JP2006042507A - Armature cooling structure - Google Patents

Armature cooling structure Download PDF

Info

Publication number
JP2006042507A
JP2006042507A JP2004219548A JP2004219548A JP2006042507A JP 2006042507 A JP2006042507 A JP 2006042507A JP 2004219548 A JP2004219548 A JP 2004219548A JP 2004219548 A JP2004219548 A JP 2004219548A JP 2006042507 A JP2006042507 A JP 2006042507A
Authority
JP
Japan
Prior art keywords
armature
motor
magnet
cooling structure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219548A
Other languages
Japanese (ja)
Inventor
Suguru Watanabe
英 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2004219548A priority Critical patent/JP2006042507A/en
Publication of JP2006042507A publication Critical patent/JP2006042507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent demagnetization of the magnet in a motor. <P>SOLUTION: Between the armatures 1, 2 and the magnet 4 of a motor M, a partition wall member 10 capable of enclosing the armatures 1, 2 and in which at least the surface opposing the magnet 4 is formed of a heat insulating material is provided. The gap between the partition wall member 10 and the armatures 1, 2 is filled with a thermally conductive material 15 and heat is dissipated from the armatures 1, 2 through a frame F. Temperature rise in the motor M is prevented by heat insulation effect of the partition wall member 10 and demagnetization of the magnet 4 is prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、モータにおける電機子冷却構造の改良に関する。   The present invention relates to an improvement in an armature cooling structure in a motor.

一般にモータに使用される磁石は、温度上昇に伴って磁束密度が減少する特性を有しており、特に、ネオジウム磁石等の希土類磁石にあっては、高温下において元の磁力まで回復できない不可逆減磁を生じることが知られている。   In general, magnets used in motors have the property that the magnetic flux density decreases as the temperature rises. In particular, rare earth magnets such as neodymium magnets have an irreversible decrease that cannot recover to the original magnetic force at high temperatures. It is known to produce magnetism.

そして、上述のように磁石の温度上昇による減磁は、モータの出力トルクの低下という性能劣化に繋がるため、上記減磁を防止する提案がなされるに至っている。   As described above, the demagnetization due to the temperature rise of the magnet leads to the performance deterioration that the output torque of the motor is reduced. Therefore, a proposal for preventing the demagnetization has been made.

この提案では、電機子たるステータを樹脂ケースで覆うとともにこのケース内に熱放散性の樹脂材を充填するもの(たとえば、特許文献1参照)が知られている。   In this proposal, an armature stator is covered with a resin case, and the case is filled with a heat-dissipating resin material (see, for example, Patent Document 1).

そして、この提案では、ステータの巻線が発生する熱を巻線の周辺に配在された熱放散性の樹脂材を介して樹脂ケース側に伝達し、さらに、この樹脂ケースを介して熱を外部に放散するとしている。
特開平7−147748号公報(作用欄,図1)
In this proposal, the heat generated by the stator windings is transferred to the resin case side through the heat dissipating resin material disposed around the windings, and further, the heat is transferred through the resin case. It is supposed to dissipate outside.
Japanese Patent Laid-Open No. 7-147748 (action column, FIG. 1)

しかし、上記した提案にあっては、たしかに樹脂ケースを介してモータ駆動中の巻線が発する熱が放散されるので、モータが高温となることを防止できると言い得るが、以下の点で不具合があると指摘される恐れがある。   However, in the above proposal, it can be said that the heat generated by the winding while the motor is driven is dissipated through the resin case, so that it can be prevented that the motor becomes high temperature. There is a fear that there is.

すなわち、上記提案ではケースを介して熱放散するが、その過程で当然ケースに巻線が発生する熱が伝達されることになり、当該ケースはモータ内にある気体の温度上昇、すなわち、モータ内部の温度上昇を防止することはできない。   That is, in the above proposal, heat is dissipated through the case, but naturally the heat generated by the winding is transmitted to the case in the process, and the case raises the temperature of the gas in the motor, that is, the inside of the motor. The temperature rise cannot be prevented.

