JP2006040726A - Electrodeless discharge lamp lighting device and illumination device - Google Patents

Electrodeless discharge lamp lighting device and illumination device Download PDF

Info

Publication number
JP2006040726A
JP2006040726A JP2004219303A JP2004219303A JP2006040726A JP 2006040726 A JP2006040726 A JP 2006040726A JP 2004219303 A JP2004219303 A JP 2004219303A JP 2004219303 A JP2004219303 A JP 2004219303A JP 2006040726 A JP2006040726 A JP 2006040726A
Authority
JP
Japan
Prior art keywords
magnetic flux
current
discharge lamp
electrodeless discharge
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004219303A
Other languages
Japanese (ja)
Inventor
Yuji Kumagai
祐二 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004219303A priority Critical patent/JP2006040726A/en
Publication of JP2006040726A publication Critical patent/JP2006040726A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeless discharge lamp lighting device capable of evading circuit breakage when disorder of heat radiation is generated, and an illumination device. <P>SOLUTION: When a ferrite core 11 of a coupler 1b reaches high temperature, since the maximum flux density of the ferrite core 11 is lowered and a flux saturation is generated, an induction coil current Il becomes pulse-shaped current at the peak of sinusoidal wave, and a differentiating circuit 2e, to which a current detection signal is input from a current detection part 2d, detects a signal V1 at every peak of the induction coil current I1. When an output signal V1 of the differentiating circuit 2e exceeds a prescribed value, the output level of a comparator Comp1 is converted into an H-level from an L-level, an oscillation control part K2, to which the H-level signal is input, turns a switch element SW1 on, the oscillation operation of switching elements Q1, Q2 is stopped by short-circuiting a gate terminal of the switching element Q2 with ground level, and the light is put out by turning the induction coil current I1 into zero. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無電極放電灯点灯装置、および照明器具に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device and a lighting fixture.

従来から、無電極放電灯を点灯させるための無電極放電灯点灯装置がある。   Conventionally, there is an electrodeless discharge lamp lighting device for lighting an electrodeless discharge lamp.

無電極放電灯は、内部に水銀蒸気や放電ガスが封入された略球形状のガラスバルブを具備して円筒状の窪みを形成されており、ガラスバルブ内面には蛍光体が塗布してある。   The electrodeless discharge lamp has a substantially spherical glass bulb in which mercury vapor or discharge gas is sealed, and has a cylindrical recess. A phosphor is coated on the inner surface of the glass bulb.

無電極放電灯点灯装置は、ガラスバルブの円筒状の窪み内に挿入されたフェライトコア、フェライトコアの外周に巻回された誘導コイル、フェライトコアや誘導コイルの熱を外部に放熱する熱伝導体からなるカプラと、誘導コイルに高周波電流を供給する高周波電源とから構成される。   The electrodeless discharge lamp lighting device consists of a ferrite core inserted in a cylindrical hollow of a glass bulb, an induction coil wound around the outer periphery of the ferrite core, and a heat conductor that radiates heat from the ferrite core and induction coil to the outside. And a high frequency power source for supplying a high frequency current to the induction coil.

そして、高周波電源から誘導コイルに高周波電流が供給されると、誘導コイルの周辺に高周波電磁界が発生する。すると、無電極放電灯内の水銀蒸気が励起され、紫外線を発生する。紫外線がガラスバルブ内面の蛍光体に当たると可視光に変換され、無電極放電灯が点灯する。   When a high frequency current is supplied from the high frequency power source to the induction coil, a high frequency electromagnetic field is generated around the induction coil. Then, mercury vapor in the electrodeless discharge lamp is excited to generate ultraviolet rays. When ultraviolet light hits the phosphor on the inner surface of the glass bulb, it is converted into visible light, and the electrodeless discharge lamp is turned on.

無電極放電灯が点灯すると、放電によって発生した熱がカプラの誘導コイルやフェライトコアを加熱したり、鉄損および銅損による発熱でカプラが高温になる。そこで、誘導コイルがその耐熱温度を超えたり、フェライトコアがキュリー温度を超えるという不具合を防止するために、カプラの底部を照明器具の本体等に接触した状態に設置して放熱させていた。(例えば、特許文献1参照)
また、無電極放電灯点灯装置の過電圧、過電流に対する保護動作として、過電圧、過電流を検出すると点灯動作を停止するものがある。(例えば、特許文献2参照)
特表平11−501152号公報(第7頁21行〜24行、図1) 特開2000−68085号公報(段落番号[0035]〜[0043]、図1)
When the electrodeless discharge lamp is lit, the heat generated by the discharge heats the induction coil and the ferrite core of the coupler, or the coupler becomes high temperature due to heat generated by iron loss and copper loss. Therefore, in order to prevent the problem that the induction coil exceeds its heat resistance temperature and the ferrite core exceeds the Curie temperature, the bottom of the coupler is placed in contact with the main body of the lighting fixture to dissipate heat. (For example, see Patent Document 1)
In addition, as an operation for protecting the overvoltage and overcurrent of the electrodeless discharge lamp lighting device, there is one that stops the lighting operation when an overvoltage or overcurrent is detected. (For example, see Patent Document 2)
Japanese National Patent Publication No. 11-501152 (page 7, lines 21-24, FIG. 1) JP 2000-68085 A (paragraph numbers [0035] to [0043], FIG. 1)

上記従来例で示したように、カプラを照明器具の本体等に接触した状態で設置し、カプラの熱伝導体により誘導コイルやフェライトコアの熱を器具に逃がす構造の場合、カプラの器具への取付状態が不十分であったり、あるいは経年変化等の要因によってカプラから器具への熱抵抗が大きくなったりして、カプラの熱が十分に放熱できない場合、前述のように誘導コイルがその耐熱温度を超えたり、フェライトコアがキュリー温度を超えて、回路が破壊されるという不具合が生じる可能性がある。   As shown in the above conventional example, when the coupler is installed in contact with the main body of the lighting fixture and the structure is such that the heat of the induction coil or ferrite core is released to the fixture by the coupler's thermal conductor, If the heat of the coupler cannot be sufficiently dissipated due to insufficient mounting conditions or due to factors such as aging, the heat resistance of the coupler cannot be sufficiently dissipated. Or the ferrite core may exceed the Curie temperature and the circuit may be damaged.

本発明は、上記事由に鑑みてなされたものであり、その目的は、放熱の不具合が生じた場合に回路破壊を回避可能な無電極放電灯点灯装置、および照明器具を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the electrodeless discharge lamp lighting device and lighting fixture which can avoid circuit destruction, when the malfunction of heat dissipation arises.

