JP2006040674A - Lithium ion battery anode material - Google Patents

Lithium ion battery anode material Download PDF

Info

Publication number
JP2006040674A
JP2006040674A JP2004217814A JP2004217814A JP2006040674A JP 2006040674 A JP2006040674 A JP 2006040674A JP 2004217814 A JP2004217814 A JP 2004217814A JP 2004217814 A JP2004217814 A JP 2004217814A JP 2006040674 A JP2006040674 A JP 2006040674A
Authority
JP
Japan
Prior art keywords
negative electrode
ion battery
copper
lithium ion
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217814A
Other languages
Japanese (ja)
Inventor
Kenji Yokomizo
健治 横溝
Hajime Sasaki
元 佐々木
Yasuyuki Ito
保之 伊藤
Yuko Matsumoto
雄行 松本
Yoshinori Yamamoto
佳紀 山本
Koji Aoyanagi
幸司 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004217814A priority Critical patent/JP2006040674A/en
Publication of JP2006040674A publication Critical patent/JP2006040674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion battery anode material aiming at improvement of a cycle property and processibility of the battery. <P>SOLUTION: The lithium ion battery 1 has a structure of sealing an anode plate 2 and a cathode plate 3 wound through a separator 4 in an anode can 5. The anode plate 2 uses oxygen-free copper or tough-pitch copper as a base material and the copper material is formed by making the base material contain 1 to 5 wt.% of Ni, 0.2 to 1.2 wt.% of Si, 0.1 to 2.0 wt.% of Zn, and 0.03 to 0.2 wt.% of P. A copper foil is formed by applying a rolling process to the copper material, and the copper foil is used as an anode core material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銅箔を芯材とするリチウムイオン(lithium ion)電池用負極材に関し、特に、電池のサイクル特性の向上および加工性の向上を図ったリチウムイオン電池用負極材に関する。     The present invention relates to a negative electrode material for a lithium ion battery having a copper foil as a core material, and more particularly to a negative electrode material for a lithium ion battery that has improved battery cycle characteristics and workability.

携帯電話やノート型パーソナルコンピュータ等のポータブル機器の普及によって、小型で高容量の二次電池に対する要求が強くなっている。中でもリチウムイオン(以下、「Liイオン」ともいう。)二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されるようになってきている。   With the widespread use of portable devices such as mobile phones and notebook personal computers, there is an increasing demand for small and high-capacity secondary batteries. Among them, lithium ion (hereinafter, also referred to as “Li ion”) secondary batteries are being used in many fields because of their light weight and high energy density.

図1は、円筒型のLiイオン電池の構成を示す。Liイオン電池1は、負極板2と、負極板2に対向配置される正極板3と、負極板2と正極板3の間に配置されるセパレータ(separator)4と、缶状を成して底部が負極端子になるとともに、負極板2、正極板3およびセパレータ4が重ね巻きした状態で収納される金属製の負極缶5と、負極板2の外側端に取り付けられるとともに下端が負極缶5に接続されたタブ6と、正極板3の上部に配置された円板状のスペーサ7と、スペーサ7の上面に配設され、内部圧力が高くなった際のガス圧を逃がすための安全弁(圧力開放弁)8と、安全弁8の上面に配置されるとともに正極板3と電気的に接続される金属製の正極蓋(正極端子)9と、正極板3と正極蓋9との間に配置されて温度上昇時に電気抵抗が高くなるPTC(Positive Temperature Coefficient)素子10と、負極缶5の上縁と安全弁8および正極蓋9とを絶縁するガスケット(gasket)11とを備える。   FIG. 1 shows a configuration of a cylindrical Li ion battery. The Li ion battery 1 has a can shape with a negative electrode plate 2, a positive electrode plate 3 disposed opposite to the negative electrode plate 2, a separator 4 disposed between the negative electrode plate 2 and the positive electrode plate 3. The bottom is the negative electrode terminal, and the negative electrode plate 5, the positive electrode plate 3 and the separator 4 are housed in a state where the negative electrode plate 2, the positive electrode plate 3, and the separator 4 are overwrapped. , A disc-shaped spacer 7 disposed on the upper portion of the positive electrode plate 3, and a safety valve disposed on the upper surface of the spacer 7 for releasing the gas pressure when the internal pressure increases ( A pressure release valve 8, a metal positive electrode lid (positive electrode terminal) 9 that is disposed on the upper surface of the safety valve 8 and is electrically connected to the positive electrode plate 3, and is disposed between the positive electrode plate 3 and the positive electrode lid 9. PTC (Positive Temperature Coefficien) that increases the electrical resistance when the temperature rises t) The device 10 includes a gasket 11 that insulates the upper edge of the negative electrode can 5 from the safety valve 8 and the positive electrode lid 9.

