JP2006043563A - Wastewater treatment method and wastewater treatment apparatus - Google Patents

Wastewater treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2006043563A
JP2006043563A JP2004226966A JP2004226966A JP2006043563A JP 2006043563 A JP2006043563 A JP 2006043563A JP 2004226966 A JP2004226966 A JP 2004226966A JP 2004226966 A JP2004226966 A JP 2004226966A JP 2006043563 A JP2006043563 A JP 2006043563A
Authority
JP
Japan
Prior art keywords
activated sludge
wastewater treatment
sludge
treatment method
protozoa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226966A
Other languages
Japanese (ja)
Other versions
JP4441357B2 (en
Inventor
Masaaki Matsubara
正明 松原
Akira Ishiyama
明 石山
Yukihiro Futaboshi
幸弘 二星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Eco Solutions Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2004226966A priority Critical patent/JP4441357B2/en
Publication of JP2006043563A publication Critical patent/JP2006043563A/en
Application granted granted Critical
Publication of JP4441357B2 publication Critical patent/JP4441357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method and apparatus which can prevent the flow out of activated sludge from a final settling basin due to the deterioration of activated sludge settling properties when wastewater is treated with the activated sludge. <P>SOLUTION: (1) In the waste water treatment method using the activated sludge, the kinds and number of protozoa in the activated sludge are measured, a diversity index is calculated from the results, and the settling properties of the activated sludge are predicted based on the value of the diversity index to judge whether prevention of flow out of the activated sludge from the final settling basin is necessary or not. (2) In the above waste water treatment method, the calculation of the diversity index is performed with Shannon's equation for obtaining a diversity index. (3) In the above waste water treatment method, preventative measures against the flow out of the activated sludge from the final settling basin are taken when the value of the diversity index calculated with the above equation is below the predetermined value (for example, 0.4-0.6). (4) The wastewater treatment apparatus is used for such a wastewater treatment method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃水処理方法および廃水処理装置に関する技術分野に属するものであり、より具体的には、活性汚泥を用いる廃水処理方法および廃水処理装置に関する技術分野に属するものである。   The present invention belongs to a technical field related to a wastewater treatment method and a wastewater treatment apparatus, and more specifically to a technical field related to a wastewater treatment method and a wastewater treatment apparatus using activated sludge.

微生物の働き(活性汚泥)を利用した廃水処理方法において、それに用いられる廃水処理設備は一般的には最初沈殿池、生物処理槽(曝気槽)、最終沈殿池からなっており、流入廃水中の汚濁物質は生物処理によって微生物(活性汚泥)に取り込まれ、最終沈殿池で水と活性汚泥(以下、汚泥ともいう)が固液分離される。最終沈殿池で沈殿した汚泥は、一部は余剰汚泥として廃棄され、一部は廃水処理設備に返送され再び生物処理槽で利用される。一方、固液分離された上澄水は処理水として最終沈殿池上部より排出される。   In the wastewater treatment method using the action of microorganisms (activated sludge), the wastewater treatment equipment used for it generally consists of a first sedimentation tank, a biological treatment tank (aeration tank), and a final sedimentation tank. The pollutant is taken into microorganisms (activated sludge) by biological treatment, and water and activated sludge (hereinafter also referred to as sludge) are separated into solid and liquid in the final sedimentation basin. Part of the sludge settled in the final sedimentation basin is discarded as surplus sludge, and part of it is returned to the wastewater treatment facility and used again in the biological treatment tank. On the other hand, the supernatant liquid separated into solid and liquid is discharged from the upper part of the final sedimentation basin as treated water.

従って、活性汚泥を用いる廃水処理においては、最終沈殿池での良好な固液分離が重要であり、固液分離が良好に行えない場合、即ち、活性汚泥がうまく沈降しない場合は、活性汚泥が処理水とともに流出し、処理水質が悪化するという廃水処理にとって致命的な事態を招く。   Therefore, in wastewater treatment using activated sludge, good solid-liquid separation in the final sedimentation basin is important.If solid-liquid separation cannot be performed well, that is, activated sludge does not settle well, activated sludge This will cause a fatal situation for wastewater treatment in which the quality of treated water deteriorates due to the outflow with treated water.

一般的に活性汚泥を利用した廃水処理においては、運転は経験に依るところが多く、汚泥流出の問題についても、沈降性が実際に悪化し始めてから経験的に対処するということがほとんどであり、対応が遅れて汚泥が流出してしまうという問題がある。   Generally, in wastewater treatment using activated sludge, operation is often dependent on experience, and the problem of sludge spillage is mostly dealt with empirically after sedimentation actually begins to deteriorate. However, there is a problem that sludge flows out after a delay.

活性汚泥の沈降性の一般的な指標としては、SV30やSVI がある。しかし、この指標は、既に沈降性が悪くなっているかどうかの判断には使えるが、今後どうなるかの予測はできない。なお、これらのSV30やSVI は下記(1) 、(2) のような指標である。   There are SV30 and SVI as general indicators of sedimentation of activated sludge. However, this indicator can be used to determine whether sedimentation has already deteriorated, but it cannot predict what will happen in the future. These SV30 and SVI are indicators such as (1) and (2) below.

(1) SV30:
1L(リットル)のメスシリンダーに活性汚泥を1L投入し、30分間静置した後、汚泥界面の目盛りを読み、汚泥の体積V(ml)を調べる。下記式(3) よりSV30を求める。この値が小さいほど沈降性の良好な汚泥であると判断する〔「下水試験方法」,日本下水道協会,1997年,p.271−272(非特許文献1)参照〕。
SV30(%)= 100×V/1000 --------------------- 式(3)
(1) SV30:
Put 1 L of activated sludge into a 1 L (liter) measuring cylinder and let it stand for 30 minutes, then read the scale at the sludge interface and check the sludge volume V (ml). Calculate SV30 from the following equation (3). It is judged that the sludge has better sedimentation as this value is smaller ["Sewage test method", Japan Sewerage Association, 1997, p. 271-272 (Non-Patent Document 1)].
SV30 (%) = 100 x V / 1000 --------------------- Equation (3)

(2) SVI :
上記SV30の値と汚泥濃度(MLSS;mg/L)を用いて下記式(4) により算出する。この値が小さいほど沈降性の良好な汚泥であると判断する〔「下水試験方法」,日本下水道協会,1997年,p.272(非特許文献2)参照〕。
SVI (ml/g)= SV30 ×10000 /MLSS ------------- 式(4)
(2) SVI:
Using the above SV30 value and sludge concentration (MLSS; mg / L), calculate by the following formula (4). It is judged that the sludge has better sedimentation as this value is smaller ["Sewage test method", Japan Sewerage Association, 1997, p. 272 (Non-Patent Document 2)].
SVI (ml / g) = SV30 × 10000 / MLSS ------------- Formula (4)

活性汚泥の沈降性が悪化する原因として、糸状性細菌の異常増殖がよく知られている。糸状性細菌は密度が低いため、糸状性細菌が異常に増殖すると活性汚泥にこれらの菌糸が絡まって活性汚泥の沈降性が悪化する。従って、生物学的指標として糸状性細菌の量を顕微鏡観察等で定期的にチェックすれば、糸状性細菌が原因の汚泥沈降性悪化を予測することができるため、糸状性細菌の量を管理指標として運転が行われる場合がある。糸状性細菌を減らすためには糸状性細菌を不活化する薬剤を投入する方法などがある。   Abnormal growth of filamentous bacteria is well known as a cause of the deterioration of sedimentation of activated sludge. Since the density of filamentous bacteria is low, if the filamentous bacteria grow abnormally, these hyphae are entangled with the activated sludge and the sedimentation property of the activated sludge deteriorates. Therefore, if the amount of filamentous bacteria is periodically checked with a microscopic observation as a biological indicator, sludge sedimentation caused by filamentous bacteria can be predicted. Driving may be performed. In order to reduce filamentous bacteria, there is a method of introducing a drug that inactivates filamentous bacteria.

