hard coating comprising an amorphous carbon nitride substrate and a cubic distributed in the amorphous carbon nitride substrate. A mold having a super hard coating, characterized by having lattice carbon nitride particles. 前記超硬被膜の厚さは1μm以上100μm以下であることを特徴とする請求項1に記載の超硬被膜を有する金型。   2. The mold having a cemented carbide film according to claim 1, wherein the thickness of the cemented carbide film is 1 μm or more and 100 μm or less. 前記立方格子窒化炭素粒子のモル百分率は10〜60%であることを特徴とする請求項1に記載の超硬被膜を有する金型。   The mold having a super hard coating according to claim 1, wherein a molar percentage of the cubic lattice carbon nitride particles is 10 to 60%. 前記立方格子窒化炭素粒子の粒径はナノメートルオーダーであることを特徴とする請求項1に記載の超硬被膜を有する金型。   2. The mold having a super hard coating according to claim 1, wherein a particle diameter of the cubic lattice carbon nitride particles is on the order of nanometers. 前記立方格子窒化炭素粒子の粒径は5nm以上100nm以下であることを特徴とする請求項1に記載の超硬被膜を有する金型。
2. The mold having a super hard coating according to claim 1, wherein the cubic lattice carbon nitride particles have a particle size of 5 nm to 100 nm.
JP2005224611A 2004-08-04 2005-08-02 Die with ultra-hard coating Withdrawn JP2006044270A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100510072A CN100419119C (en) 2004-08-04 2004-08-04 Superhard filming mold

Publications (1)

Publication Number Publication Date
JP2006044270A true JP2006044270A (en) 2006-02-16

Family

ID=35963141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224611A Withdrawn JP2006044270A (en) 2004-08-04 2005-08-02 Die with ultra-hard coating

Country Status (2)

Country Link
JP (1) JP2006044270A (en)
CN (1) CN100419119C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534526A (en) * 2010-12-27 2012-07-04 鸿富锦精密工业(深圳)有限公司 Coating piece and preparation method thereof
TWI490352B (en) * 2011-01-06 2015-07-01 Hon Hai Prec Ind Co Ltd Coated article and method for making the same
CN105289417B (en) * 2015-10-27 2017-05-31 蒋向上 A kind of production technology of synthetic composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652061A (en) * 1995-05-22 1997-07-29 Lucent Technologies Inc. Devices comprising films of β-C3 N4
CN1059716C (en) * 1995-12-13 2000-12-20 武汉大学 Method for synthesizing Beta-C3N4 superhard film material using radio-freq chemical gas-phase sedimentation
JPH09227150A (en) * 1996-02-16 1997-09-02 Minolta Co Ltd Protection film for glass-forming mold and its production
JP2008023236A (en) * 2006-07-25 2008-02-07 Hagihara Three I Kk Bendable cushion

Also Published As

Publication number Publication date
CN100419119C (en) 2008-09-17
CN1730721A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
US20060026996A1 (en) Ceramic mold with carbon nanotube layer
US20060141093A1 (en) Composite mold and method for making the same
JP2006188416A (en) Method for manufacturing molding die for glass optical element
JP2006044270A (en) Die with ultra-hard coating
US20070017254A1 (en) Composite mold and method for making the same
CN1216817C (en) Metal mold of moulding glass
JP2005343783A (en) Mold
TW201200567A (en) TiAlN coatings for glass molding dies and tooling
CN100560522C (en) Composite structure mould core and preparation method thereof
JP2005298325A (en) Die having ultra-hard coating film
US20060162388A1 (en) Composite mold and method for making the same
JP2005263626A (en) Die having ultrahard coating film
JP5709238B2 (en) Mold with release film
CN100383277C (en) Die with superhard filming
TWI337176B (en) Mold for press-molding glass lens
CN100370060C (en) Mold with super hard coating
TWI330124B (en) Mold for molding glass optical articles
JP2009073693A (en) Optical element-molding die, and method for producing the same
JP2002274867A (en) Optical glass element press forming die and optical glass element
US7647791B2 (en) Composite mold for molding glass lens
JPH11268921A (en) Press mold for forming glass
CN1834043B (en) Mould core of moulded glass lens
JP2002220239A (en) Die for forming glass element and method of producing the same and method of producing optical element using the die
CN1775701B (en) Mould core with superhard coating
JP5098111B2 (en) Method for producing mold for glass press

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007