すると、モータ内部の温度上昇により磁石に伝達される熱で、磁石は減磁することになるから、特に継続駆動中や高回転域では、トルクの減少や場合によっては不可逆減磁を生じてモータの性能が劣化してしまう恐れがある。   Then, since the magnet is demagnetized by the heat transmitted to the magnet due to the temperature rise inside the motor, especially during continuous driving and high rotation range, the torque is reduced and in some cases irreversible demagnetization is caused to cause the motor. There is a risk that the performance of the will deteriorate.

そこで、本発明は上記不具合を解消するために創案されたものであって、その目的とするところは、モータにおける磁石の減磁を防止することである。   Therefore, the present invention has been developed to solve the above-described problems, and its object is to prevent demagnetization of the magnet in the motor.

上記した目的を達成するため、本発明の課題解決手段における電機子冷却構造は、モータの電機子と磁石との間に電機子を密閉可能であって少なくとも磁石に対向する面が断熱材で形成される隔壁部材を設け、該隔壁部材と電機子との間に熱伝導性物質を充填したことを特徴とする。   In order to achieve the above object, the armature cooling structure in the problem solving means of the present invention can seal the armature between the armature of the motor and the magnet, and at least the surface facing the magnet is formed of a heat insulating material. The partition member is provided, and a heat conductive material is filled between the partition member and the armature.

各請求項の発明によれば、隔壁部材によって電機子の熱の磁石への伝達が防止されるとともに、電機子の熱は、熱伝導性物質によりモータの外部へ速やかに放散されるから、モータ内部の温度上昇が防止されて磁石の温度上昇が防止され、磁石の減磁を防止することができる。   According to the invention of each claim, the partition member prevents the heat of the armature from being transferred to the magnet, and the heat of the armature is quickly dissipated to the outside of the motor by the heat conductive material. An internal temperature rise is prevented, a magnet temperature rise is prevented, and demagnetization of the magnet can be prevented.

すなわち、モータを長時間駆動しても、磁石が高温となってしまうことが防止されるので、モータの耐久性が向上するとともに、モータの性能が劣化することもなく、モータは長時間駆動を行っても安定的なトルクの発生が可能となる。   That is, even if the motor is driven for a long time, the magnet is prevented from becoming hot, so that the durability of the motor is improved and the motor performance is not deteriorated. Even if it is performed, stable torque can be generated.

以下、本発明を図に基づき説明する。図1は、本発明の一実施の形態における電機子冷却構造が具現化されたモータの縦断面図である。図2は、他実施の形態における電機子冷却構造が具現化されたステータの斜視図である。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a motor in which an armature cooling structure according to an embodiment of the present invention is embodied. FIG. 2 is a perspective view of a stator in which an armature cooling structure according to another embodiment is embodied.

図1に示すように、一実施の形態における電機子冷却構造が具現化されたモータMは、ロータRと、電機子たるステータSと、フレームFとを備え、いわゆるブラシレスモータとして構成されている。   As shown in FIG. 1, the motor M in which the armature cooling structure in one embodiment is embodied includes a rotor R, an armature stator S, and a frame F, and is configured as a so-called brushless motor. .

以下、各部につき詳細に説明すると、電機子たるステータSは、筒状のフレームFの内周に装着された筒状のステータコア1と、ステータコア1に巻装された巻線2とで構成されている。   In the following, each part will be described in detail. The stator S as an armature is composed of a cylindrical stator core 1 mounted on the inner periphery of a cylindrical frame F and a winding 2 wound around the stator core 1. Yes.

他方、ロータRは、シャフト3と、シャフト3の外周に装着された磁石たる永久磁石4とで構成され、シャフト3の両端側は、フレームF内に嵌着されたボールベアリング5,6に回転自在に軸支され、永久磁石4はステータSに対向させている。   On the other hand, the rotor R is composed of a shaft 3 and a permanent magnet 4 which is a magnet mounted on the outer periphery of the shaft 3, and both end sides of the shaft 3 are rotated by ball bearings 5 and 6 fitted in the frame F. The permanent magnet 4 is supported by the stator S so as to face the stator S.