しかし、汚泥沈降性悪化の原因は不明な部分が多く、糸状性細菌が増殖しない環境でも汚泥沈降性が悪化して汚泥が流出するという問題がしばしば起こっている。   However, there are many unknown causes of sludge sedimentation deterioration, and there is often a problem that sludge sedimentation deteriorates and sludge flows out even in an environment where filamentous bacteria do not grow.

このような汚泥沈降性悪化を事前に予測することができれば、早期に凝集剤を添加するなどの手段を講じることができる。   If such sludge sedimentation deterioration can be predicted in advance, measures such as adding a flocculant at an early stage can be taken.

しかしながら、糸状性細菌によらない手段であって、このような汚泥沈降性悪化を事前に予測するための有効な手段が無いのが現状である。
「下水試験方法」,日本下水道協会,1997年,p.271−272 「下水試験方法」,日本下水道協会,1997年,p.272
However, at present, there is no effective means for predicting in advance such sludge sedimentation deterioration, which is a means not based on filamentous bacteria.
"Sewage test method", Japan Sewerage Association, 1997, p. 271-272 "Sewage test method", Japan Sewerage Association, 1997, p. 272

本発明はこのような事情に着目してなされたものであって、その目的は、活性汚泥を用いて廃水処理するに際し、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出を防止することができる廃水処理方法および廃水処理装置を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to prevent activated sludge outflow from the final sedimentation basin due to deterioration of activated sludge sedimentation when treating wastewater using activated sludge. It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment apparatus that can perform the above.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   In order to achieve the above object, the present inventors have intensively studied, and as a result, completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、廃水処理方法および廃水処理装置に係わり、請求項1〜7記載の廃水処理方法(第1〜7発明に係る廃水処理方法)、請求項8記載の廃水処理装置(第8発明に係る廃水処理装置)であり、それは次のような構成としたものである。   The present invention thus completed and capable of achieving the above object relates to a wastewater treatment method and a wastewater treatment apparatus, and relates to a wastewater treatment method according to claims 1-7 (the wastewater treatment method according to the first to seventh inventions). ), A wastewater treatment apparatus according to claim 8 (a wastewater treatment apparatus according to the eighth invention), which has the following configuration.

即ち、請求項1記載の廃水処理方法は、活性汚泥を用いる廃水処理方法において、活性汚泥中の原生動物の種類と数を定量し、この結果から多様性指数を算出し、この多様性指数の値に基づいて活性汚泥の沈降性を予測し、最終沈殿池からの活性汚泥流出の防止対策を講じる必要の有無を判断することを特徴とする廃水処理方法である〔第1発明〕。   That is, the wastewater treatment method according to claim 1 is a wastewater treatment method using activated sludge, which quantifies the type and number of protozoa in the activated sludge, calculates a diversity index from the results, This is a wastewater treatment method characterized in that the settling property of activated sludge is predicted based on the value, and it is judged whether or not it is necessary to take measures to prevent activated sludge outflow from the final settling basin [first invention].

請求項2記載の廃水処理方法は、前記多様性指数を下記式(1) を用いて算出する請求項1記載の廃水処理方法である〔第2発明〕。ただし、下記式(1) において、DIは多様性指数であり、 Pi は下記式(2) に基づいて求められる値である。下記式(2) において、N :原生動物の総数、 Ni :i番目の原生動物の数である。 The wastewater treatment method according to claim 2 is the wastewater treatment method according to claim 1, wherein the diversity index is calculated using the following formula (1) [second invention]. However, in the following formula (1), DI is a diversity index, P i is a value determined based on the following equation (2). In the following formula (2), N is the total number of protozoa, and N i is the number of the i-th protozoa.

Figure 2006043563
Figure 2006043563

Pi = Ni /N --------------------- 式(2) P i = N i / N --------------------- Equation (2)

請求項3記載の廃水処理方法は、前記多様性指数が活性汚泥の沈降性の点から予め定められた値以下となったときに最終沈殿池からの活性汚泥流出の防止対策を講じる請求項2記載の廃水処理方法である〔第3発明〕。   The waste water treatment method according to claim 3 takes measures to prevent activated sludge from flowing out from the final sedimentation basin when the diversity index becomes a predetermined value or less from the point of sedimentation of activated sludge. It is a waste water treatment method as described in [3rd invention].

請求項4記載の廃水処理方法は、前記定められた値が0.4 〜0.6 である請求項3記載の廃水処理方法である〔第4発明〕。   The waste water treatment method according to claim 4 is the waste water treatment method according to claim 3, wherein the predetermined value is 0.4 to 0.6 [fourth invention].

請求項5記載の廃水処理方法は、前記定められた値が0.6 である請求項3記載の廃水処理方法である〔第5発明〕。   The waste water treatment method according to claim 5 is the waste water treatment method according to claim 3, wherein the predetermined value is 0.6 [fifth invention].

請求項6記載の廃水処理方法は、前記最終沈殿池からの活性汚泥流出の防止対策を講じる場合、この防止対策として、凝集剤の添加による方法、無機物の添加による方法、最終沈殿池からの活性汚泥引き抜き量の増加による方法、廃水の流入量の低下による方法、廃水を最初沈殿池を経由させずに流入させることによる方法の1種または2種以上を用いる請求項1〜5のいずれかに記載の廃水処理方法である〔第6発明〕。   The wastewater treatment method according to claim 6, when taking preventive measures against activated sludge outflow from the final sedimentation basin, as this preventive measure, a method by adding a flocculant, a method by adding an inorganic substance, an activity from the final sedimentation basin The method according to any one of claims 1 to 5, wherein one or more of a method by increasing the amount of sludge extraction, a method by lowering the inflow of wastewater, and a method by injecting wastewater without first passing through the settling basin are used. It is a wastewater treatment method as described in [6th invention].

請求項7記載の廃水処理方法は、前記活性汚泥中の原生動物の種類と数を定量するに際し、活性汚泥を自動サンプリングし、この活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この結果から多様性指数を算出するに際し、自動算出により算出する請求項1〜6のいずれかに記載の廃水処理方法である〔第7発明〕。   The wastewater treatment method according to claim 7, when quantifying the type and number of protozoa in the activated sludge, automatically samples the activated sludge, and automatically measures the type and number of protozoa in the activated sludge by image analysis. The wastewater treatment method according to any one of claims 1 to 6, wherein the quantification is performed and the diversity index is calculated from the result, and is calculated by automatic calculation [Seventh Invention].

請求項8記載の廃水処理装置は、活性汚泥を用いる廃水処理装置において、活性汚泥を自動サンプリングする手段と、これにより自動サンプリングされた活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この定量の結果から多様性指数を自動算出により算出する手段とを有することを特徴とする廃水処理装置である〔第8発明〕。   The waste water treatment apparatus according to claim 8, wherein in the waste water treatment apparatus using activated sludge, means for automatically sampling activated sludge, and the type and number of protozoa in activated sludge automatically sampled thereby are automatically measured by image analysis. And a means for automatically calculating a diversity index from the result of the quantification, which is a wastewater treatment apparatus [8th invention].