請求項1の発明は、略球形状の外観をなして少なくとも1つの窪みを有する無電極放電灯の窪み内に配置されたコア、誘導コイル、コアおよび誘導コイルの熱を放熱するための熱伝導体を具備するカプラと、誘導コイルに高周波電流を供給する高周波電源と、コアの磁束飽和を検出する磁束飽和検出部と、磁束飽和検出部がコアの磁束飽和を検出した場合に、高周波電源の出力電流を低減させる電流制御部とを備えることを特徴とする。   The invention according to claim 1 is a heat conduction for dissipating the heat of the core, the induction coil, the core and the induction coil disposed in the depression of the electrodeless discharge lamp having an approximately spherical appearance and having at least one depression. A coupler having a body, a high-frequency power source for supplying high-frequency current to the induction coil, a magnetic flux saturation detecting unit for detecting magnetic flux saturation of the core, and when the magnetic flux saturation detecting unit detects the magnetic flux saturation of the core, And a current control unit for reducing the output current.

この発明によれば、カプラを照明器具の本体等に設置し、カプラの熱伝導体により誘導コイルやフェライトコアの熱を器具に逃がす構造を有する無電極放電灯点灯装置において、放熱の不具合が起きてカプラの温度が異常上昇した場合、温度の異常上昇によるコアの磁束飽和を検出して高周波電源の出力電流を低減させるので、放熱の不具合が生じた場合に回路破壊を回避することができる。   According to the present invention, in the electrodeless discharge lamp lighting device having a structure in which the coupler is installed in the main body of the lighting fixture and the heat of the induction coil and the ferrite core is released to the fixture by the heat conductor of the coupler, a problem of heat dissipation occurs. When the temperature of the coupler rises abnormally, the magnetic flux saturation of the core due to the abnormal rise in temperature is detected and the output current of the high-frequency power supply is reduced, so that it is possible to avoid circuit breakdown when a heat dissipation failure occurs.

請求項2の発明は、請求項1において、前記磁束飽和検出部は、前記高周波電源の出力電流を検出して電流検出信号を出力する電流検出部と、電流検出信号の微分値を算出する微分回路とを備え、前記電流制御部は、電流検出信号の微分値が所定値を超えた場合に高周波電源の出力電流を低減させることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the magnetic flux saturation detection unit includes a current detection unit that detects an output current of the high-frequency power source and outputs a current detection signal, and a differential that calculates a differential value of the current detection signal. And the current control unit reduces the output current of the high-frequency power supply when the differential value of the current detection signal exceeds a predetermined value.

この発明によれば、高周波電源の出力電流を微分して出力電流の急峻な変化を検出することで、コアの磁束飽和を検出することができる。   According to the present invention, the magnetic flux saturation of the core can be detected by differentiating the output current of the high frequency power source and detecting a steep change in the output current.

請求項3の発明は、請求項1において、前記磁束飽和検出部は、前記高周波電源の出力電流による磁束密度を検出して磁束密度検出信号を出力する磁束密度検出部と、磁束密度検出信号の微分値を算出する微分回路とを備え、前記電流制御部は、磁束密度検出信号の微分値が所定期間略0となる場合に高周波電源の出力電流を低減させることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the magnetic flux saturation detection unit detects a magnetic flux density due to an output current of the high-frequency power source and outputs a magnetic flux density detection signal, and a magnetic flux density detection signal A differential circuit for calculating a differential value, wherein the current control unit reduces the output current of the high-frequency power source when the differential value of the magnetic flux density detection signal is substantially zero for a predetermined period.

この発明によれば、高周波電源の出力電流による磁束密度を微分して磁束密度の一定状態を検出することで、コアの磁束飽和を検出することができる。   According to the present invention, the magnetic flux saturation of the core can be detected by differentiating the magnetic flux density due to the output current of the high-frequency power source and detecting the constant state of the magnetic flux density.

請求項4の発明は、請求項3において、前記磁束密度検出部は、前記無電極放電灯の外周に巻回された検出コイルで構成されることを特徴とする。   A fourth aspect of the present invention is characterized in that, in the third aspect, the magnetic flux density detection unit is constituted by a detection coil wound around an outer periphery of the electrodeless discharge lamp.

この発明によれば、コアの磁束飽和を検出するとともに、雑音低減効果も同時に実現できる。   According to the present invention, the magnetic flux saturation of the core can be detected and a noise reduction effect can be realized at the same time.

請求項5の発明は、請求項1乃至4いずれかにおいて、前記無電極放電灯とカプラとでランプユニットを構成し、前記高周波電源の出力電流を低減させる出力電流調整素子を備える前記電流制御部と、前記磁束飽和検出部と、前記微分回路とをランプユニットに設けたことを特徴とする。   A fifth aspect of the present invention provides the current control unit according to any one of the first to fourth aspects, wherein the electrodeless discharge lamp and a coupler constitute a lamp unit and includes an output current adjusting element that reduces an output current of the high-frequency power source. And the magnetic flux saturation detector and the differential circuit are provided in a lamp unit.

この発明によれば、ランプユニットの配線は、高周波電源からの高周波電流の供給線だけでよく、構成の簡素化を図ることができる。   According to the present invention, the lamp unit can be wired only by a high-frequency current supply line from a high-frequency power source, and the configuration can be simplified.

請求項6の発明は、請求項1乃至5いずれか記載の無電極放電灯点灯装置を用いることを特徴とする。   The invention of claim 6 uses the electrodeless discharge lamp lighting device according to any one of claims 1 to 5.

この発明によれば、請求項1乃至5いずれかと同様の効果を奏し得る照明器具を提供することができる。   According to this invention, the lighting fixture which can have the same effect as any one of Claims 1 thru | or 5 can be provided.

以上説明したように、本発明では、放熱の不具合が起きてカプラの温度が異常上昇した場合、コアの磁束飽和を検出して高周波電源の出力電流を低減させるので、放熱の不具合が生じた場合に回路破壊を回避することができるという効果がある。   As described above, in the present invention, when a heat radiation failure occurs and the temperature of the coupler abnormally rises, the magnetic flux saturation of the core is detected and the output current of the high frequency power supply is reduced. There is an effect that circuit destruction can be avoided.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図2は、本実施形態の無電極放電灯点灯装置を用いた照明器具Aの断面図を示し、本照明器具は街路灯器具に用いられる。照明器具Aは、外郭3内に納装されたランプユニット1と回路ユニット2とを備え、外郭3は、両端を開口した椀状のガラス製の外周部3aと、外周部3aの一端開口に覆設する金属製の天板3bと、外周部3aの他端開口に覆設する金属製の器具ベース3cとで構成される。
(Embodiment 1)
FIG. 2 shows a cross-sectional view of a lighting fixture A using the electrodeless discharge lamp lighting device of the present embodiment, and the lighting fixture is used for a street lamp fixture. The luminaire A includes a lamp unit 1 and a circuit unit 2 housed in an outer shell 3, and the outer shell 3 has a bowl-shaped outer peripheral portion 3a having both ends opened, and one end opening of the outer peripheral portion 3a. It comprises a metal top plate 3b to be covered and a metal instrument base 3c to be covered at the other end opening of the outer peripheral portion 3a.