そして、このモータM内には上記ステータSを覆う隔壁部材10が設けられており、この隔壁部材10は、ロータRに対向する筒部11と、筒部11の各開口端、すなわち、図1中上下端から延設される一対の環状部12,13とを備え、上記各環状部12,13の外周側がモータMのフレームF内周に装着され、この隔壁部材10によりステータSが密封状態とされている。   In addition, a partition member 10 that covers the stator S is provided in the motor M. The partition member 10 includes a cylindrical portion 11 that faces the rotor R, and each opening end of the cylindrical portion 11, that is, FIG. A pair of annular portions 12 and 13 extending from the middle upper and lower ends are provided, and the outer peripheral sides of the annular portions 12 and 13 are mounted on the inner periphery of the frame F of the motor M, and the stator S is sealed by the partition member 10. It is said that.

また、この隔壁部材10は、断熱材で形成されており、ステータSの巻線2の通電時に巻線2が発生する熱がこの隔壁部材10によりロータR側に伝達されることが防止されている。   The partition member 10 is formed of a heat insulating material, and heat generated by the winding 2 when the winding 2 of the stator S is energized is prevented from being transmitted to the rotor R side by the partition member 10. Yes.

さらに、この隔壁部材10とステータSとの間には、熱伝導性物質15が充填されている。すなわち、磁束変化等によるステータコア1の発する熱や通電時の巻線2の発する熱は、上記熱伝導性物質15に速やかに伝達されることとなり、さらに、熱伝導性物質15に伝達された熱は、上述のように隔壁部材10が断熱材で形成されているので、モータMの内部側には熱が伝達されにくく、フレームF表面を介して外部空気中に放散されることとなる。   Further, a heat conductive material 15 is filled between the partition wall member 10 and the stator S. That is, the heat generated by the stator core 1 due to a change in magnetic flux or the like and the heat generated by the winding 2 when energized is promptly transmitted to the heat conductive material 15. Since the partition member 10 is formed of a heat insulating material as described above, heat is not easily transmitted to the inner side of the motor M, and is dissipated into the external air through the surface of the frame F.

したがって、フレームFを介しての熱放散に加えて、隔壁部材10の断熱効果によりモータM内部の気体の温度上昇が防止されることにより永久磁石4の温度上昇が防止され、結果的に永久磁石4の減磁が防止されることとなる。   Accordingly, in addition to the heat dissipation through the frame F, the temperature rise of the permanent magnet 4 is prevented by preventing the temperature rise of the gas inside the motor M due to the heat insulating effect of the partition member 10, and consequently the permanent magnet. Thus, demagnetization of 4 is prevented.

すなわち、モータMを長時間駆動しても、永久磁石4が高温となってしまうことが防止されるので、モータMの耐久性が向上するとともに、モータMの性能が劣化することもなく、モータMは長時間駆動を行っても安定的なトルクの発生が可能となる。   That is, even if the motor M is driven for a long time, the permanent magnet 4 is prevented from becoming high temperature, so that the durability of the motor M is improved and the performance of the motor M is not deteriorated. M can generate stable torque even when driven for a long time.

また、電機子は速やかに冷却されるので巻線2の温度上昇が抑制されるから、巻線2を形成する導線の絶縁被膜の化学変化等により絶縁性が劣化して漏電等を生じてモータM自体が損傷するという危惧もない。   In addition, since the armature is quickly cooled, the temperature rise of the winding 2 is suppressed, so that the insulation is deteriorated due to a chemical change of the insulating film of the conductive wire forming the winding 2 to cause electric leakage and the like. There is no fear that M itself will be damaged.

なお、断熱材としては、熱伝導率が小さい材質、たとえば、フェノール系樹脂等を用いることができ、また、本実施の形態のように隔壁部材10全部を断熱材とすることが望ましく減磁防止効果が高いが、断熱材で形成する部分を隔壁部材10の筒部11、すなわち、ロータRに対向する面のみとしても、永久磁石4への熱伝達を防止可能である。   As the heat insulating material, a material having a low thermal conductivity, such as a phenolic resin, can be used, and it is desirable to use the entire partition member 10 as a heat insulating material as in the present embodiment to prevent demagnetization. Although the effect is high, heat transfer to the permanent magnet 4 can be prevented even if the portion formed of the heat insulating material is only the cylindrical portion 11 of the partition wall member 10, that is, the surface facing the rotor R.