本発明に係る廃水処理方法によれば、活性汚泥を用いて廃水処理するに際し、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出を防止することができるようになる。本発明に係る廃水処理装置によれば、かかる廃水処理方法を好適に行うことができる。   According to the wastewater treatment method of the present invention, when wastewater treatment is performed using activated sludge, activated sludge outflow from the final sedimentation basin due to deterioration of activated sludge settling can be prevented. According to the wastewater treatment apparatus according to the present invention, such a wastewater treatment method can be suitably performed.

本発明者らは、活性汚泥中原生動物の多様性を調べることにより、活性汚泥の沈降性悪化を予測することができることを見出し、本発明を完成するに至った。即ち、活性汚泥中の原生動物の種類と数を定量して求められる多様性指数の値から活性汚泥の沈降性を予測することができることを見出した。本発明は、このような知見に基づいて完成されたものであり、前述のような構成の廃水処理方法としている。   The present inventors have found that it is possible to predict the deterioration of sedimentation of activated sludge by examining the diversity of protozoa in activated sludge, and have completed the present invention. That is, the present inventors have found that the sedimentation property of activated sludge can be predicted from the value of the diversity index obtained by quantifying the type and number of protozoa in activated sludge. The present invention has been completed based on such knowledge, and is a wastewater treatment method having the above-described configuration.

このようにして完成された本発明に係る廃水処理方法は、活性汚泥を用いる廃水処理方法において、活性汚泥中の原生動物の種類と数を定量し、この結果から多様性指数を算出し、この多様性指数の値に基づいて活性汚泥の沈降性を予測し、最終沈殿池からの活性汚泥流出の防止対策を講じる必要の有無を判断することを特徴とする廃水処理方法である〔第1発明〕。   The wastewater treatment method according to the present invention thus completed is a wastewater treatment method using activated sludge, quantifies the type and number of protozoa in the activated sludge, calculates a diversity index from this result, It is a wastewater treatment method characterized by predicting the settling property of activated sludge based on the value of the diversity index, and determining whether it is necessary to take measures to prevent activated sludge outflow from the final settling basin [first invention ].

このように活性汚泥中の原生動物の種類と数を定量し、この結果から多様性指数を算出すると、この多様性指数の値に基づいて活性汚泥の沈降性を予測することができる。そうすると、最終沈殿池からの活性汚泥流出の防止対策(以下、汚泥流出防止対策ともいう)を講じる必要の有無を判断することができる。そうすると、最終沈殿池からの汚泥流出の防止対策を適切なタイミングで講じることができる。   Thus, if the kind and number of the protozoa in activated sludge are quantified and a diversity index is computed from this result, the sedimentation property of activated sludge can be predicted based on the value of this diversity index. Then, it is possible to determine whether or not it is necessary to take preventive measures against activated sludge outflow from the final sedimentation basin (hereinafter also referred to as sludge outflow preventive measures). If it does so, the prevention measure of the sludge outflow from the final sedimentation basin can be taken at an appropriate timing.

そこで、本発明に係る廃水処理方法においては、上記のように、活性汚泥中の原生動物の種類と数を定量し、この結果から多様性指数を算出し、この多様性指数の値に基づいて活性汚泥の沈降性を予測し、最終沈殿池からの活性汚泥流出の防止対策を講じる必要の有無を判断するようにしている。このため、汚泥流出防止対策(最終沈殿池からの汚泥流出の防止対策)を適切なタイミングで講じることができる。   Therefore, in the wastewater treatment method according to the present invention, as described above, the type and number of protozoa in the activated sludge are quantified, and a diversity index is calculated from the results, and based on the value of this diversity index. The sedimentation of activated sludge is predicted, and it is determined whether it is necessary to take measures to prevent activated sludge from flowing out from the final sedimentation basin. For this reason, sludge spill prevention measures (sludge spill spill prevention measures from the final sedimentation basin) can be taken at an appropriate timing.

従って、本発明に係る廃水処理方法によれば、活性汚泥を用いて廃水処理するに際し、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出を防止することができるようになる。   Therefore, according to the wastewater treatment method according to the present invention, activated sludge can be prevented from flowing out from the final sedimentation basin due to the deterioration of activated sludge sedimentation when wastewater is treated using activated sludge.

原生動物の種類は全部で数万種類が知られており、そのうち、活性汚泥中に出現する原生動物は多い場合で100 種類以上になるといわれている。活性汚泥中に出現する原生動物は、鞭毛虫類、肉質虫類、繊毛虫類に大きく分けられ、更にそれぞれの中で、属にまで分類がなされる。   Tens of thousands of protozoa are known in total, and it is said that more than 100 protozoa appear in activated sludge. Protozoa appearing in the activated sludge are broadly divided into flagellates, fleshly worms, and ciliates, and further classified into genus.

活性汚泥を採取し、顕微鏡観察を行うことにより、単位汚泥量当たり即ち汚泥の単位質量当たりまたは単位体積当たり(例えば、1ml当たり)に存在する原生動物の種類を属まで同定し、それぞれの数を定量することができる。従って、単位汚泥量当たりの原生動物の種類と数から原生動物の多様性を求めることができる。   By collecting activated sludge and observing under a microscope, the species of protozoa present per unit sludge volume, that is, per unit mass of sludge or per unit volume (for example, per ml) is identified to the genus, and the number of each is determined. It can be quantified. Therefore, the diversity of protozoa can be obtained from the type and number of protozoa per unit sludge amount.

生物学的多様性の指標として、代表的なものに Shannon(シャノン)の多様性指数があり、この指数は下記式(5) により求められる。ただし、下記式(5) において、DIは多様性指数であり、 Pi は下記式(6) に基づいて求められる値である。下記式(6) において、N :個体の総数、 Ni :i番目の個体の数である。 A representative index of biological diversity is Shannon's diversity index, which is calculated by the following equation (5). However, in the following formula (5), DI is a diversity index, P i is a value determined according to the following equation (6). In the following formula (6), N is the total number of individuals, N i is the number of i-th individuals.

Figure 2006043563
Figure 2006043563

Pi = Ni /N --------------------- 式(6) P i = N i / N --------------------- Equation (6)

上記式(5) 〜(6) は、活性汚泥中の原生動物の多様性にも当てはめることができる。即ち、活性汚泥中の原生動物の多様性指数を下記式(1) を用いて算出することができる〔第2発明〕。ただし、下記式(1) において、DIは原生動物の多様性指数であり、 Pi は下記式(2) に基づいて求められる値である。下記式(2) において、N :原生動物の総数、 Ni :i番目の原生動物の数である。これらの N、 Ni は、いずれも汚泥の単位体積当たりの個数であり、その単位は個/単位体積(汚泥)、例えば個/ml(汚泥)である。 The above formulas (5) to (6) can be applied to the diversity of protozoa in the activated sludge. That is, the diversity index of protozoa in activated sludge can be calculated using the following formula (1) [second invention]. In the following formula (1), DI is a protozoan diversity index, and Pi is a value obtained based on the following formula (2). In the following formula (2), N is the total number of protozoa, and N i is the number of the i-th protozoa. These N and Ni are both the number of sludges per unit volume, and the unit is individual / unit volume (sludge), for example, individual / ml (sludge).