器具ベース3cの内面略中央には凹部30が設けられ、凹部30の開口周縁に鍔部4aを取着した取付部材4と、凹部30の内側面に周部を取着した断面コの字状の取付部材5とが器具ベース3cに取り付けられている。そして、取付部材4上にはランプユニット1が取り付けられ、取付部材5上には回路ユニット2が取り付けられて、ランプユニット1と回路ユニット2との間は配線6で接続されている。   A concave portion 30 is provided at substantially the center of the inner surface of the instrument base 3c. The mounting member 4 has a flange portion 4a attached to the opening periphery of the concave portion 30, and a U-shaped cross section having a peripheral portion attached to the inner side surface of the concave portion 30. Are attached to the instrument base 3c. The lamp unit 1 is mounted on the mounting member 4, the circuit unit 2 is mounted on the mounting member 5, and the lamp unit 1 and the circuit unit 2 are connected by wiring 6.

ランプユニット1は無電極放電灯であり、ガラスバルブ1aとカプラ1bとユニットベース1cとを備え、ガラスバルブ1aは略球形状に形成されて、内部に水銀蒸気や放電ガスが封入され、内面には蛍光体が塗布されており、その表面には円筒状の窪み10を有している。カプラ1bは、ガラスバルブの窪み10内に挿入された筒状のフェライトコア11、フェライトコア11の外周に巻回された誘導コイル12、一端側をフェライトコア11の内面に当接してフェライトコア11や誘導コイル12の熱を外部に放熱する棒状の熱伝導体13から構成される。そして、熱伝導体13の他端側に設けた鍔部13aが取付部材4上に取り付けられ、カプラ1bの他端側はユニットベース1c内に収納されている。   The lamp unit 1 is an electrodeless discharge lamp, and includes a glass bulb 1a, a coupler 1b, and a unit base 1c. The glass bulb 1a is formed in a substantially spherical shape, and is filled with mercury vapor or discharge gas. Is coated with a phosphor and has a cylindrical depression 10 on its surface. The coupler 1b includes a cylindrical ferrite core 11 inserted into the hollow 10 of the glass bulb, an induction coil 12 wound around the outer periphery of the ferrite core 11, and one end of the ferrite core 11 in contact with the inner surface of the ferrite core 11 And a rod-shaped heat conductor 13 for radiating the heat of the induction coil 12 to the outside. And the collar part 13a provided in the other end side of the heat conductor 13 is attached on the attachment member 4, and the other end side of the coupler 1b is accommodated in the unit base 1c.

回路ユニット2は、誘導コイル12に高周波電流を供給する高周波電源であり、回路ユニット2から誘導コイル12に高周波電流が供給されると、誘導コイル12の周辺に高周波電磁界が発生する。すると、ガラスバルブ1a内の水銀蒸気が励起され、紫外線を発生する。紫外線がガラスバルブ1a内面の蛍光体に当たると可視光に変換されて点灯する。   The circuit unit 2 is a high-frequency power source that supplies a high-frequency current to the induction coil 12. When a high-frequency current is supplied from the circuit unit 2 to the induction coil 12, a high-frequency electromagnetic field is generated around the induction coil 12. Then, the mercury vapor in the glass bulb 1a is excited and generates ultraviolet rays. When the ultraviolet light hits the phosphor on the inner surface of the glass bulb 1a, it is converted into visible light and lit.

このような無電極放電灯点灯装置では、点灯時のフェライトコア11や誘導コイル12の温度を所望の値以下に維持するため、熱伝導体13から取付部材4を介して器具ベース3cへ熱を効率よく伝達させる必要がある。そのためには、熱伝導体13の鍔部13aと取付部材4との接触部aと、取付部材4の鍔部4aと器具ベース3cとの接触部bにおいて、鍔部13aと取付部材4および鍔部4aと器具ベース3cが十分接触して、熱抵抗が低い状態が必須条件となる。しかし、振動で接触部a,bに隙間が生じたり、経年劣化でさび等が生じて熱抵抗が大きくなると、カプラ1bの放熱が十分に行えずにカプラ1bの温度が異常上昇し、フェライトコア11がキュリー温度を超えたり、誘導コイル12がその耐熱温度を超えたりして、回路破壊に至る恐れがある。   In such an electrodeless discharge lamp lighting device, in order to maintain the temperature of the ferrite core 11 and the induction coil 12 at the time of lighting below a desired value, heat is transferred from the heat conductor 13 to the appliance base 3c via the mounting member 4. It is necessary to communicate efficiently. For this purpose, in the contact portion a between the flange 13a of the heat conductor 13 and the mounting member 4, and in the contact portion b of the flange 4a of the mounting member 4 and the instrument base 3c, the flange 13a, the mounting member 4 and the flange The state in which the part 4a and the instrument base 3c are in sufficient contact and the thermal resistance is low is an essential condition. However, if a gap occurs in the contact portions a and b due to vibration, or rust or the like occurs due to aging and the thermal resistance increases, the heat of the coupler 1b cannot be sufficiently dissipated and the temperature of the coupler 1b rises abnormally, and the ferrite core 11 may exceed the Curie temperature, or the induction coil 12 may exceed its heat resistance temperature, leading to circuit destruction.

そこで本無電極放電灯点灯装置は、カプラ1bの温度が異常上昇した場合に回路破壊を防ぐ手段を備えており、その回路構成を図1に示す。   Therefore, this electrodeless discharge lamp lighting device is provided with means for preventing circuit destruction when the temperature of the coupler 1b abnormally rises, and its circuit configuration is shown in FIG.