また、上述したところでは、隔壁部材10そのものが断熱材で構成されているが、隔壁部材10の外側面、すなわち、ロータR側を向く面に断熱塗料を塗布したり断熱材で形成される層を形成したりとしてもよく、この場合においても、モータM内の温度上昇を防止でき永久磁石4の減磁を防止可能である。   In addition, as described above, the partition member 10 itself is made of a heat insulating material, but a layer formed by applying a heat insulating paint or forming the heat insulating material on the outer surface of the partition member 10, that is, the surface facing the rotor R side. In this case, the temperature increase in the motor M can be prevented and the demagnetization of the permanent magnet 4 can be prevented.

さらに、熱伝導性物質15としては、高熱伝導性の樹脂等の固体だけでなく液体、たとえば、油等を使用してもよい。   Furthermore, as the heat conductive substance 15, not only a solid such as a highly heat conductive resin but also a liquid such as oil may be used.

つづいて、図2に示した他の実施の形態における電機子冷却構造について説明する。この電機子冷却構造にあっては、隔壁部材20が、上述の一実施の形態と同様のステータコア1と巻線2とで構成される筒状のステータSの内周側と外周側とにそれぞれ配置される一対の筒部21,22と、各筒部21,22の各開口端から延設され内部を密閉する一対の環状部23,24とで構成されるとともに、この隔壁部材20内にステータSを密封状態下に設置し、さらに、この隔壁部材20とステータSとの間に一実施の形態と同様に熱伝導性物質15を充填しているものである。   Next, an armature cooling structure in another embodiment shown in FIG. 2 will be described. In this armature cooling structure, the partition members 20 are respectively provided on the inner peripheral side and the outer peripheral side of the cylindrical stator S configured by the stator core 1 and the winding 2 similar to those in the above-described embodiment. The partition member 20 includes a pair of cylindrical portions 21 and 22 and a pair of annular portions 23 and 24 that extend from the open ends of the cylindrical portions 21 and 22 and seal the inside. The stator S is installed in a sealed state, and the thermal conductive material 15 is filled between the partition wall member 20 and the stator S as in the embodiment.

そして、より詳しくは、上記隔壁部材20の筒部22の内周側にステータSのステータコア1が装着され、上記筒部22は高熱伝導性樹脂で形成され、さらに、筒部22以外の隔壁部材20の各部、すなわち筒部21、環状部23,24は断熱材で形成されている。   More specifically, the stator core 1 of the stator S is mounted on the inner peripheral side of the cylindrical portion 22 of the partition wall member 20, the cylindrical portion 22 is formed of a high thermal conductive resin, and the partition wall members other than the cylindrical portion 22 are further provided. Each part of 20, ie, the cylinder part 21 and the annular parts 23 and 24, is formed of a heat insulating material.

このように構成された隔壁部材20およびステータSは、図示しないモータのフレーム内周側に固定され、筒部21の内周側が図示しないロータに対向するように設置されることとなり、やはり上記した一実施の形態の電機子冷却構造のように、巻線2やステータコア1の発する熱がモータ内部に伝達されることを防止できるようになっている。   The partition member 20 and the stator S thus configured are fixed to the inner peripheral side of the motor frame (not shown), and are installed so that the inner peripheral side of the cylindrical portion 21 faces the rotor (not shown). As in the armature cooling structure of the embodiment, the heat generated by the winding 2 and the stator core 1 can be prevented from being transmitted to the inside of the motor.

この場合には、上述の一実施の形態と同様の作用効果を奏すると同時に、ステータS側を完全に別構造とすることが可能となるので、モータを組み立てやすくなりコスト削減が可能となる。   In this case, the same effect as that of the above-described embodiment can be obtained, and at the same time, the stator S side can be completely structured separately, so that the motor can be easily assembled and the cost can be reduced.