Figure 2006043563
Figure 2006043563

Pi = Ni /N --------------------- 式(2) P i = N i / N --------------------- Equation (2)

上記式(1) 〜(2) を用いて算出される多様性指数が活性汚泥の沈降性の点から予め定められた値以下となったときに汚泥流出防止対策(最終沈殿池からの活性汚泥流出の防止対策)を講じるようにする〔第3発明〕。この値は、より具体的には、汚泥流出防止対策を講じる必要があると予想されるときの多様性指数の上限値(DIeul )、即ち、多様性指数がこの値(DIeul )以下となったときに汚泥流出防止対策を講じる必要があると予想される値(DIeul )であり、予め(廃水処理の前に)定められる。この値は、例えば、過去の廃水処理の結果に基づき定め、あるいは、予め廃水処理試験を行い、その結果に基づき定める。 Measures to prevent sludge spillage (activated sludge from the final sedimentation basin) when the diversity index calculated using the above formulas (1) to (2) falls below a predetermined value from the standpoint of sedimentation of activated sludge (Third invention). More specifically, this value is the upper limit of the diversity index (DI eul ) when it is expected that sludge spill prevention measures need to be taken, that is, the diversity index is less than this value (DI eul ). It is a value (DI eul ) that is expected to take measures to prevent sludge spillage when it becomes, and is determined in advance (before wastewater treatment). This value is determined based on, for example, the result of past wastewater treatment, or is determined based on the result of conducting a wastewater treatment test in advance.

このようにすると、汚泥流出防止対策をより簡単に講じることができる。即ち、汚泥流出防止対策を講じる時点を定めることができ、それが定められているので、汚泥流出防止対策を講じる時点をその都度判断しなければならないような複雑さはなく、簡単である。また、汚泥流出防止対策をより適切なタイミングで講じることができ、ひいては活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出をより確実に防止することができる。   If it does in this way, the sludge outflow prevention measure can be taken more easily. That is, it is possible to determine the time point at which sludge spill prevention measures are taken, and since it is determined, the time point at which the sludge spill prevention measures are taken is not complicated and simple. In addition, it is possible to take measures to prevent sludge outflow at a more appropriate timing, and more reliably prevent activated sludge outflow from the final sedimentation basin due to deterioration of activated sludge settling.

本発明者らの検討の結果、上記式(1) 〜(2) を用いて算出される多様性指数が0.6 より大きい活性汚泥は、沈降性が悪化する可能性は低く、この多様性指数が0.4 〜0.6 以下(0.4 以下〜0.6 以下)の活性汚泥は沈降性が悪化する可能性が高いことが分かった。活性汚泥の沈降性が悪化し始める時の多様性指数の目安は0.5 前後であるが、個々の廃水処理での廃水の性状や運転方法によって、この値は一定でなく、0.4 〜0.6 の幅を有する。つまり、活性汚泥の沈降性が悪化し始める時の多様性指数は0.4 〜0.6 である。安全側に考えれば、多様性指数が0.6 以下になると沈降性が悪化する可能性があるとしてよい。   As a result of the study by the present inventors, the activated sludge having a diversity index calculated using the above formulas (1) to (2) of greater than 0.6 is unlikely to deteriorate the settling property. It was found that activated sludge of 0.4 to 0.6 or less (0.4 to 0.6 or less) has a high possibility of deterioration of sedimentation. The standard of the diversity index when the sedimentation of activated sludge begins to deteriorate is around 0.5, but this value is not constant depending on the nature of the wastewater treatment and the operation method, and ranges from 0.4 to 0.6. Have. In other words, the diversity index when activated sludge sedimentation begins to deteriorate is 0.4 to 0.6. From a safety perspective, it is possible that sedimentation may deteriorate if the diversity index is 0.6 or less.

従って、前記の予め定められた値を0.4 〜0.6 とするとよい〔第4発明〕。即ち、上記式(1) 〜(2) を用いて算出される多様性指数が0.4 〜0.6 以下(0.4 以下〜0.6 以下)となったときに汚泥流出防止対策(最終沈殿池からの活性汚泥流出の防止対策)を講じるようにするとよい。このようにすると、汚泥流出防止対策をより適切なタイミングで講じることができ、ひいては、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出をより確実に防止することができる。   Therefore, the predetermined value is preferably set to 0.4 to 0.6 [fourth invention]. That is, when the diversity index calculated using the above formulas (1) and (2) is 0.4 to 0.6 or less (0.4 to 0.6 or less), sludge spill prevention measures (active sludge spill from the final sedimentation basin) Preventive measures) should be taken. If it does in this way, the sludge outflow prevention measure can be taken at a more appropriate timing, and by extension, the activated sludge outflow from the final sedimentation basin due to the activated sludge sedimentation deterioration can be more reliably prevented.

更に、前記の予め定められた値を0.6 とするとよい〔第5発明〕。即ち、上記式(1) 〜(2) を用いて算出される多様性指数が0.6 以下となったときに汚泥流出防止対策を講じるようにするとよい。このようにすると、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出を上記の場合よりも確実に防止することができる。   Further, the predetermined value may be set to 0.6 [fifth invention]. That is, when the diversity index calculated using the above formulas (1) to (2) is 0.6 or less, it is recommended to take measures to prevent sludge outflow. If it does in this way, activated sludge outflow from the final sedimentation basin by activated sludge sedimentation deterioration can be prevented more reliably than the above case.

このような多様性指数を定期的にモニタリングすれば、汚泥の沈降性悪化を予測することができ、適切な早期のタイミングで沈降性悪化に対する対処を行うことができる。   If such a diversity index is regularly monitored, it is possible to predict the deterioration of sedimentation of sludge, and it is possible to cope with the deterioration of sedimentation at an appropriate early timing.

汚泥流出防止対策を講じる場合、この防止対策として、廃水処理の分野で一般的に用いられている様々な方法を利用することができる。即ち、凝集剤の添加による方法、無機物の添加による方法、最終沈殿池からの活性汚泥引き抜き量の増加による方法、廃水の流入量の低下による方法、廃水を最初沈殿池を経由させずに流入させることによる方法の1種または2種以上を用いることができる〔第6発明〕。なお、廃水を最初沈殿池を経由させずに流入させることが汚泥流出防止対策となるのは、最初沈殿池での沈降がなくなり、このため、最初沈殿池を経由させた場合に比べて最終沈殿池での汚泥の沈降性が大きく(汚泥が沈降しやすく)なるからである。   When taking measures to prevent sludge outflow, various methods generally used in the field of wastewater treatment can be used as the prevention measures. That is, a method by adding a flocculant, a method by adding an inorganic substance, a method by increasing the amount of activated sludge withdrawn from the final settling basin, a method by reducing the inflow of wastewater, and letting the wastewater flow through the first settling basin One kind or two or more kinds of methods may be used [sixth invention]. In addition, the inflow of wastewater without going through the first settling basin is a measure to prevent sludge spillage, so there is no settling in the first settling basin. This is because the sludge settleability in the pond is large (sludge is likely to settle).

これらの防止対策は汚泥沈降性が悪化してから実施しても手遅れになることもあるが、汚泥沈降性悪化を事前に予測することが可能な本発明に係る廃水処理方法によれば、効果的に汚泥流出を防ぐことができる。   Even if these preventive measures are implemented after sludge settling has deteriorated, the wastewater treatment method according to the present invention, which can predict sludge settling in advance, is effective. Can prevent sludge outflow.