回路ユニット2は、入力された商用電源ACを直流電圧に変換する電源部2aと、直流電圧を高周波電力に変換するインバータ部2bと、インバータ部2bが出力する高周波電力を効率よくランプユニット1へ伝えるための整合回路2cと、インバータ部2bが整合回路2cを介して誘導コイル12へ出力する誘導コイル電流I1を検出するカレントトランスで構成された電流検出部2dと、電流検出部2dが出力する電流検出信号の微分値を算出する微分回路2eと、電流検出信号の微分値が所定値を超えた場合に誘導コイル電流I1を低減させる電流制御部2fとを備える。   The circuit unit 2 includes a power supply unit 2a that converts the input commercial power supply AC into a DC voltage, an inverter unit 2b that converts the DC voltage into high-frequency power, and high-frequency power output from the inverter unit 2b to the lamp unit 1 efficiently. A matching circuit 2c for transmitting, a current detection unit 2d configured by a current transformer that detects an induction coil current I1 that the inverter unit 2b outputs to the induction coil 12 through the matching circuit 2c, and a current detection unit 2d output A differentiation circuit 2e that calculates a differential value of the current detection signal, and a current control unit 2f that reduces the induction coil current I1 when the differential value of the current detection signal exceeds a predetermined value.

インバータ部2bは、電源部2aの出力端間に直列接続されたFET等のスイッチング素子Q1,Q2と、スイッチング素子Q1,Q2をオン・オフ駆動するドライブ部K1とで構成され、スイッチング素子Q2の両端を高周波電力の出力端としている。   The inverter unit 2b includes switching elements Q1 and Q2 such as FETs connected in series between output terminals of the power supply unit 2a, and a drive unit K1 that drives the switching elements Q1 and Q2 on and off. Both ends are used as high-frequency power output ends.

整合回路2cは、スイッチング素子Q2の両端間に接続されたインダクタL1とコンデンサC1との直列回路と、インダクタL1とコンデンサC1との接続点に一端を接続したコンデンサC2と、コンデンサC1とスイッチング素子Q2との接続点に一端を接続したコンデンサC3とから構成され、コンデンサC2,C3の各他端は配線6を介して誘導コイル12の各端部に接続される。また、コンデンサC1とスイッチング素子Q2との接続点はグランド電位に接続されている。   The matching circuit 2c includes a series circuit of an inductor L1 and a capacitor C1 connected between both ends of the switching element Q2, a capacitor C2 having one end connected to a connection point between the inductor L1 and the capacitor C1, and a capacitor C1 and the switching element Q2. The other end of each of the capacitors C2 and C3 is connected to each end of the induction coil 12 via the wiring 6. The connection point between the capacitor C1 and the switching element Q2 is connected to the ground potential.

電流検出部2dは、電流検出信号を整流するダイオードD1を具備している。   The current detection unit 2d includes a diode D1 that rectifies the current detection signal.

微分回路2eは、電流検出部2dの出力に一端を接続したコンデンサC4と、コンデンサC4の他端とグランド電位との間に接続した抵抗R1とで構成される。   The differentiation circuit 2e includes a capacitor C4 having one end connected to the output of the current detection unit 2d, and a resistor R1 connected between the other end of the capacitor C4 and the ground potential.

電流制御部2fは、コンデンサC4と抵抗R1との接続点を非反転入力端子に接続したコンパレータComp1と、制御電源に一端を接続し、コンパレータComp1の反転入力端子に他端を接続した抵抗R2と、コンパレータComp1の反転入力端子に一端を接続し、グランド電位に他端を接続した抵抗R3と、スイッチング素子Q2のゲート端子をグランドに短絡・遮断するスイッチ素子SW1と、コンパレータComp1の出力に応じてスイッチ素子SW1をオン・オフする発振制御部K2とで構成される。   The current control unit 2f includes a comparator Comp1 in which the connection point between the capacitor C4 and the resistor R1 is connected to the non-inverting input terminal, a resistor R2 in which one end is connected to the control power supply, and the other end is connected to the inverting input terminal of the comparator Comp1. The resistor R3 having one end connected to the inverting input terminal of the comparator Comp1 and the other end connected to the ground potential, the switch element SW1 for short-circuiting / cutting off the gate terminal of the switching element Q2 to the ground, and the output of the comparator Comp1 The oscillation control unit K2 is configured to turn on / off the switch element SW1.

次に、カプラ1bの温度が異常上昇した場合の回路動作について説明する。前述のように熱伝導体13と取付部材4との取付不具合等の原因でカプラ1bの放熱が十分に行えず、カプラ1bのフェライトコア11が高温になった場合、フェライトコア11の最大磁束密度が低下する。すると、誘導コイル電流I1のピーク付近でフェライトコア11の磁束飽和が起こるため、誘導コイル電流I1は図3(a)に示すように、正弦波のピーク付近の磁束が飽和している期間Tsでは急峻なパルス状の電流が流れる。このような状態が続くと、インバータ回路2bのスイッチング素子Q1,Q2等の回路構成素子に過大なストレスが印加され、回路破壊の原因となる。   Next, the circuit operation when the temperature of the coupler 1b rises abnormally will be described. As described above, when the coupler 1b cannot sufficiently dissipate heat due to a mounting failure between the heat conductor 13 and the mounting member 4 and the temperature of the ferrite core 11 of the coupler 1b becomes high, the maximum magnetic flux density of the ferrite core 11 is increased. Decreases. Then, since the magnetic flux saturation of the ferrite core 11 occurs near the peak of the induction coil current I1, the induction coil current I1 is in the period Ts in which the magnetic flux near the peak of the sine wave is saturated, as shown in FIG. A steep pulsed current flows. If such a state continues, excessive stress is applied to the circuit constituent elements such as the switching elements Q1 and Q2 of the inverter circuit 2b, resulting in circuit destruction.

しかし本実施形態では、電流検出部2dと微分回路2eとでフェライトコア11の磁束飽和を検出する磁束飽和検出部を構成しており、図3(a)に示すような誘導コイル電流I1が流れた場合、電流検出部2dを介して微分回路2eに、図3(a)と同様の波形の電流検出信号が入力される。フェライトコア11の磁束飽和によって誘導コイル電流I1のピーク付近は傾きが急であり、微分回路2eでは図3(b)に示すように、誘導コイル電流I1のピーク毎に信号V1の検出が可能となる。この微分回路2eの出力信号V1が抵抗R2,R3による分圧値を超えると、コンパレータComp1の出力がLレベルからHレベルに反転し、Hレベルの信号が発振制御部K2に入力される。   However, in this embodiment, the current detector 2d and the differentiation circuit 2e constitute a magnetic flux saturation detector that detects the magnetic flux saturation of the ferrite core 11, and an induction coil current I1 flows as shown in FIG. In this case, a current detection signal having the same waveform as that shown in FIG. 3A is input to the differentiation circuit 2e via the current detection unit 2d. Due to the magnetic flux saturation of the ferrite core 11, the slope near the peak of the induction coil current I1 is steep, and the differentiation circuit 2e can detect the signal V1 for each peak of the induction coil current I1, as shown in FIG. Become. When the output signal V1 of the differentiating circuit 2e exceeds the divided value by the resistors R2 and R3, the output of the comparator Comp1 is inverted from the L level to the H level, and the H level signal is input to the oscillation control unit K2.