また、上記した各実施の形態においては、電機子冷却構造が円筒電機子に適用された場合について説明しているが、円板電機子にも適用可能であることは勿論で、さらに、ロータ側に電機子を備えたモータにも適用可能であるが、その場合には、隔壁部材をロータ側に設けて電機子を密閉し、当該隔壁部材の磁石に対向する面を断熱材で形成するか、上記磁石に対向する面に断熱材で形成する層を設けておくとすれば、やはり、モータの内部の温度上昇を防止でき、また、ロータのシャフトを介して熱を外部に放散することがででき、磁石の減磁を防止することができる。   In each of the above-described embodiments, the case where the armature cooling structure is applied to the cylindrical armature has been described. In this case, the partition member is provided on the rotor side to seal the armature, and the surface of the partition member facing the magnet is formed of a heat insulating material. If a layer made of a heat insulating material is provided on the surface facing the magnet, the temperature inside the motor can be prevented from rising, and heat can be dissipated outside via the rotor shaft. And can prevent demagnetization of the magnet.

また、電機子の熱の外部への放散効率を高めるために、電機子が連結されるモータのフレームやロータに複数フィンを設けるとしてもよい。   Further, in order to increase the efficiency of heat dissipated by the armature to the outside, a plurality of fins may be provided on the frame or rotor of the motor to which the armature is connected.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

本発明の一実施の形態における電機子冷却構造が具現化されたモータの縦断面図である。It is a longitudinal cross-sectional view of the motor with which the armature cooling structure in one embodiment of this invention was embodied. 他実施の形態における電機子冷却構造が具現化されたステータの斜視図である。It is a perspective view of the stator by which the armature cooling structure in other embodiment was embodied.

符号の説明Explanation of symbols

1 ステータコア
2 巻線
3 シャフト
4 磁石たる永久磁石
5,6 ボールベアリング
10,20 隔壁部材
11,21,22 筒部
12,13,23,24 環状部
15 熱伝導性物質
F フレーム
M モータ
R ロータ
S ステータ
DESCRIPTION OF SYMBOLS 1 Stator core 2 Winding 3 Shaft 4 Permanent magnets 5 and 6 Ball bearings 10 and 20 Bulkhead members 11, 21, 22 Cylindrical parts 12, 13, 23, 24 Annular part 15 Thermally conductive substance F Frame M Motor R Rotor S Stator

Claims (3)

モータの電機子と磁石との間に電機子を密閉可能であって少なくとも磁石に対向する面が断熱材で形成される隔壁部材を設け、該隔壁部材と電機子との間に熱伝導性物質を充填したことを特徴とする電機子冷却構造。 Provided with a partition member capable of sealing the armature between the armature and the magnet of the motor and having at least a surface facing the magnet formed of a heat insulating material, and a thermally conductive material between the partition member and the armature Armature cooling structure characterized by being filled with. 隔壁部材が磁石に対向する筒部と、筒部の各開口端から延設される一対の環状部とを備え、上記各環状部がモータのフレーム内周もしくはロータの外周に装着されてなることを特徴とする請求項1に記載の電機子冷却構造。 The partition wall member includes a cylindrical portion facing the magnet and a pair of annular portions extending from each opening end of the cylindrical portion, and each annular portion is mounted on the inner periphery of the motor frame or the outer periphery of the rotor. The armature cooling structure according to claim 1, wherein: 隔壁部材が筒状の電機子の内周側と外周側とにそれぞれ配置される一対の筒部と、各筒部の各開口端から延設され内部を密閉する一対の環状部とを備えてなる請求項1に記載の電機子冷却構造。 A partition member is provided with a pair of cylindrical portions respectively disposed on the inner peripheral side and the outer peripheral side of the cylindrical armature, and a pair of annular portions extending from each open end of each cylindrical portion and sealing the inside. The armature cooling structure according to claim 1.
JP2004219548A 2004-07-28 2004-07-28 Armature cooling structure Pending JP2006042507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219548A JP2006042507A (en) 2004-07-28 2004-07-28 Armature cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219548A JP2006042507A (en) 2004-07-28 2004-07-28 Armature cooling structure