活性汚泥中の原生動物の種類と数の定量を顕微鏡観察により行う場合は、例えば生物処理槽より採取した活性汚泥を観察しやすい任意の量、例えば0.05ml程度取って、スライドグラスに乗せ、カバーグラスをかけた後、顕微鏡にセットし、観察しやすい倍率、例えば100 〜200 倍で観察を行い、原生動物の種類と数を計数する。この計数の結果を基に活性汚泥1ml当たりの数を算出する。観察は1度でも構わないが、計数の精度を上げるためには複数回繰り返して平均をとる。   When quantifying the type and number of protozoa in activated sludge by microscopic observation, for example, take an arbitrary amount of activated sludge collected from a biological treatment tank, for example, about 0.05 ml, place it on a slide glass, cover After placing the glass, set in a microscope and observe at a magnification that is easy to observe, for example, 100 to 200 times, and count the number and type of protozoa. Based on the result of this counting, the number per 1 ml of activated sludge is calculated. Observation may be performed once, but in order to increase the accuracy of counting, the average is repeated several times.

顕微鏡観察による活性汚泥中の原生動物の種類と数の定量の結果を表1に示す。この表1のケースでは、10種類の原生動物が観察され、それぞれの数はN(個/ml)で表している。上記式(1) 〜(2) を用いて多様性指数(DI)を算出すると、DI=−0.86となる。DIはこのように算出する。   Table 1 shows the results of quantification of types and numbers of protozoa in activated sludge by microscopic observation. In the case of Table 1, ten kinds of protozoa are observed, and the number of each is represented by N (pieces / ml). When the diversity index (DI) is calculated using the above formulas (1) to (2), DI = −0.86. DI is calculated in this way.

汚泥中の原生動物のDI(多様性指数)の測定は、頻度が高いほど汚泥沈降性悪化を早期に予測できるため、できるだけ短い間隔で測定することが望ましいが、DIの低下後すぐに汚泥沈降性が悪化するわけではないので、実際上は2〜10日に1回程度の頻度で測定すればよい。   It is desirable to measure the DI (diversity index) of protozoa in sludge as soon as possible so that the deterioration of sludge sedimentation can be predicted earlier. Since the sex does not deteriorate, in practice, it may be measured at a frequency of about once every 2 to 10 days.

DIの値は通常、1.0 前後となることが多いが、0.4 〜0.6 以下(0.4 以下〜0.6 以下)まで低下すると、その後、汚泥の沈降性が悪化し、最終沈殿池からの汚泥流出が起こる危険性がある。従って、DIが0.4 以下〜0.6 以下まで低下した場合は、汚泥流出防止対策を講じるとよい。なお、活性汚泥の沈降性が悪化し始めるときのDIの値は、それぞれの廃水処理における流入廃水の性状や運転方法によって変わるため、運転を続ける中で各廃水処理に適したDI値を設定し、このDI値以下に低下したときに汚泥流出防止対策を講じるようにすればよい。このとき、このDI値またはそれより少し低いDI値になったときに汚泥流出防止対策を講じるようにした方がよい。更に安全側に設定する場合は、DI値が0.6 のときに汚泥流出防止対策を講じるようにすればよい。   The DI value is usually around 1.0, but if it falls to 0.4 to 0.6 or less (0.4 to 0.6 or less), then the sedimentation of the sludge deteriorates and there is a risk of sludge spillage from the final sedimentation basin. There is sex. Therefore, when DI falls below 0.4 to 0.6, it is recommended to take measures to prevent sludge outflow. Note that the DI value when activated sludge sedimentation begins to deteriorate depends on the properties of the influent wastewater and the operation method in each wastewater treatment, so set a DI value suitable for each wastewater treatment as the operation continues. Measures to prevent sludge spillage should be taken when the value falls below this DI value. At this time, it is better to take measures to prevent sludge spillage when this DI value or a slightly lower DI value is reached. Furthermore, when setting to the safe side, it is only necessary to take measures to prevent sludge spillage when the DI value is 0.6.

DI(多様性指数)の測定は人間が顕微鏡観察により行う方法の他に、画像解析により自動測定する方法で行うことができる。原生動物はその形によって分類可能であるため、画像解析装置に原生動物の形と大きさに関するデータベースを組み込んでおき、画像を自動解析することで種類と数を自動計数することができる。原生動物の種類と数からDIを自動算出することができる。測定対象の活性汚泥は自動サンプリングすることもできる。   DI (diversity index) can be measured by a method of automatic measurement by image analysis in addition to a method of human observation by a microscope. Since protozoa can be classified according to their shape, a database relating to the shape and size of protozoa is incorporated into the image analysis apparatus, and the type and number can be automatically counted by automatically analyzing the image. DI can be automatically calculated from the type and number of protozoa. The activated sludge to be measured can be automatically sampled.

そこで、活性汚泥中の原生動物の種類と数を定量するに際し、活性汚泥を自動サンプリングし、この活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この結果から多様性指数を算出するに際し、自動算出により算出するという方法を用いることもできる〔第7発明〕。   Therefore, when quantifying the type and number of protozoa in the activated sludge, the activated sludge is automatically sampled, and the type and number of protozoa in the activated sludge are automatically measured and quantified by image analysis. When calculating the sex index, a method of calculating by automatic calculation can also be used [Seventh Invention].

このような方法を実施するための形態例を図1に示す。活性汚泥が廃水処理設備11から配管12を通って自動サンプリング装置13によりサンプリングされる。サンプリングされた活性汚泥は画像解析装置14に送られ、原生動物の種類と数が自動計数され、DIが自動算出される。このデータは信号として制御装置15に送られ、制御装置15で運転方法を判断する。制御装置15の信号が廃水処理設備11に送られ、運転が自動制御される。   An exemplary embodiment for carrying out such a method is shown in FIG. The activated sludge is sampled by the automatic sampling device 13 from the waste water treatment facility 11 through the pipe 12. The sampled activated sludge is sent to the image analyzer 14, where the type and number of protozoa are automatically counted, and DI is automatically calculated. This data is sent as a signal to the control device 15, and the control device 15 determines the operation method. A signal from the control device 15 is sent to the wastewater treatment facility 11 to automatically control the operation.

このようにすべてを自動運転にしてもよいし、一部を手動にしてもよい。例えば、画像解析までを自動にしておき、DIが0.6 以下になったときにアラームを発するようにしておけば、そのアラームを見て、手動で運転制御を行うなどの方法が行える。   In this way, all may be automatically operated, or a part may be manually operated. For example, if the process up to image analysis is made automatic and an alarm is issued when DI becomes 0.6 or less, it is possible to perform a method such as manually controlling the operation by watching the alarm.

このような形態例からもわかるように、本発明に係る廃水処理方法を行うための装置としては、活性汚泥を自動サンプリングする手段と、これにより自動サンプリングされた活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この定量の結果から多様性指数を自動算出により算出する手段とを有することを特徴とするものを用いるとよく、これによれば本発明に係る廃水処理方法を好適に行うことができる〔第8発明〕。即ち、活性汚泥のサンプリングに際し、これを自動ですることができて省力化がはかれ、また、活性汚泥中の原生動物の種類と数の定量に際し、これを自動ですることができて省力化がはかれると共にヒューマンエラーによる測定(定量)精度の低下の防止がはかれ、更に、この定量の結果からの多様性指数の算出に際し、これを自動ですることができて省力化がはかれると共にヒューマンエラーによる算出精度の低下の防止がはかれる。   As can be seen from such embodiments, the apparatus for performing the wastewater treatment method according to the present invention includes means for automatically sampling activated sludge, and the types of protozoa in the activated sludge automatically sampled thereby. It is preferable to use a device characterized in that it has a means for automatically measuring and quantifying the number by image analysis and calculating a diversity index from the result of this quantification by automatic calculation. The treatment method can be suitably carried out [8th invention]. That is, when activated sludge is sampled, this can be done automatically, saving labor, and when quantifying the type and number of protozoa in activated sludge, this can be done automatically, saving labor. In addition, the measurement (quantitative) accuracy is prevented from being reduced due to human error. Furthermore, when calculating the diversity index from the result of this quantitative measurement, this can be done automatically, saving labor and reducing human error. This prevents the calculation accuracy from being reduced.