Hレベルの信号が入力された発振制御部K2は、スイッチ素子SW1をオンして、スイッチング素子Q2のゲート端子をグランドレベルに短絡してスイッチング素子Q1,Q2の発振動作を停止させ、誘導コイル電流I1を0にして消灯させることで、スイッチング素子Q1,Q2等の回路構成素子に過大なストレスが印加されて回路が破壊することを防止している。   The oscillation control unit K2 to which the H level signal is input turns on the switch element SW1, shorts the gate terminal of the switching element Q2 to the ground level, stops the oscillation operation of the switching elements Q1 and Q2, and induces an induction coil current. By turning off the light by setting I1 to 0, excessive stress is applied to the circuit constituent elements such as the switching elements Q1, Q2, and the circuit is prevented from being destroyed.

また、電流検出部2dおよび微分回路2eによってフェライトコア11の磁束飽和を一度検出した場合に、パイロットランプ(図示なし)を点灯させる等の方法で、目視によって外部から確認できるようにすれば、カプラ1bの取り付けおよび放熱効果を容易に点検できる。   In addition, when the magnetic flux saturation of the ferrite core 11 is detected once by the current detection unit 2d and the differentiation circuit 2e, a coupler lamp (not shown) can be visually confirmed from the outside by a method such as turning on a pilot lamp. The mounting of 1b and the heat dissipation effect can be easily checked.

さらに、無電極放電灯は長寿命が特徴であり、不点となっては危険な場所(例えばトンネル内照明等)に用いられる場合があるので、上記のように異常時に消灯するのではなく、異常時には点滅させることで誘導コイル電流I1の実効値を下げて、カプラ1bの発熱を抑制してもよい。   Furthermore, the electrodeless discharge lamp is characterized by a long life, and it may be used in dangerous places (for example, lighting in tunnels), so it is not turned off at the time of abnormality as described above. It is also possible to suppress the heat generation of the coupler 1b by lowering the effective value of the induction coil current I1 by blinking when abnormal.

(実施形態2)
図4は本実施形態の無電極放電灯点灯装置の回路構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
FIG. 4 shows a circuit configuration of the electrodeless discharge lamp lighting device of the present embodiment. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

インバータ部2bのドライブ部K1は、出力の周波数設定端子を設けており、周波数設定端子に接続される回路定数によって出力周波数の設定を行うことができる。   The drive unit K1 of the inverter unit 2b is provided with an output frequency setting terminal, and the output frequency can be set by a circuit constant connected to the frequency setting terminal.

そこで本実施形態では、ドライブ部K1の周波数設定端子に可変抵抗VR1とコンデンサC5との並列回路を接続し、発振制御部K2の出力によって可変抵抗VR1の抵抗値を切り換えることで、周波数設定端子に接続される回路定数を切り換えている。   Therefore, in this embodiment, a parallel circuit of the variable resistor VR1 and the capacitor C5 is connected to the frequency setting terminal of the drive unit K1, and the resistance value of the variable resistor VR1 is switched by the output of the oscillation control unit K2, so that the frequency setting terminal The circuit constant to be connected is switched.

そして、フェライトコア11の磁束飽和によって微分回路2eの出力信号V1が抵抗R2,R3による分圧値を超えると、コンパレータComp1の出力がLレベルからHレベルに反転する。Hレベルの信号が入力された発振制御部K2は、可変抵抗VR1の抵抗値を切り換えてインバータ部2bの駆動周波数を変化させ、誘導コイル電流I1を減少させて無電極放電灯を調光することで、カプラ1bの発熱を抑制している。   When the output signal V1 of the differentiating circuit 2e exceeds the divided voltage value by the resistors R2 and R3 due to the magnetic flux saturation of the ferrite core 11, the output of the comparator Comp1 is inverted from the L level to the H level. The oscillation control unit K2 to which the H level signal is input switches the resistance value of the variable resistor VR1 to change the drive frequency of the inverter unit 2b, and reduces the induction coil current I1 to dim the electrodeless discharge lamp. Thus, the heat generation of the coupler 1b is suppressed.

したがって、異常時に消灯させる実施形態1に比べて異常時の視覚的違和感を低減させることができる。   Therefore, it is possible to reduce visual discomfort at the time of abnormality compared to the first embodiment where the light is turned off at the time of abnormality.

なお、本実施形態の無電極放電灯点灯装置を用いて実施形態1と同様に図2に示すような照明器具Aを構成できる。   In addition, the lighting fixture A as shown in FIG. 2 can be comprised similarly to Embodiment 1 using the electrodeless discharge lamp lighting device of this embodiment.

(実施形態3)
図5は本実施形態の無電極放電灯点灯装置の回路構成を示しており、実施形態2と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
FIG. 5 shows a circuit configuration of the electrodeless discharge lamp lighting device of the present embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の電流検出部2dはカレントトランスを用いないもので、整合回路2cの一方の出力端にアノードを接続したダイオードD1と、ダイオードD1のカソードとグランドレベルとの間に接続したコンデンサC6,C7の直列回路とから構成され、コンデンサC6,C7の接続点から電流検出信号を出力している。   The current detection unit 2d of this embodiment does not use a current transformer, and includes a diode D1 having an anode connected to one output terminal of the matching circuit 2c, and a capacitor C6 connected between the cathode of the diode D1 and the ground level. The current detection signal is output from the connection point of the capacitors C6 and C7.

なお、本実施形態の無電極放電灯点灯装置を用いて実施形態1と同様に図2に示すような照明器具Aを構成できる。   In addition, the lighting fixture A as shown in FIG. 2 can be comprised similarly to Embodiment 1 using the electrodeless discharge lamp lighting device of this embodiment.

(実施形態4)
図6は本実施形態の無電極放電灯点灯装置の回路構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 4)
FIG. 6 shows a circuit configuration of the electrodeless discharge lamp lighting device of the present embodiment. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

本実施形態は、電流検出部2dの代わりに、誘導コイル電流I1によって生じる磁束密度B1を検出して磁束密度検出信号を出力する磁束密度検出部2gを備えるもので、磁束密度検出部2gは、フェライトコア11の外周に巻回した検出用コイルLaで構成される。また磁束密度検出部2gと微分回路2eとでフェライトコア11の磁束飽和を検出する磁束飽和検出部を構成している。   This embodiment includes a magnetic flux density detector 2g that detects a magnetic flux density B1 generated by the induction coil current I1 and outputs a magnetic flux density detection signal instead of the current detector 2d. The magnetic flux density detector 2g The detection coil La is wound around the outer periphery of the ferrite core 11. The magnetic flux density detector 2g and the differential circuit 2e constitute a magnetic flux saturation detector that detects the magnetic flux saturation of the ferrite core 11.