Publications (1)

Publication Number Publication Date
JP2006042507A true JP2006042507A (en) 2006-02-09

Family

ID=35906876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219548A Pending JP2006042507A (en) 2004-07-28 2004-07-28 Armature cooling structure

Country Status (1)

Country Link
JP (1) JP2006042507A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179746A (en) * 2012-02-28 2013-09-09 Daikin Ind Ltd Rotary electric machine and electric vehicle
JP2014039361A (en) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal Eddy current type reduction gear
JP2016127610A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Rotary electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281350A (en) * 1991-03-05 1992-10-06 Mitsubishi Electric Corp Canned motor
JPH0591696A (en) * 1991-09-26 1993-04-09 Mitsubishi Electric Corp Rotating machine
JPH06165419A (en) * 1992-11-24 1994-06-10 Daikin Ind Ltd Magnet type motor
JPH07147748A (en) * 1993-11-22 1995-06-06 Sanso Denki Kk Motor with resin case and its manufacture
JPH0937518A (en) * 1995-07-18 1997-02-07 Fuji Electric Co Ltd Enclosed permanent magnet motor
JPH11243658A (en) * 1998-02-23 1999-09-07 Hitachi Ltd Liquid-cooled alternator
JP2001095196A (en) * 1999-08-30 2001-04-06 Electric Boat Corp Electric motor having sealed stator and sealed rotor
JP2003169441A (en) * 2001-12-03 2003-06-13 Kayaba Ind Co Ltd Motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281350A (en) * 1991-03-05 1992-10-06 Mitsubishi Electric Corp Canned motor
JPH0591696A (en) * 1991-09-26 1993-04-09 Mitsubishi Electric Corp Rotating machine
JPH06165419A (en) * 1992-11-24 1994-06-10 Daikin Ind Ltd Magnet type motor
JPH07147748A (en) * 1993-11-22 1995-06-06 Sanso Denki Kk Motor with resin case and its manufacture
JPH0937518A (en) * 1995-07-18 1997-02-07 Fuji Electric Co Ltd Enclosed permanent magnet motor
JPH11243658A (en) * 1998-02-23 1999-09-07 Hitachi Ltd Liquid-cooled alternator
JP2001095196A (en) * 1999-08-30 2001-04-06 Electric Boat Corp Electric motor having sealed stator and sealed rotor
JP2003169441A (en) * 2001-12-03 2003-06-13 Kayaba Ind Co Ltd Motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179746A (en) * 2012-02-28 2013-09-09 Daikin Ind Ltd Rotary electric machine and electric vehicle
JP2014039361A (en) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal Eddy current type reduction gear
JP2016127610A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
US8513842B2 (en) Heat radiation structure for rotary electromotor
KR100870738B1 (en) AFPM coreless multi-generator and motor
US10291105B2 (en) Cooling structure of drive motor
JP2008283730A (en) Split stator for electric motor, stator for electric motor equipped with this split stator, electric motor equipped with this stator for electric motor, and manufacturing method of split stator for electric motor
JP2004236376A (en) Internal cooling type motor
JP2008167609A (en) Electric motor
JP5931460B2 (en) Outer rotor type brushless motor
JP2010220402A (en) Permanent-magnet rotary electric machine
JP2014023198A (en) Electric motor
JP4082364B2 (en) Axial gap motor stator cooling structure
JP2007252149A (en) Stator of concentrated winding
KR20200093868A (en) Structure for cooling of a motor
JP2011055654A (en) Cooling structure of electric motor
JP2011036104A (en) Permanent magnet type rotary electric machine
WO2021065586A1 (en) Motor
JP2005143268A (en) Rotary electric machine
JP2008193858A (en) Canned motor
JP2006042507A (en) Armature cooling structure
JP2005218274A (en) Rotor of rotary electric machine
JP2008278654A (en) Stator of concentrated winding
JP2007159282A (en) Motor
JP2005057884A (en) Motor
JP4355555B2 (en) Rotating electric machine
JP2007074852A (en) Stator for motor, motor, and process for manufacturing stator for motor
JP2011166977A (en) Molded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907