上記のような廃水処理設備としては、図2に示すように最初沈殿池と生物処理槽と最終沈殿池とを有するものが一般的であり、本発明はかかる廃水処理設備を用いる場合に適用することができるが、最初沈殿池がなく、生物処理槽と最終沈殿池とを有するものを用いる場合にも本発明は適用することができる。   As shown in FIG. 2, the waste water treatment facility as described above is generally one having a first sedimentation basin, a biological treatment tank, and a final sedimentation basin, and the present invention is applied when such waste water treatment facility is used. However, the present invention can also be applied to a case where there is no initial sedimentation tank and a biological treatment tank and a final sedimentation tank are used.

活性汚泥中の原生動物の多様性指数を測定するに際し、通常は生物処理槽中の活性汚泥をサンプリングし、これを測定サンプルとするが、最終沈殿池からサンプリングし、これを測定サンプルとすることもできる。   When measuring the diversity index of protozoa in activated sludge, the activated sludge in the biological treatment tank is usually sampled and used as the measurement sample, but it is sampled from the final sedimentation basin and used as the measurement sample. You can also.

なお、廃水処理の分野では、活性汚泥中の微生物の多様性を指標として、活性汚泥の有機物分解能力が安定しているかどうかが評価できることが知られている。即ち、汚濁物質の処理が良好に行える微生物集団となっているかどうかを判定する指標として、多様性指数が用いられる。しかしながら、この場合の多様性指数は、汚濁物質の処理状況を判断するだけのものであり、汚泥沈降性と多様性指数との関係については知られていなかった。即ち、本発明の場合のように活性汚泥中の原生動物の多様性指数から活性汚泥の沈降性を予測することができることは、これまで知られておらず、本発明らによって見出された新規な事項である。   In the field of wastewater treatment, it is known that it is possible to evaluate whether the organic matter decomposing ability of activated sludge is stable using the diversity of microorganisms in activated sludge as an index. That is, the diversity index is used as an index for determining whether or not the microbial population can be satisfactorily treated with pollutants. However, the diversity index in this case is merely for judging the treatment status of the pollutant, and the relationship between the sludge settling property and the diversity index has not been known. That is, it has not been known so far that the sedimentation property of activated sludge can be predicted from the diversity index of protozoa in activated sludge as in the case of the present invention. It is an important matter.

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔1〕実施例1、比較例1
実施例1、比較例1に用いた廃水処理装置を図2に示す。この装置は一般的な廃水処理装置であり、次のような構成のものとなっている。即ち、廃水が配管1を通って最初沈殿池2に流入し、最初沈殿池2で沈殿物は余剰汚泥として配管3を通って廃棄される。最初沈殿池2の上澄水は、配管4を通って生物処理槽5に流入し、活性汚泥により生物処理される。処理後の活性汚泥は配管6を通って最終沈殿池7に流入し、最終沈殿池7で沈殿した汚泥は配管8を通って引き抜かれ、その一部は余剰汚泥として廃棄され、一部は返送汚泥として生物処理槽5に戻される。一方、最終沈殿池7の上澄水は、配管9を通って処理水として排出される。
[1] Example 1, Comparative Example 1
The wastewater treatment apparatus used in Example 1 and Comparative Example 1 is shown in FIG. This apparatus is a general waste water treatment apparatus and has the following configuration. That is, the waste water flows into the first settling basin 2 through the pipe 1, and the sediment is discarded through the pipe 3 as surplus sludge in the first settling pond 2. The supernatant water of the first sedimentation basin 2 flows into the biological treatment tank 5 through the pipe 4 and is biologically treated with activated sludge. The activated sludge after treatment flows into the final sedimentation basin 7 through the pipe 6, the sludge settled in the final sedimentation basin 7 is withdrawn through the pipe 8, a part of it is discarded as excess sludge, and a part is returned. It returns to the biological treatment tank 5 as sludge. On the other hand, the supernatant water of the final sedimentation basin 7 is discharged as treated water through the pipe 9.

上記廃水処理装置を用いて廃水処理の実験を次のようにして行った。即ち、最初沈殿池2への流入廃水として一般的な都市下水を用い、生物処理槽5内の活性汚泥濃度(MLSS)が約2,500mg/L となるように運転を行い、5日毎に生物処理槽5から活性汚泥をサンプリングし、活性汚泥中の原生動物の種類と数を定量し、この結果から活性汚泥中の原生動物の多様性指数(DI)を前記式(1) 〜(2) を用いて算出して求めた。また、同時に最終沈殿池7から配管9を介して得られる処理水の一部をサンプリングし、処理水SS濃度(処理水中の固形分濃度)を測定した。処理水SS濃度は通常約10mg/L以下であるが、汚泥流出が起きた場合は活性汚泥が処理水と共に流出するため、処理水SS濃度が高くなる。   An experiment of wastewater treatment using the wastewater treatment apparatus was performed as follows. In other words, the general municipal sewage is used as the inflow wastewater to the sedimentation basin 2 and the operation is performed so that the activated sludge concentration (MLSS) in the biological treatment tank 5 is about 2,500 mg / L. The activated sludge is sampled from the tank 5 and the type and number of protozoa in the activated sludge are quantified. From this result, the diversity index (DI) of the protozoa in the activated sludge is expressed by the above formulas (1) to (2). And calculated. At the same time, a part of the treated water obtained from the final sedimentation tank 7 via the pipe 9 was sampled, and the treated water SS concentration (solid content concentration in the treated water) was measured. The treated water SS concentration is usually about 10 mg / L or less, but when sludge spill occurs, the activated sludge flows out together with the treated water, so the treated water SS concentration becomes high.

(1) 実施例1
実施例1の場合、原生動物の多様性指数(DI)を指標にして汚泥流出防止対策(最終沈殿池7からの配管9を介しての活性汚泥流出の防止対策)を講じた。即ち、図3に示すように、DIが0.6 以下(約0.52)となった95日目に汚泥流出防止対策(アルミ系凝集剤の添加)を実施し、DIが0.6 超(約0.61)まで回復した130 日目に汚泥流出防止対策を終了した。この結果として、処理水SS濃度は10mg/L以下に抑えられており、汚泥流出を防止することができた。
(1) Example 1
In the case of Example 1, measures for preventing sludge spillage (measures for preventing activated sludge spillage through the pipe 9 from the final sedimentation basin 7) were taken using the protozoan diversity index (DI) as an index. In other words, as shown in Fig. 3, sludge spill prevention measures (addition of aluminum flocculant) were implemented on the 95th day when DI became 0.6 or less (about 0.52), and DI recovered to over 0.6 (about 0.61). On the 130th day, the sludge prevention measures were completed. As a result, the treated water SS concentration was suppressed to 10 mg / L or less, and sludge outflow could be prevented.