次に、カプラ1bの温度が異常上昇した場合の回路動作について説明する。前述のように熱伝導体13と取付部材4との取付不具合等の原因でカプラ1bの放熱が十分に行えず、カプラ1bのフェライトコア11が高温になった場合、フェライトコア11の最大磁束密度が低下する。すると、誘導コイル電流I1によるフェライトコア11の磁束密度B1は図7(b)に示すようにピーク付近で磁束飽和が起こり、誘導コイル電流I1は図7(a)に示すように正弦波のピークでは急峻なパルス状の電流となる。このとき、検出用コイルLa両端には磁束密度B1に応じた電圧が発生しており、検出用コイルLaの両端電圧、および図7(c)に示す検出用コイル電流I2は、フェライトコア11の磁束が飽和している期間Tsにおいては一定値となる。   Next, circuit operation when the temperature of the coupler 1b abnormally rises will be described. As described above, when the heat radiation of the coupler 1b cannot be sufficiently radiated due to a mounting failure between the heat conductor 13 and the mounting member 4, and the ferrite core 11 of the coupler 1b becomes high temperature, the maximum magnetic flux density of the ferrite core 11 is increased. Decreases. Then, the magnetic flux density B1 of the ferrite core 11 due to the induction coil current I1 is saturated in the vicinity of the peak as shown in FIG. 7B, and the induction coil current I1 is a sine wave peak as shown in FIG. 7A. Then, it becomes a steep pulsed current. At this time, a voltage corresponding to the magnetic flux density B1 is generated at both ends of the detection coil La, and the both-end voltage of the detection coil La and the detection coil current I2 shown in FIG. It becomes a constant value during the period Ts when the magnetic flux is saturated.

そして、検出用コイルLaの出力を磁束密度検出信号として微分回路2eに入力すると、微分回路2eの出力電圧は図7(d)に示すように、フェライトコア11の磁束が飽和している期間Tsは0となる。   When the output of the detection coil La is input to the differentiation circuit 2e as a magnetic flux density detection signal, the output voltage of the differentiation circuit 2e is a period Ts during which the magnetic flux of the ferrite core 11 is saturated, as shown in FIG. Becomes 0.

したがって、発振制御部K2は、微分回路2eの出力が所定期間以上0となった場合、Hレベルの信号を出力してスイッチ素子SW1をオンし、スイッチング素子Q2のゲート端子をグランドレベルに短絡してスイッチング素子Q1,Q2の発振動作を停止させ、誘導コイル電流I1を0にして消灯させることで、スイッチング素子Q1,Q2等の回路構成素子に過大なストレスが印加されて回路が破壊することを防止している。   Therefore, when the output of the differentiating circuit 2e becomes 0 for a predetermined period or longer, the oscillation control unit K2 outputs an H level signal to turn on the switch element SW1, and short-circuit the gate terminal of the switching element Q2 to the ground level. By stopping the oscillation operation of the switching elements Q1 and Q2 and turning off the induction coil current I1 to 0, excessive stress is applied to the circuit constituent elements such as the switching elements Q1 and Q2, and the circuit is destroyed. It is preventing.

また本実施形態において、磁束密度検出部2gが出力する磁束密度検出信号は、実施形態1乃至3の電流検出部2dが出力する電流検出信号のように異常時にパルスが発生する構成ではないので、磁束密度検出部2gに用いる素子は耐圧、電流耐量が小さいものでよく、安価で小型の素子を用いることができる。   In the present embodiment, the magnetic flux density detection signal output from the magnetic flux density detection unit 2g is not configured to generate a pulse at the time of abnormality as the current detection signal output from the current detection unit 2d of the first to third embodiments. An element used for the magnetic flux density detection unit 2g may be a small withstand voltage and current withstand capability, and an inexpensive and small element can be used.

なお、実施形態1乃至3の電流検出部2dを本実施形態の磁束密度検出部2gと併せて設け、誘導コイル電流I1の急激な変化と、検出用コイルLaの両端電圧が所定期間以上0になることとが同時に起こった場合に、スイッチ素子SW1をオンさせて保護動作を行うことにより、さらに精度よくフェライトコア11の磁束飽和を検出して、回路破壊を防止することができる。   In addition, the current detection unit 2d of the first to third embodiments is provided together with the magnetic flux density detection unit 2g of the present embodiment, and the sudden change of the induction coil current I1 and the voltage across the detection coil La become 0 over a predetermined period. If this happens at the same time, the magnetic flux saturation of the ferrite core 11 can be detected with higher accuracy by turning on the switch element SW1 to perform the protective operation, thereby preventing circuit breakdown.

なお、本実施形態の無電極放電灯点灯装置を用いて実施形態1と同様に図2に示すような照明器具Aを構成できる。   In addition, the lighting fixture A as shown in FIG. 2 can be comprised similarly to Embodiment 1 using the electrodeless discharge lamp lighting device of this embodiment.

(実施形態5)
図8は本実施形態の無電極放電灯点灯装置の回路構成を示しており、実施形態4と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 5)
FIG. 8 shows a circuit configuration of the electrodeless discharge lamp lighting device of the present embodiment. The same reference numerals are given to the same components as those of the fourth embodiment, and the description thereof will be omitted.

無電極放電灯は、誘導コイル12が発生する電磁界によって点灯するが、同時に誘導コイル12が輻射雑音の発生源になる。ここで、無電極放電灯の外周に導電体を設けると雑音低減効果があることが知られている。   The electrodeless discharge lamp is lit by the electromagnetic field generated by the induction coil 12, but at the same time, the induction coil 12 becomes a source of radiation noise. Here, it is known that providing a conductor on the outer periphery of the electrodeless discharge lamp has a noise reduction effect.

そこで本実施形態では、磁束密度検出部2gの検出用コイルLaをガラスバルブ1aの外周に巻回することで、導電体をガラスバルブ1aの外周に巻回することと同様の役割を果たし、実施形態4と同様にフェライトコア11の磁束飽和を検出するとともに、雑音低減効果も同時に実現している。   Therefore, in the present embodiment, by winding the detection coil La of the magnetic flux density detector 2g around the outer periphery of the glass bulb 1a, the same role as winding the conductor around the outer circumference of the glass bulb 1a is achieved. Similar to the fourth embodiment, the magnetic flux saturation of the ferrite core 11 is detected, and the noise reduction effect is realized at the same time.