負極板2は、芯材となる銅箔と、炭素系材料等による活物質とを備え、この活物質は前記銅箔面に結着剤により固持される。また、正極板3は、芯材となる銅箔と、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等による活物質と、導電剤とを備え、これらは前記銅箔面に結着剤により固持される。なお、負極板2においては、活物質自体が導電性を有するため、一般に、導電剤は必要としない。   The negative electrode plate 2 includes a copper foil as a core material and an active material such as a carbon-based material, and the active material is fixed to the copper foil surface by a binder. Moreover, the positive electrode plate 3 includes a copper foil as a core material, an active material such as lithium cobaltate, lithium nickelate, and lithium manganate, and a conductive agent, and these are fixed to the copper foil surface by a binder. Is done. In addition, in the negative electrode plate 2, since the active material itself has conductivity, a conductive agent is generally not required.

セパレータ4は、有機系の溶媒とリチウム塩の混合による電解液を保持するとともに、負極板2と正極板3の短絡を防止するものであり、例えば、ポリエチレンの微多孔性膜が用いられる。   The separator 4 holds an electrolytic solution obtained by mixing an organic solvent and a lithium salt and prevents a short circuit between the negative electrode plate 2 and the positive electrode plate 3. For example, a microporous film of polyethylene is used.

図2は、スタック型のLiイオン電池の電極部の構成を示す。図2の電極部は、負極板2と正極板3をセパレータ4を介して積層してセル12を構成し、このセル12の複数を厚み方向に積み重ねて構成される。   FIG. 2 shows the configuration of the electrode part of the stacked Li-ion battery. The electrode section in FIG. 2 is configured by stacking a negative electrode plate 2 and a positive electrode plate 3 with a separator 4 therebetween to form a cell 12 and stacking a plurality of the cells 12 in the thickness direction.

上記構成のLiイオン電池のそれぞれは、二次電池を形成しており、充電時には、正極板3からリチウムをイオンとして放出し、負極板2では、電解液中のリチウムイオンがリチウムとして負極板2に挿入されることにより充電が行われる。逆に、放電時には、負極板2から、リチウムがイオンとして電解液に放出され、正極板3に挿入されることにより放電が行なわれ、電池として機能する。   Each of the Li-ion batteries having the above-described configuration forms a secondary battery, and at the time of charging, lithium is released as ions from the positive electrode plate 3. In the negative electrode plate 2, lithium ions in the electrolytic solution are converted into lithium as the negative electrode plate 2. The battery is charged by being inserted into. On the other hand, at the time of discharging, lithium is released as ions from the negative electrode plate 2 into the electrolytic solution and inserted into the positive electrode plate 3, thereby discharging and functions as a battery.

負極板2に用いられる銅箔は、製造方法によって大きく二つに分けることができる。一つは、鋳造で製造した素材に圧延加工を施して製造する圧延銅箔であり、他の一つは硫酸銅を主とする溶液から銅を電解析出させて製造する電解銅箔である。   The copper foil used for the negative electrode plate 2 can be roughly divided into two depending on the production method. One is a rolled copper foil produced by rolling a material produced by casting, and the other is an electrolytic copper foil produced by electrolytic deposition of copper from a solution mainly composed of copper sulfate. .

圧延銅箔は、圧延加工を繰り返し施されることによって、優れた機械的強度が得られるという特長がある。こうして得られた長尺の銅箔は、その表面に活物質等を塗布し、乾燥のための加熱処理を施すことにより負極材が得られ、更に、所定の形状に裁断加工することにより負極板2が得られる。   The rolled copper foil has a feature that excellent mechanical strength can be obtained by repeated rolling. The long copper foil thus obtained is obtained by applying an active material or the like to the surface and subjecting it to a heat treatment for drying to obtain a negative electrode material, and further cutting into a predetermined shape to obtain a negative electrode plate 2 is obtained.

近年、負極板2は高容量化が進んでおり、従来のカーボン系からSi系やSn系の活物質の開発が進んでいる。これらの活物質は、従来のカーボン系の活物質に比べて充電容量が大きいという特徴を有する反面、充放電時の膨張・収縮が大きいという問題がある。このため、従来のカーボン系に使用してきた銅箔を用いると、活物質の膨張によって銅箔が変形して皺が発生し、活物質の脱落、銅箔の破断、リサイクル特性(充放電の繰り返し回数)の悪化等が生じる。   In recent years, the capacity of the negative electrode plate 2 has been increased, and the development of Si-based and Sn-based active materials has progressed from conventional carbon-based materials. These active materials are characterized by a large charge capacity compared to conventional carbon-based active materials, but have a problem of large expansion / contraction during charge / discharge. For this reason, when the copper foil used in the conventional carbon system is used, the copper foil is deformed due to the expansion of the active material to generate wrinkles, and the active material is removed, the copper foil is broken, and the recycling characteristics (repetition of charge / discharge) Frequency).

そこで、銅箔を合金化して強度を上げた負極材が提案されており、例えば、Cu−Ni−Si合金箔、Cu−Fe合金箔、Cu−Ag合金箔等に錫(Sn)メッキを施し、これに熱処理を加え、Sn−Ni、Sn−Fe、Sn−Ag等の金属間化合物を形成することで、充放電サイクル寿命の改善を図っている(例えば、特許文献1,2,3参照。)。
特開2003−257417号公報([0007]〜[0011]) 特開2003−257418号公報([0007]〜[0011]) 特開2004−6153号公報([0008]〜[0012])
Therefore, a negative electrode material in which copper foil is alloyed to increase the strength has been proposed. For example, Cu-Ni-Si alloy foil, Cu-Fe alloy foil, Cu-Ag alloy foil, etc. are subjected to tin (Sn) plating. In addition, heat treatment is performed to form an intermetallic compound such as Sn—Ni, Sn—Fe, or Sn—Ag, thereby improving the charge / discharge cycle life (see, for example, Patent Documents 1, 2, and 3). .)
JP 2003-257417 A ([0007] to [0011]) JP 2003-257418 A ([0007] to [0011]) Japanese Patent Laying-Open No. 2004-6153 ([0008] to [0012])

しかし、従来のリチウムイオン電池用負極材によると、引張強さは高いレベルにあるが、サイクル特性の検証は、100サイクルまでであり、実用的なサイクル数とは言えず、500回程度の検証が望まれる。また、量産化においては、加工性が重要になるが、この点についても検討がなされていない。   However, according to the conventional negative electrode material for lithium ion batteries, the tensile strength is at a high level, but the verification of cycle characteristics is up to 100 cycles, which is not a practical number of cycles, and is verified about 500 times. Is desired. In mass production, workability is important, but this point has not been studied.

したがって、本発明の目的は、電池のサイクル特性の向上および加工性の向上を図ったリチウムイオン電池用負極材を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode material for a lithium ion battery that is improved in cycle characteristics and workability of the battery.

本発明は、上記の目的を達成するため、銅系のベース材と、前記銅系のベース材に含有されるNi:1〜5wt%、Si:0.2〜1.0wt%、Zn:0.1〜2.0wt%、P:0.03〜0.2wt%からなる含有物と、を含む圧延銅箔であることを特徴とするリチウムイオン電池用負極材を提供する。   In order to achieve the above object, the present invention provides a copper base material and Ni: 1 to 5 wt%, Si: 0.2 to 1.0 wt%, Zn: 0 contained in the copper base material Provided is a negative electrode material for a lithium ion battery, characterized by being a rolled copper foil containing 1 to 2.0 wt% and P: 0.03 to 0.2 wt%.

本発明のリチウムイオン電池用負極材によれば、銅系のベース材に4種類の元素を含有させた芯材にすることにより、引張強さが向上し、サイクル特性を向上させることができる。更に、熱間圧延時に鋳塊の割れ等が発生しないため、加工性を向上させることができる。   According to the negative electrode material for a lithium ion battery of the present invention, tensile strength can be improved and cycle characteristics can be improved by using a copper base material containing four types of elements. Furthermore, since the ingot is not cracked during hot rolling, workability can be improved.

[実施の形態]
以下、本発明の実施の形態について説明する。本発明の実施の形態は、無酸素銅又はタフピッチ銅をベース材にし、Ni:1〜5wt%、Si:0.2〜1.0wt%、Zn:0.1〜2.0wt%、P:0.03〜0.2wt%の各元素を前記ベース材に含有させて銅材を作成し、銅材を圧延加工して所望の厚みの銅箔を製造し、この圧延銅箔の表面に活物質を設けて負極材とした後、所定の形状に裁断して負極板2としている。
[Embodiment]
Hereinafter, embodiments of the present invention will be described. The embodiment of the present invention uses oxygen-free copper or tough pitch copper as a base material, Ni: 1 to 5 wt%, Si: 0.2 to 1.0 wt%, Zn: 0.1 to 2.0 wt%, P: A copper material is prepared by adding 0.03 to 0.2 wt% of each element to the base material, and the copper material is rolled to produce a copper foil having a desired thickness. After the material is provided to form a negative electrode material, the negative electrode plate 2 is cut into a predetermined shape.

[実施の形態の効果]
この実施の形態によれば、負極材の芯材となる銅箔は、Ni、Si、Zn、Pからなる含有物を含有し、NiとSiの比を所定の値にすることにより、銅箔の強度が増すことで充放電時の膨張・収縮による銅箔の変形が防止されるため、サイクル特性を向上させることができる。更に、熱間圧延時に鋳塊の割れやピンホールが発生しないため、加工性を向上させることができる。
[Effect of the embodiment]
According to this embodiment, the copper foil that is the core material of the negative electrode material contains inclusions made of Ni, Si, Zn, and P, and the ratio of Ni and Si is set to a predetermined value to thereby reduce the copper foil. By increasing the strength, the deformation of the copper foil due to expansion / contraction during charging / discharging is prevented, so that the cycle characteristics can be improved. Furthermore, since the ingot is not cracked or pinholes during hot rolling, workability can be improved.

次に、本発明の実施例について説明する。まず、酸素含有量が10ppmの無酸素銅をベース材として用い、このベース材に、Ni:2.5wt%、Si:0.5wt%、Zn:1.7wt%、P:0.03wt%を含有した鋳塊を溶解鋳造した。この鋳塊を熱間圧延して厚さ12mmに加工した後、冷間圧延と焼鈍を繰り返し、厚さ200μmの生地材を製造した。さらに、この生地材を焼鈍した後、厚さ15μmまで圧延し、その表面に、電着による粗化処理を、硫酸銅浴中でRZ:3.0μmになるように形成した。こうして得られた圧延銅箔の引張強さを測定するとともに加工性を評価したところ、表1の結果を得た。   Next, examples of the present invention will be described. First, oxygen-free copper having an oxygen content of 10 ppm is used as a base material, and Ni: 2.5 wt%, Si: 0.5 wt%, Zn: 1.7 wt%, and P: 0.03 wt% are used as the base material. The contained ingot was melt cast. The ingot was hot rolled and processed to a thickness of 12 mm, and then cold rolling and annealing were repeated to produce a fabric material having a thickness of 200 μm. Furthermore, after annealing this material | dough material, it rolled to thickness 15micrometer, and formed the roughening process by electrodeposition on the surface so that it might become RZ: 3.0micrometer in a copper sulfate bath. When the tensile strength of the rolled copper foil thus obtained was measured and the workability was evaluated, the results shown in Table 1 were obtained.

Figure 2006040674
Figure 2006040674

次に、圧延銅箔の表面に厚み10μmのSnめっきを施して負極材とし、更に、所定の形状に裁断してLiイオン電池用の負極板2とし、この負極板2を用いてLiイオン電池を作成した。その充放電試験(サイクル特性)の結果を示したのが表2中に示す実施例である。   Next, Sn plating with a thickness of 10 μm is applied to the surface of the rolled copper foil to obtain a negative electrode material, and further cut into a predetermined shape to obtain a negative electrode plate 2 for a Li ion battery. It was created. The results shown in Table 2 are the results of the charge / discharge test (cycle characteristics).

Figure 2006040674
Figure 2006040674

更に、負極板2の比較材を作成した。カーボン系のLiイオン電池に用いられているタフピッチ銅を比較例1とし、その引張強さ、加工性、およびサイクル特性を表1および表2に示している。また、その他の銅合金材料で一般的なものを、比較例2〜5として示している。なお、比較例3〜5はサイクル特性を測定できなかったため、表2の記載対象外とした。   Further, a comparative material for the negative electrode plate 2 was prepared. The tough pitch copper used in the carbon-based Li-ion battery is Comparative Example 1, and the tensile strength, workability, and cycle characteristics are shown in Tables 1 and 2. Moreover, what is general with other copper alloy materials is shown as Comparative Examples 2-5. Since Comparative Examples 3 to 5 could not measure cycle characteristics, they were excluded from Table 2.

表2を参照すると、実施例は、負極芯材である銅箔の変形や破断の発生はなく、サイクル特性は、500回という好結果であった。   Referring to Table 2, in the example, there was no deformation or breakage of the copper foil as the negative electrode core material, and the cycle characteristics were a good result of 500 times.

次に、表1を参照すると、実施例は、十分な引張強さ、および良好な加工性が得られている。これに対し、比較例1は、加工性は良好であるものの、引張強さが低く、充放電中に銅箔が変形して活物質(Sn)の脱落が発生したため、表2に示すように、サイクル特性は実施例の1/10であった。比較例2は、引張強さが比較例1よりも高いため、サイクル特性は比較例1よりも向上しているが、それでも実施例の2/5である。比較例3〜5は、熱間圧延時の鋳塊の割れ(熱間割れ)やピンホールが発生し、圧延が不可能であった。このため、引張強さを測定できず,また、サイクル特性および加工性も評価することができなかった。   Next, referring to Table 1, in the examples, sufficient tensile strength and good workability are obtained. On the other hand, although Comparative Example 1 has good workability, the tensile strength is low, and the copper foil is deformed during charge and discharge, and the active material (Sn) falls off. The cycle characteristics were 1/10 of the example. Since the comparative example 2 has higher tensile strength than the comparative example 1, the cycle characteristics are improved as compared with the comparative example 1, but it is still 2/5 of the example. In Comparative Examples 3 to 5, ingot cracking (hot cracking) and pinholes occurred during hot rolling, and rolling was impossible. For this reason, the tensile strength could not be measured, and the cycle characteristics and workability could not be evaluated.

表1から明らかなように、本発明の実施例によれば、Ni:2.5wt%、Si:0.5wt%、Zn:1.7wt%、P:0.03wt%、残りがCuの成分のときに最良の結果が得られている。このとき、NiとSiの重量%の比は、2.5/0.5=5である。したがって、NiとSiの重量%の比が、4.5〜5.5の範囲になるようにすれば、満足できる引張強さおよび加工性を得ることが可能である。   As is apparent from Table 1, according to the embodiment of the present invention, Ni: 2.5 wt%, Si: 0.5 wt%, Zn: 1.7 wt%, P: 0.03 wt%, and the remainder is Cu. The best results have been obtained. At this time, the ratio of the weight percent of Ni and Si is 2.5 / 0.5 = 5. Therefore, satisfactory tensile strength and workability can be obtained if the ratio of the weight percent of Ni and Si is in the range of 4.5 to 5.5.

上記したように、冷間圧延による圧延銅箔は、厚さ15μmで良好な結果が得られている。したがって、圧延銅箔は、30μm以下の厚みにすれば表2に示したような特性を期待できる。   As described above, the rolled copper foil by cold rolling has a good result with a thickness of 15 μm. Therefore, the rolled copper foil can be expected to have the characteristics shown in Table 2 if the thickness is 30 μm or less.

[他の実施の形態]
上記実施の形態においては、Liイオン電池について説明したが、本発明はLiイオン二次電池およびLiイオン一次電池への適用のほか、セパレータに熱可塑性ポリマーを用いたLiポリマー電池等への適用も可能である。
[Other embodiments]
In the above embodiment, the Li ion battery has been described. However, the present invention can be applied not only to Li ion secondary batteries and Li ion primary batteries but also to Li polymer batteries using a thermoplastic polymer as a separator. Is possible.

また、冷間圧延後の生地材の粗化処理は、電着としたが、電着に限定されるものではなく、ショットブラストなどのメカニカルな粗化方法を用いることもできる。   Moreover, although the roughening treatment of the dough material after cold rolling is electrodeposition, it is not limited to electrodeposition, and a mechanical roughening method such as shot blasting can also be used.

円筒型のLiイオン電池の構成を示す断面図である。It is sectional drawing which shows the structure of a cylindrical Li ion battery. スタック型のLiイオン電池の電極部の構成を示す斜視図である。It is a perspective view which shows the structure of the electrode part of a stack type Li ion battery.

符号の説明Explanation of symbols

1 リチウム(Li)イオン電池
2 負極板
3 正極板
4 セパレータ
5 負極缶
6 タブ
7 スペーサ
8 安全弁
9 正極蓋
10 PTC素子
11 ガスケット
12 セル
DESCRIPTION OF SYMBOLS 1 Lithium (Li) ion battery 2 Negative electrode plate 3 Positive electrode plate 4 Separator 5 Negative electrode can 6 Tab 7 Spacer 8 Safety valve 9 Positive electrode lid 10 PTC element 11 Gasket 12 Cell

Claims (5)

銅系のベース材と、
前記銅系のベース材に含有されるNi:1〜5wt%、Si:0.2〜1.0wt%、Zn:0.1〜2.0wt%、P:0.03〜0.2wt%からなる含有物と、を含む圧延銅箔を芯材にしたことを特徴とするリチウムイオン電池用負極材。
A copper base material,
Ni: 1 to 5 wt%, Si: 0.2 to 1.0 wt%, Zn: 0.1 to 2.0 wt%, P: 0.03 to 0.2 wt% contained in the copper base material A negative electrode material for a lithium ion battery, characterized in that a rolled copper foil containing the inclusion is used as a core material.
前記NiとSiは、その重量%の比が4.5〜5.5であることを特徴とする請求項1記載のリチウムイオン電池用負極材。   2. The negative electrode material for a lithium ion battery according to claim 1, wherein a ratio by weight of Ni and Si is 4.5 to 5.5. 3. 前記銅系のベース材は、無酸素銅またはタフピッチ銅であることを特徴とする請求項1記載のリチウムイオン電池用負極材。   2. The negative electrode material for a lithium ion battery according to claim 1, wherein the copper base material is oxygen-free copper or tough pitch copper. 前記圧延銅箔は、30μm以下の厚さであることを特徴とする請求項1記載のリチウムイオン電池用負極材。   The negative electrode material for a lithium ion battery according to claim 1, wherein the rolled copper foil has a thickness of 30 μm or less. 前記圧延銅箔は、表面に粗化処理が施されていることを特徴とする請求項1記載のリチウムイオン電池用負極材。   2. The negative electrode material for a lithium ion battery according to claim 1, wherein a surface of the rolled copper foil is roughened.
JP2004217814A 2004-07-26 2004-07-26 Lithium ion battery anode material Pending JP2006040674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217814A JP2006040674A (en) 2004-07-26 2004-07-26 Lithium ion battery anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217814A JP2006040674A (en) 2004-07-26 2004-07-26 Lithium ion battery anode material

Publications (1)

Publication Number Publication Date
JP2006040674A true JP2006040674A (en) 2006-02-09

Family

ID=35905445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217814A Pending JP2006040674A (en) 2004-07-26 2004-07-26 Lithium ion battery anode material

Country Status (1)

Country Link
JP (1) JP2006040674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206555A (en) * 2012-03-27 2013-10-07 Tdk Corp Lithium ion secondary battery negative electrode and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206555A (en) * 2012-03-27 2013-10-07 Tdk Corp Lithium ion secondary battery negative electrode and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
TWI526578B (en) An electrolytic copper foil and a lithium ion secondary battery using the electrolytic copper foil as a current collector
KR101887827B1 (en) Copper foil having uniform thickness and methods for manufacturing the copper foil
US8216720B2 (en) Negative electrode for lithium secondary cell and lithium secondary cell
JP5255538B2 (en) Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery using the same
KR20140003511A (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
KR20130087968A (en) Electrode assembly and secondary battery comprising the same
JP2011243311A (en) Collector for lithium ion battery
JP7444357B2 (en) Method for manufacturing a cylindrical battery case with improved surface roughness
JP2005085479A (en) Nickel plated steel sheet for nonaqueous electrolytic battery case, and battery case using the steel sheet
JP2006049237A (en) Anode material for lithium ion battery
WO2023276756A1 (en) Lithium secondary battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
JP2006040674A (en) Lithium ion battery anode material
JP2013247017A (en) Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery
JP4269813B2 (en) Method for producing negative electrode of lithium ion battery
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP2004063344A (en) Negative electrode collector for lithium ion secondary battery
JP2001222993A (en) Battery
JP2003086154A (en) Nonaqueous electrolyte secondary battery
KR100601559B1 (en) Jelly-roll type electrode assembly and Li Secondary battery with the same
KR100601561B1 (en) Jelly-roll type electrode assembly and Cylindrical Li Secondary battery with the same
CN109216591A (en) Battery Ni material, cathode and battery shell material
JPH08162118A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2002216771A (en) Electrolytic metal foil for secondary battery negative electrode collector and its production