(2) 比較例1
比較例の場合、沈降性悪化(処理水SS濃度の上昇)を発見してから汚泥流出防止対策を講じた。即ち、図4に示すように、DIが0.6 以下(約0.55)となった125 日目においても汚泥流出防止対策を実施せず、処理水SS濃度が20mg/Lと高くなった145 日目に汚泥流出防止対策(アルミ系凝集剤の添加)を実施した。この結果として、処理水SS濃度は最大500mg/L 以上となり、汚泥流出を防止することができなかった。
(2) Comparative Example 1
In the case of the comparative example, sludge outflow prevention measures were taken after discovering sedimentation deterioration (increase in treated water SS concentration). That is, as shown in Fig. 4, the sludge spill prevention measures were not implemented even on the 125th day when the DI became 0.6 or less (about 0.55), and the treated water SS concentration increased to 20mg / L on the 145th day. Measures to prevent sludge outflow (addition of aluminum flocculant) were implemented. As a result, the treated water SS concentration reached a maximum of 500 mg / L or more, and sludge outflow could not be prevented.

なお、図4からわかるように、DIが0.6 以下(約0.55)となって汚泥流出防止対策を講じる必要の有ると判断される125 日目においても、処理水SS濃度は殆ど零であり、変化がなく、DIが約0.5 にまで低下した145 日目において処理水SS濃度の変化(増大)が初めて検出されている。従って、処理水SS濃度は指標としては既に沈降性が悪くなっているかどうかの判断には使えるが、今後どうなるかの予測はできず、汚泥沈降性悪化を事前に予測することができない。このため、沈降性が実際に悪化し始めてから経験的に対処するということしかできず、対応が遅れて汚泥が流出してしまう可能性が大きい。SV30やSVI を指標とする場合も、上記処理水SS濃度を指標とする場合と同様である。   As can be seen from Fig. 4, the treated water SS concentration is almost zero even on the 125th day when DI is judged to be 0.6 or less (about 0.55) and it is necessary to take measures to prevent sludge spillage. On the 145th day when the DI decreased to about 0.5, a change (increase) in the concentration of treated water SS was detected for the first time. Therefore, although the treated water SS concentration can be used as an index to determine whether or not the sedimentation property has already deteriorated, it cannot be predicted in the future, and the sludge sedimentation property cannot be predicted in advance. For this reason, it can only be dealt with empirically after the sedimentation actually begins to deteriorate, and there is a high possibility that sludge will flow out with a delay in the response. The case where SV30 or SVI is used as an index is the same as the case where the treated water SS concentration is used as an index.

一方、図3からわかるように、処理水SS濃度があまり増大せず、汚泥流出防止対策を直ぐに講じる必要が無い時点においても、原生動物の多様性指数(DI)は変化(低下)しており、汚泥沈降性悪化を事前に予測することができる。このため、汚泥流出防止対策を適切なタイミングで講じることができ、汚泥流出を防止することができる。   On the other hand, as can be seen from Fig. 3, the protozoan diversity index (DI) is changing (decreasing) even when the concentration of treated water SS does not increase so much and it is not necessary to immediately take measures to prevent sludge spillage. In addition, deterioration of sludge sedimentation can be predicted in advance. For this reason, sludge spill prevention measures can be taken at an appropriate timing, and sludge spill can be prevented.

〔2〕DIと汚泥流出の程度(頻度)との関係の検討
図2に示す廃水処理装置を用いて、実施例1の場合と同様の方法により活性汚泥中の原生動物の多様性指数(DI)を測定しながら廃水処理運転を行った。ただし、DIが低下しても汚泥流出防止対策を実施せずに運転し、汚泥流出が起きるかどうかを確認した。
[2] Examination of the relationship between DI and the degree (frequency) of sludge spillage Using the wastewater treatment system shown in Fig. 2, the diversity index of protozoa in activated sludge (DI) in the same manner as in Example 1 ) Was measured for wastewater treatment. However, even if DI decreased, it was operated without implementing sludge spill prevention measures and it was confirmed whether sludge spill would occur.

この結果を表2に示す。DIが0.6 まで低下しなかったケース(3回あり)においては、3回共に(3回のいずれの場合も)汚泥流出は認められなかった。DIが0.6 以下(0.6 〜0.55)まで低下したケース(2回あり)においては、2回の中の1回で汚泥流出が認められた。DIが0.5 以下(0.5 〜0.45)まで低下したケース(3回あり)においては、3回の中の2回で汚泥流出が認められた。DIが0.4 以下(0.4 〜0.2 )まで低下したケース(2回あり)においては、2回共に汚泥流出が認められた。   The results are shown in Table 2. In the case where DI did not drop to 0.6 (there were three times), sludge outflow was not observed in all three cases (in any of the three cases). In the case where DI decreased to 0.6 or less (0.6 to 0.55) (there were two times), sludge outflow was observed in one of the two times. In the case where DI decreased to 0.5 or less (0.5 to 0.45) (there were 3 times), sludge outflow was observed in 2 out of 3 times. In the case where DI decreased to 0.4 or less (0.4 to 0.2) (2 times), sludge outflow was observed twice.

Figure 2006043563
Figure 2006043563

Figure 2006043563
Figure 2006043563

本発明に係る廃水処理方法は、活性汚泥を用いて廃水処理するに際し、活性汚泥沈降性悪化による最終沈殿池からの活性汚泥流出を防止することができるので、活性汚泥流出による処理水質の悪化という事態を招くことがなく、好適に用いることができる。本発明に係る廃水処理装置は、かかる廃水処理方法に好適に用いることができる。   The wastewater treatment method according to the present invention can prevent activated sludge outflow from the final sedimentation basin due to the activated sludge sedimentation deterioration when wastewater treatment is performed using activated sludge. It can be suitably used without causing a situation. The wastewater treatment apparatus according to the present invention can be suitably used for such a wastewater treatment method.

本発明に係る廃水処理方法を実施するための装置の形態例を示す模式図である。It is a schematic diagram which shows the example of the apparatus for enforcing the wastewater treatment method which concerns on this invention. 実施例1および比較例1に係る廃水処理に用いた廃水処理装置を示す模式図である。It is a schematic diagram which shows the waste water treatment apparatus used for the waste water treatment which concerns on Example 1 and Comparative Example 1. FIG. 実施例1に係る廃水処理の運転日数と多様性指数(DI)および処理水SS濃度との関係を示す図である。It is a figure which shows the relationship between the operation days of a wastewater treatment which concerns on Example 1, a diversity index (DI), and a treated water SS density | concentration. 比較例1に係る廃水処理の運転日数と多様性指数(DI)および処理水SS濃度との関係を示す図である。It is a figure which shows the relationship between the operation days of a wastewater treatment which concerns on the comparative example 1, a diversity index (DI), and a treated water SS density | concentration.

符号の説明Explanation of symbols

1--配管、2--最初沈殿池、3--配管、4--配管、5--生物処理槽、6--配管、
7--最終沈殿池、8--配管、9--配管、
11--廃水処理設備、12--配管、13--自動サンプリング装置、14--画像解析装置、
15--制御装置。
1--piping, 2--first sedimentation basin, 3--piping, 4--piping, 5--biological treatment tank, 6--piping,
7--Final sedimentation basin, 8--Piping, 9--Piping,
11--Wastewater treatment equipment, 12--Piping, 13--Automatic sampling device, 14--Image analysis device,
15--Control device.