なお、本実施形態の無電極放電灯点灯装置を用いて実施形態1と同様に図2に示すような照明器具Aを構成できる。   In addition, the lighting fixture A as shown in FIG. 2 can be comprised similarly to Embodiment 1 using the electrodeless discharge lamp lighting device of this embodiment.

(実施形態6)
図9は、本実施形態のランプユニット1の断面図を示し、実施形態4と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 6)
FIG. 9 shows a cross-sectional view of the lamp unit 1 of the present embodiment, and the same components as those of the fourth embodiment are denoted by the same reference numerals and description thereof is omitted.

実施形態4、5では、ランプユニット1と回路ユニット2との間に、磁束密度検出信号を伝達する配線が必要であった。そこで本実施形態では、磁束密度の検出から発振制御部K2による誘導コイル電流I1の制御までをランプユニット1で完結して行うことで上記配線を不要とした。   In the fourth and fifth embodiments, a wiring for transmitting a magnetic flux density detection signal is required between the lamp unit 1 and the circuit unit 2. Therefore, in the present embodiment, the lamp unit 1 completes from the detection of the magnetic flux density to the control of the induction coil current I1 by the oscillation control unit K2, thereby eliminating the need for the wiring.

具体的には、微分回路2e、電流制御部2f、磁束密度検出部2gをランプユニット1のユニットベース1c内に設け、さらには電流制御部2fの動作用の電源2hもユニットベース1c内に設けている。   Specifically, the differentiation circuit 2e, the current control unit 2f, and the magnetic flux density detection unit 2g are provided in the unit base 1c of the lamp unit 1, and the power source 2h for operating the current control unit 2f is also provided in the unit base 1c. ing.

電流制御部2fは、誘導コイル12に直列接続したFET等のスイッチング素子Q3をユニットベース1c内に備え、フェライトコア11の磁束飽和時には、発振制御部K2がスイッチング素子Q3にゲート電圧を印加することで、スイッチング素子Q3のドレイン−ソース間抵抗を変化させて、誘導コイル電流I1を低減させている。   The current control unit 2f includes a switching element Q3 such as an FET connected in series to the induction coil 12 in the unit base 1c, and the oscillation control unit K2 applies a gate voltage to the switching element Q3 when the magnetic flux of the ferrite core 11 is saturated. Thus, the induction coil current I1 is reduced by changing the drain-source resistance of the switching element Q3.

電源2hは、磁束密度検出部2gの検出用コイルLaの両端間電圧を整流する整流回路DB1と、整流回路DB1の出力を平滑するコンデンサC6とから構成され、コンデンサC6の両端電圧が電流制御部2fに供給される。   The power source 2h includes a rectifier circuit DB1 that rectifies the voltage across the detection coil La of the magnetic flux density detector 2g, and a capacitor C6 that smoothes the output of the rectifier circuit DB1, and the voltage across the capacitor C6 is the current controller. 2f.

このように本実施形態では、磁束密度検出部2gの磁束密度検出信号を回路ユニット2へ伝達する配線が必要なく、ランプユニット1−回路ユニット2間の配線は、高周波電流を供給する配線6だけでよく、構成の簡素化を図りながら実施形態4と同様の効果を実現している。   As described above, in this embodiment, there is no need for a wiring for transmitting the magnetic flux density detection signal of the magnetic flux density detection unit 2g to the circuit unit 2, and the wiring between the lamp unit 1 and the circuit unit 2 is only the wiring 6 for supplying a high-frequency current. In other words, the same effect as that of the fourth embodiment is realized while simplifying the configuration.

また、本実施形態では実施形態4を例にして説明したが、実施形態5においても同様に磁束密度の検出から発振制御部K2による誘導コイル電流I1の制御までをランプユニット1で完結して行うように構成すれば、同様の効果を得ることができる。さらには実施形態1乃至3において誘導コイル電流I1の検出から発振制御部K2による誘導コイル電流I1の制御までをランプユニット1で完結して行うようにしてもよい。   In the present embodiment, the fourth embodiment has been described as an example. However, in the fifth embodiment as well, from the detection of the magnetic flux density to the control of the induction coil current I1 by the oscillation control unit K2 is completed by the lamp unit 1. If constituted in this way, the same effect can be obtained. Further, in the first to third embodiments, the detection from the induction coil current I1 to the control of the induction coil current I1 by the oscillation control unit K2 may be completed by the lamp unit 1.

なお、本実施形態のランプユニットを用いて実施形態1と同様に図2に示すような照明器具Aを構成できる。   In addition, the lighting fixture A as shown in FIG. 2 can be comprised similarly to Embodiment 1 using the lamp unit of this embodiment.

本発明の実施形態1の無電極放電灯点灯装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrodeless discharge lamp lighting device of Embodiment 1 of this invention. 同上の照明器具の構成を示す断面図である。It is sectional drawing which shows the structure of a lighting fixture same as the above. 同上の各部の波形を示す図であり、(a)は誘導コイル電流、(b)は微分回路出力信号である。It is a figure which shows the waveform of each part same as the above, (a) is an induction coil electric current, (b) is a differentiation circuit output signal. 本発明の実施形態2の無電極放電灯点灯装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrodeless discharge lamp lighting device of Embodiment 2 of this invention. 本発明の実施形態3の無電極放電灯点灯装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrodeless discharge lamp lighting device of Embodiment 3 of this invention. 本発明の実施形態4の無電極放電灯点灯装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrodeless discharge lamp lighting device of Embodiment 4 of this invention. 同上の各部の波形を示す図であり、(a)は誘導コイル電流、(b)は磁束密度、(c)は検出用コイル電流、(d)は微分回路出力信号である。It is a figure which shows the waveform of each part same as the above, (a) is an induction coil current, (b) is magnetic flux density, (c) is a detection coil current, (d) is a differentiation circuit output signal. 本発明の実施形態5の無電極放電灯点灯装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrodeless discharge lamp lighting device of Embodiment 5 of this invention. 本発明の実施形態6のランプユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the lamp unit of Embodiment 6 of this invention.

符号の説明Explanation of symbols

A 照明器具
1 ランプユニット
2 回路ユニット
1a ガラスバルブ
1b カプラ
10 窪み
11 フェライトコア
12 誘導コイル
13 熱伝導体
2b インバータ部
2d 電流検出部
2e 微分回路
2f 電流制御部
K2 発振制御部
SW1 スイッチ素子
A lighting fixture 1 lamp unit 2 circuit unit 1a glass bulb 1b coupler 10 depression 11 ferrite core 12 induction coil 13 thermal conductor 2b inverter unit 2d current detection unit 2e differentiation circuit 2f current control unit K2 oscillation control unit SW1 switch element

Claims (6)

略球形状の外観をなして少なくとも1つの窪みを有する無電極放電灯の窪み内に配置されたコア、誘導コイル、コアおよび誘導コイルの熱を放熱するための熱伝導体を具備するカプラと、
誘導コイルに高周波電流を供給する高周波電源と、
コアの磁束飽和を検出する磁束飽和検出部と、
磁束飽和検出部がコアの磁束飽和を検出した場合に、高周波電源の出力電流を低減させる電流制御部とを備えることを特徴とする無電極放電灯点灯装置。
A coupler provided with a core, an induction coil, a core and a heat conductor for dissipating heat of the induction coil, disposed in a depression of an electrodeless discharge lamp having a substantially spherical appearance and having at least one depression;
A high frequency power supply for supplying high frequency current to the induction coil;
A magnetic flux saturation detector for detecting the magnetic flux saturation of the core;
An electrodeless discharge lamp lighting device comprising: a current control unit that reduces an output current of a high-frequency power supply when the magnetic flux saturation detection unit detects magnetic flux saturation of the core.
前記磁束飽和検出部は、前記高周波電源の出力電流を検出して電流検出信号を出力する電流検出部と、電流検出信号の微分値を算出する微分回路とを備え、前記電流制御部は、電流検出信号の微分値が所定値を超えた場合に高周波電源の出力電流を低減させることを特徴とする請求項1記載の無電極放電灯点灯装置。 The magnetic flux saturation detection unit includes a current detection unit that detects an output current of the high-frequency power source and outputs a current detection signal, and a differentiation circuit that calculates a differential value of the current detection signal, and the current control unit 2. The electrodeless discharge lamp lighting device according to claim 1, wherein when the differential value of the detection signal exceeds a predetermined value, the output current of the high-frequency power source is reduced. 前記磁束飽和検出部は、前記高周波電源の出力電流による磁束密度を検出して磁束密度検出信号を出力する磁束密度検出部と、磁束密度検出信号の微分値を算出する微分回路とを備え、前記電流制御部は、磁束密度検出信号の微分値が所定期間略0となる場合に高周波電源の出力電流を低減させることを特徴とする請求項1記載の無電極放電灯点灯装置。 The magnetic flux saturation detection unit includes a magnetic flux density detection unit that detects a magnetic flux density due to an output current of the high-frequency power source and outputs a magnetic flux density detection signal, and a differentiation circuit that calculates a differential value of the magnetic flux density detection signal, 2. The electrodeless discharge lamp lighting device according to claim 1, wherein the current control unit reduces the output current of the high-frequency power source when the differential value of the magnetic flux density detection signal is substantially zero for a predetermined period. 前記磁束密度検出部は、前記無電極放電灯の外周に巻回された検出コイルで構成されることを特徴とする請求項3記載の無電極放電灯点灯装置。 The electrodeless discharge lamp lighting device according to claim 3, wherein the magnetic flux density detection unit includes a detection coil wound around an outer periphery of the electrodeless discharge lamp. 前記無電極放電灯とカプラとでランプユニットを構成し、前記高周波電源の出力電流を低減させる出力電流調整素子を備える前記電流制御部と、前記磁束飽和検出部と、前記微分回路とをランプユニットに設けたことを特徴とする請求項1乃至4いずれか記載の無電極放電灯点灯装置。 A lamp unit is constituted by the electrodeless discharge lamp and the coupler, and the current control unit including an output current adjusting element that reduces the output current of the high-frequency power source, the magnetic flux saturation detection unit, and the differentiation circuit are combined into a lamp unit. The electrodeless discharge lamp lighting device according to claim 1, wherein the electrodeless discharge lamp lighting device is provided. 請求項1乃至5いずれか記載の無電極放電灯点灯装置を用いることを特徴とする照明器具。 6. An illuminator using the electrodeless discharge lamp lighting device according to claim 1.
JP2004219303A 2004-07-27 2004-07-27 Electrodeless discharge lamp lighting device and illumination device Withdrawn JP2006040726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219303A JP2006040726A (en) 2004-07-27 2004-07-27 Electrodeless discharge lamp lighting device and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219303A JP2006040726A (en) 2004-07-27 2004-07-27 Electrodeless discharge lamp lighting device and illumination device

Publications (1)

Publication Number Publication Date
JP2006040726A true JP2006040726A (en) 2006-02-09

Family

ID=35905494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219303A Withdrawn JP2006040726A (en) 2004-07-27 2004-07-27 Electrodeless discharge lamp lighting device and illumination device

Country Status (1)

Country Link
JP (1) JP2006040726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220387A (en) * 2006-02-15 2007-08-30 Matsushita Electric Works Ltd Electroless discharge lamp and luminaire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220387A (en) * 2006-02-15 2007-08-30 Matsushita Electric Works Ltd Electroless discharge lamp and luminaire
JP4715538B2 (en) * 2006-02-15 2011-07-06 パナソニック電工株式会社 Electrodeless discharge lamp device and lighting fixture

Similar Documents

Publication Publication Date Title
JP4501748B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
US6577066B1 (en) Compact self-ballasted fluorescent lamp
US7453214B2 (en) Lamp-operating unit and low-pressure mercury discharge lamp
JP2006040726A (en) Electrodeless discharge lamp lighting device and illumination device
JP2006278238A (en) Lamp lighting device and luminaire
JP5567940B2 (en) POWER SUPPLY DEVICE AND LIGHTING / LIGHTING DEVICE USING THE SAME
KR101078685B1 (en) Free lamp type Electric Ballast for High intensity discharge Lamps
JP4747925B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
JP5174440B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
JP2010056043A (en) Load control device and illumination apparatus
JP4428988B2 (en) Discharge lamp ballast
JP5030021B2 (en) High pressure discharge lamp lighting device, light source device and control method thereof
JP2002231478A (en) Discharge lamp lighting device and apparatus
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP2012050247A (en) Power supply and apparatus using the same
JP2010123522A (en) Electrodeless discharge lamp lighting device and luminaire
JP2007265816A (en) Electrodeless discharge lamp lighting device and luminaire
JP2000260590A (en) Bulb-type fluorescent lamp and lighting system
JP2005071921A (en) High-pressure discharge lamp lighting device and lighting apparatus
JP2007273173A (en) Discharge lamp lighting device and luminaire
JP2009302075A (en) Discharge lamp stabilizer
JP2008293929A (en) Electrodeless discharge lamp lighting device and lighting fixture
JP2012094274A (en) Lighting system and lighting equipment using the same
JP2009059612A (en) Compact self-ballasted fluorescent lamp, and luminaire
JP5469353B2 (en) Electrodeless discharge lamp lighting device and lighting fixture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002