Claims (8)

活性汚泥を用いる廃水処理方法において、活性汚泥中の原生動物の種類と数を定量し、この結果から多様性指数を算出し、この多様性指数の値に基づいて活性汚泥の沈降性を予測し、最終沈殿池からの活性汚泥流出の防止対策を講じる必要の有無を判断することを特徴とする廃水処理方法。   In the wastewater treatment method using activated sludge, the type and number of protozoa in the activated sludge are quantified, the diversity index is calculated from the results, and the sedimentation of the activated sludge is predicted based on the value of the diversity index. A wastewater treatment method characterized by determining whether it is necessary to take measures to prevent activated sludge spillage from the final sedimentation basin. 前記多様性指数を下記式(1) を用いて算出する請求項1記載の廃水処理方法。
Figure 2006043563

ただし、上記式(1) において、DIは多様性指数であり、 Pi は下記式(2) に基づいて求められる値である。
Pi = Ni /N --------------------- 式(2)
ただし、上記式(2) において、N :原生動物の総数、 Ni :i番目の原生動物の数である。
The wastewater treatment method according to claim 1, wherein the diversity index is calculated using the following formula (1).
Figure 2006043563

However, in the above formula (1), DI is a diversity index, P i is a value determined based on the following equation (2).
P i = N i / N --------------------- Equation (2)
In the above formula (2), N is the total number of protozoa and N i is the number of the i-th protozoa.
前記多様性指数が活性汚泥の沈降性の点から予め定められた値以下となったときに最終沈殿池からの活性汚泥流出の防止対策を講じる請求項2記載の廃水処理方法。   The wastewater treatment method according to claim 2, wherein measures for preventing activated sludge outflow from the final sedimentation basin are taken when the diversity index becomes equal to or less than a predetermined value in terms of sedimentation of activated sludge. 前記定められた値が0.4 〜0.6 である請求項3記載の廃水処理方法。   The wastewater treatment method according to claim 3, wherein the determined value is 0.4 to 0.6. 前記定められた値が0.6 である請求項3記載の廃水処理方法。   The wastewater treatment method according to claim 3, wherein the predetermined value is 0.6. 前記最終沈殿池からの活性汚泥流出の防止対策を講じる場合、この防止対策として、凝集剤の添加による方法、無機物の添加による方法、最終沈殿池からの活性汚泥引き抜き量の増加による方法、廃水の流入量の低下による方法、廃水を最初沈殿池を経由させずに流入させることによる方法の1種または2種以上を用いる請求項1〜5のいずれかに記載の廃水処理方法。   When taking preventive measures against activated sludge outflow from the final sedimentation basin, the preventive measures include a method by adding a flocculant, a method by adding an inorganic substance, a method by increasing the amount of activated sludge withdrawn from the final sedimentation basin, wastewater The wastewater treatment method according to any one of claims 1 to 5, wherein one or more of a method based on a decrease in inflow and a method based on inflowing wastewater without first passing through a settling basin are used. 前記活性汚泥中の原生動物の種類と数を定量するに際し、活性汚泥を自動サンプリングし、この活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この結果から多様性指数を算出するに際し、自動算出により算出する請求項1〜6のいずれかに記載の廃水処理方法。   When quantifying the types and number of protozoa in the activated sludge, the activated sludge is automatically sampled, and the types and number of protozoa in the activated sludge are automatically measured and quantified by image analysis. The wastewater treatment method according to any one of claims 1 to 6, wherein the index is calculated by automatic calculation when calculating the index. 活性汚泥を用いる廃水処理装置において、活性汚泥を自動サンプリングする手段と、これにより自動サンプリングされた活性汚泥中の原生動物の種類と数を画像解析により自動測定して定量し、この定量の結果から多様性指数を自動算出により算出する手段とを有することを特徴とする廃水処理装置。
In wastewater treatment equipment using activated sludge, means for automatically sampling activated sludge, and the type and number of protozoa in the automatically sampled activated sludge are automatically measured and quantified by image analysis. A wastewater treatment apparatus having means for automatically calculating a diversity index.
JP2004226966A 2004-08-03 2004-08-03 Wastewater treatment method Expired - Fee Related JP4441357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226966A JP4441357B2 (en) 2004-08-03 2004-08-03 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226966A JP4441357B2 (en) 2004-08-03 2004-08-03 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006043563A true JP2006043563A (en) 2006-02-16
JP4441357B2 JP4441357B2 (en) 2010-03-31

Family

ID=36022731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226966A Expired - Fee Related JP4441357B2 (en) 2004-08-03 2004-08-03 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4441357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2020006296A (en) * 2018-07-04 2020-01-16 株式会社日立製作所 Water treatment control apparatus and water treatment system
JP7494668B2 (en) 2020-09-10 2024-06-04 Jfeエンジニアリング株式会社 Method and apparatus for predicting treated water quality at a sewage treatment plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2020006296A (en) * 2018-07-04 2020-01-16 株式会社日立製作所 Water treatment control apparatus and water treatment system
JP7103598B2 (en) 2018-07-04 2022-07-20 株式会社日立製作所 Water treatment control device and water treatment system
JP7494668B2 (en) 2020-09-10 2024-06-04 Jfeエンジニアリング株式会社 Method and apparatus for predicting treated water quality at a sewage treatment plant

Also Published As

Publication number Publication date
JP4441357B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
Emerick et al. Factors influencing ultraviolet disinfection performance part II: Association of coliform bacteria with wastewater particles
Hassani et al. Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran
Summak et al. Evaluation of genotoxicity from Nilufer Stream (Bursa/Turkey) water using piscine micronucleus test
Movahedian et al. Toxicity evaluation of wastewater treatment plant effluents using Daphnia magna
JP6309237B2 (en) Water treatment method and treatment facility for reducing endocrine disrupting effects using living organisms
JP2009000673A (en) Apparatus and method for monitoring water purification process
Issa Evaluation of water quality and performance for a water treatment plant: Khanaqin city as a case study
Yustiani et al. The study of deoxygenation rate of Rangkui River water during dry season
Briciu et al. Urban streamwater contamination and self-purification in a central-eastern European city. Part I
Iordache et al. Assessment of heavy metals pollution in sediments from reservoirs of the olt river as tool for environmental risk management
Arabgol et al. Influence of MBBR carrier geometrical properties and biofilm thickness restraint on biofilm properties, effluent particle size distribution, settling velocity distribution, and settling behaviour
Dubber et al. Enumeration of protozoan ciliates in activated sludge: determination of replicate number using probability
Nithyanandam et al. Case study: Analysis of water quality in Sungai Batu Ferringhi
JP4441357B2 (en) Wastewater treatment method
Delatolla et al. Rapid and reliable quantification of biofilm weight and nitrogen content of biofilm attached to polystyrene beads
Fundneider et al. Identifying technical synergy effects for organic micro-pollutants removal
Nikuze et al. Assessment of the efficiency of the wastewater treatment plant: a case of Gacuriro Vision City
Surujlal-Naicker et al. Evaluating the acute toxicity of estrogen hormones and wastewater effluents using Vibrio fischeri
Bringolf et al. Reduction of estrogenic activity of municipal wastewater by aerated lagoon treatment facilities
Pathiratne Biomarker responses of Nile Tilapia (Oreochromis niloticus) exposed to polluted water from Kelani river basin, Sri Lanka: Implications for biomonitoring river pollution
EP3898530B1 (en) A method for cyanobacteria removal in an aqueous solution
Chevalier et al. Evaluation of InSpectra UV Analyzer for measuring conventional water and wastewater parameters
Ruvinda et al. Use of liver histological alterations and erythrocytic nuclear abnormalities of two native fish species in Kelani River, Sri Lanka as biomarkers for pollution impact assessments.
Sivanandan et al. Assessment of water quality and pollution in Gurunagar fishery harbour, Jaffna, Sri Lanka
de Matos et al. Influence factors in the adjustment of parameters of the modified first-order kinetics equation used to model constructed wetland systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees