JP2006039080A - Optical branch waveguide - Google Patents

Optical branch waveguide Download PDF

Info

Publication number
JP2006039080A
JP2006039080A JP2004216880A JP2004216880A JP2006039080A JP 2006039080 A JP2006039080 A JP 2006039080A JP 2004216880 A JP2004216880 A JP 2004216880A JP 2004216880 A JP2004216880 A JP 2004216880A JP 2006039080 A JP2006039080 A JP 2006039080A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
branch
waveguide
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216880A
Other languages
Japanese (ja)
Inventor
Shinji Kawamoto
眞司 河本
Tokihiko Iwase
世彦 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004216880A priority Critical patent/JP2006039080A/en
Publication of JP2006039080A publication Critical patent/JP2006039080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical splitter having a small loss over a broadband to be used for FTTH, etc. and a constant branch ratio without going through complicated production processes. <P>SOLUTION: Optical branch elements having refractive index different from a core are provided inside the core of the tapered optical waveguide, using an optical waveguide 10 and two optical guides 20 connected in Y with an optical branch waveguide through a tapered optical guide 30. This optical branch elements are preferably a triangule 52, a rectangule 53, a polygon, a round shape 54, or oval islands separated from one another or a island 55 all connected together. A multistep optical branch waveguide can be obtained by connecting those optical branch waveguides in multiple stages. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信分野で用いられる光導波路に関し、とくに1つの光導波路を伝搬する光を複数の光導波路に分岐する分岐光導波路に関する。   The present invention relates to an optical waveguide used in the field of optical communication, and more particularly to a branched optical waveguide that branches light propagating through one optical waveguide into a plurality of optical waveguides.

光通信分野では1つの光路を伝搬する光のパワーを複数の光路に分岐する光学素子である光スプリッタが必要とされる。従来から2本またはそれ以上の光ファイバを融着した光ファイバスプリッタが用いられているが、平板光導波路を用いた光スプリッタも知られている。この光導波路型スプリッタとしては、図5に示すように、Y字型の光導波路を用いたY分岐型(図5(a))、方向性結合器型(同図(b))、多モード干渉型(同図(c))などが提案されている。   In the optical communication field, an optical splitter that is an optical element that splits the power of light propagating in one optical path into a plurality of optical paths is required. Conventionally, an optical fiber splitter in which two or more optical fibers are fused is used, but an optical splitter using a flat optical waveguide is also known. As this optical waveguide type splitter, as shown in FIG. 5, a Y-branch type (FIG. 5A) using a Y-shaped optical waveguide, a directional coupler type (FIG. 5B), a multimode An interference type ((c) in the figure) has been proposed.

一般に、方向性結合器型および多モード干渉型は波長依存性が大きい。このため、局と加入者間の光通信、いわゆるファイバ・ツー・ザ・ホーム(FTTH)に使用される通信波長の全帯域(1.26〜1.56μm)に渡り、損失を小さく維持し、分岐比を一定にすることは難しい。これに対し、Y分岐型は波長依存性が小さくFTTHに適したスプリッタを提供することが可能である。   In general, the directional coupler type and the multimode interference type are highly wavelength dependent. Therefore, the loss is kept small over the entire band (1.26 to 1.56 μm) of the communication wavelength used for optical communication between the station and the subscriber, so-called fiber-to-the-home (FTTH), It is difficult to keep the branching ratio constant. On the other hand, the Y-branch type can provide a splitter that is small in wavelength dependency and suitable for FTTH.

Y分岐型は、図6(a)に示すように、1本の光導波路10をテーパ状光導波路30を介して2本の光導波路20に分岐させるが、分岐角θを限りなく小さくすることが可能であれば損失を小さくでき、また波長依存性も小さくできる。しかし、分岐部クラッド先端部22の細く尖った形状の再現が難しく、実際には図6(b)に示すような「鈍り」のある先端部24となり、またこの形状もばらつきやすい。このため、ある程度の損失の発生は避けらず、また複数の素子間で分岐比を一定にするのが難しい。   In the Y-branch type, as shown in FIG. 6A, one optical waveguide 10 is branched into two optical waveguides 20 via a tapered optical waveguide 30, but the branching angle θ is made as small as possible. If possible, the loss can be reduced and the wavelength dependence can be reduced. However, it is difficult to reproduce the narrow and sharp shape of the branching clad tip 22, and in fact, it becomes a blunt tip 24 as shown in FIG. 6B, and this shape also tends to vary. For this reason, the occurrence of a certain amount of loss is inevitable, and it is difficult to make the branching ratio constant among a plurality of elements.

この損失を低減する方法としては、次の(A)〜(D)のような方法が提案され、損失低減の効果は得られている。
(A)分岐部にマルチモード導波路を設ける(例えば、特許文献1参照)。
(B)分岐部にモード結合を導入する(例えば、特許文献2参照)。
(C)分岐部にフェーズアクセラレータを設ける(例えば、特許文献3参照)。
(D)分岐部に回折格子を設ける(例えば、特許文献4参照)。
特開平9−211244号公報 特開平9−265018号公報 特開平8−327836号公報 特開平9−325226号公報
As a method for reducing this loss, the following methods (A) to (D) are proposed, and the effect of reducing the loss is obtained.
(A) A multi-mode waveguide is provided at the branch (see, for example, Patent Document 1).
(B) A mode coupling is introduced into the branching section (see, for example, Patent Document 2).
(C) A phase accelerator is provided at the branch (see, for example, Patent Document 3).
(D) A diffraction grating is provided at the branch (see, for example, Patent Document 4).
JP-A-9-212244 JP-A-9-265018 JP-A-8-327836 Japanese Patent Laid-Open No. 9-325226

しかし、上記(A)〜(D)の方法を導入することにより、波長依存性は増大する。したがってこれらの手段では、分岐比の均一性向上、低損失化という課題と波長依存性の低減という課題を同時に解決できないため、広い波長帯を用いるFTTH用としては不十分である。   However, the wavelength dependency is increased by introducing the methods (A) to (D). Therefore, these means cannot solve the problems of improving the uniformity of the branching ratio and reducing the loss and the problem of reducing the wavelength dependence at the same time, and are insufficient for FTTH using a wide wavelength band.

本発明は上記の課題を解決するためになされたもので、広帯域に渡り低損失かつ分岐比が一定なスプリッタを、複雑な製造工程を経ずに提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a splitter having a low loss and a constant branching ratio over a wide band without a complicated manufacturing process.

本発明においては、1本の光導波路と2本の光導波路が、テーパ状光導波路によりY字型に接続された分岐光導波路を用い、テーパ状光導波路のコア内に、コアと屈折率の異なる光分割構造体を設ける。   In the present invention, a branched optical waveguide in which one optical waveguide and two optical waveguides are connected in a Y shape by a tapered optical waveguide is used. Different light splitting structures are provided.

上記光分割構造体の導入により、分岐部クラッド先端の形状に影響された損失の増大を防止でき、かつ分岐比のばらつきを低減できる。また本手段は屈折の効果を利用しているため、波長依存性が小さく、広い波長範囲で使用できる。   By introducing the light splitting structure, it is possible to prevent an increase in loss affected by the shape of the tip of the branching clad and to reduce the variation in the branching ratio. Further, since this means utilizes the effect of refraction, the wavelength dependency is small and it can be used in a wide wavelength range.

上記の光分割構造体は三角形、四角形、多角形、円形、楕円形の互いに分離した島状あるいは連結された島状であることが好ましい。
光分割構造体の形状はとくに限定されるものではないが、上記の形状であれば、光ビームの進行方向が単純であり、光導波路の構造設計が容易になる。
It is preferable that the light splitting structure has a triangular shape, a quadrangular shape, a polygonal shape, a circular shape, or an elliptical shape that are separated from each other or connected to each other.
The shape of the light splitting structure is not particularly limited. However, with the above shape, the traveling direction of the light beam is simple, and the structure design of the optical waveguide is facilitated.

上記分岐光導波路を多段に接続することができる。
本発明によれば、損失が小さく分岐比のばらつきが小さいY分岐光導波路が得られるので、これを多段接続し、多分岐光導波路を形成する場合でも、損失が小さく、分岐比が安定した多分岐光導波路を提供できる。
The branch optical waveguide can be connected in multiple stages.
According to the present invention, a Y-branch optical waveguide with low loss and small variation in branching ratio can be obtained. Therefore, even when this is connected in multiple stages to form a multi-branch optical waveguide, a large number of loss is small and the branching ratio is stable. A branched optical waveguide can be provided.

本発明の手段は屈折現象に基礎を置いているため、広い波長範囲に渡って分岐比が均一で、かつ挿入損失が小さい分岐光導波路を実現でき、これを用いたスプリッタを提供できる。   Since the means of the present invention is based on the refraction phenomenon, a branching optical waveguide having a uniform branching ratio and a small insertion loss over a wide wavelength range can be realized, and a splitter using this can be provided.

本発明の実施形態について以下に説明する。
図1は本発明の基本原理を示している。一定な屈折率n1をもつ媒質中を進行してきた光ビーム100が、媒質とは異なる屈折率n2をもつ光分割構造体50(以下、構造体と略称する)を、その端面に対して斜めに通過する場合には、媒質と構造体の屈折率差によって屈折が生じる。構造体を光ビームの進行方向に対して適切に配置することにより、光ビームの進行方向を構造体の両側に2分することが可能である。図1(a)はn1>n2の場合、同図(b)はn1<n2の場合の構造体の配置の例を示している。屈折率差があればいずれの場合でも光ビームの進行方向を2分することができる。
Embodiments of the present invention will be described below.
FIG. 1 shows the basic principle of the present invention. A light beam 100 traveling in a medium having a constant refractive index n1 causes a light splitting structure 50 (hereinafter abbreviated as a structure) having a refractive index n2 different from the medium to be inclined with respect to its end face. When passing, refraction occurs due to the difference in refractive index between the medium and the structure. By appropriately disposing the structure with respect to the traveling direction of the light beam, the traveling direction of the light beam can be divided into two on both sides of the structure. FIG. 1A shows an example of arrangement of structures when n1> n2, and FIG. 1B shows an example of arrangement of structures when n1 <n2. In any case where there is a difference in refractive index, the traveling direction of the light beam can be divided into two.

本発明においては上記の原理を応用し、図2に示すようにY分岐光導波路のテーパ状導波路30内に伝搬光を2分する効果を有する光分割構造体を配置する。光導波路はもともと屈折率の異なるコアとクラッドからなるため、コアと屈折率の異なる構造体を導入しやすい。この構造体の存在により、分岐部クラッド先端に「鈍り」が発生しても、それが損失増大には結びつかず、低損失なY分岐光導波路を得ることが可能である。   In the present invention, the above principle is applied, and a light splitting structure having an effect of dividing the propagating light into two is arranged in the tapered waveguide 30 of the Y branch optical waveguide as shown in FIG. Since the optical waveguide is originally composed of a core and a clad having different refractive indexes, it is easy to introduce a structure having a refractive index different from that of the core. Due to the presence of this structure, even if “blunt” occurs at the tip of the branch cladding, it does not lead to an increase in loss, and a low-loss Y-branch optical waveguide can be obtained.

また一般的に、波長依存性や温度依存性を小さくするため、光導波路においてはコアとクラッドに同系統の材料(例えば石英系、高分子材料系など)を用いることが多く、波長が変化してもコアとクラッドの屈折率差Δnはほとんど変化しないように設計される。このため、屈折を用いる本方法は、従来の低損失化法、すなわち干渉、モード結合、回折という現象を利用した方法、に比較して波長依存性が小さい。   In general, in order to reduce wavelength dependency and temperature dependency, optical waveguides often use the same material (for example, quartz and polymer materials) for the core and cladding, and the wavelength changes. However, the refractive index difference Δn between the core and the clad is designed so as to hardly change. For this reason, this method using refraction has less wavelength dependency than the conventional loss reduction method, that is, a method using phenomena such as interference, mode coupling, and diffraction.

構造体52、53、54の形状としては、図2(A)〜(C)に示すように、三角形、四角形、円形などが可能であり、またこれらの中間の多角形や楕円形も使用できる。さらに、これらの構造体は、複数配置する方が効果が発揮されやすい。これらは互いに分離した島状に配置してもよいが、図2(D)のように互いに連結した構造体55を配置してもよい。それぞれの形状に応じ最適な配置を選ぶことが望ましい。   As the shapes of the structures 52, 53, and 54, as shown in FIGS. 2A to 2C, a triangle, a quadrangle, a circle, or the like can be used, and a polygon or an ellipse between these can also be used. . Furthermore, the effect is more easily exhibited when a plurality of these structures are arranged. These may be arranged in islands separated from each other, but may be arranged structure bodies 55 connected to each other as shown in FIG. It is desirable to select an optimal arrangement according to each shape.

表1は、図3(a)に示すようなY分岐光導波路に対し、同図(b)に示す四角形(ひし形)の構造体56を分離して配置した場合の損失の計算値を示している。同図(a)に示すように計算では分岐部クラッド先端部26の鈍りを幅Wの平坦部がある場合として想定しているが、構造体を設けることにより、鈍りが無い理想的な場合(W=0の場合)以上に低損失化が可能であることがわかる。なお、構造体の頂点に鈍りが発生した場合や、三角形、円形の構造体を用いた場合でも、構造体の個数と間隔を最適化することにより同水準の低損失化が可能である。   Table 1 shows the calculated values of loss when the rectangular (diamond) structure 56 shown in FIG. 3B is arranged separately from the Y-branch optical waveguide shown in FIG. Yes. In the calculation, as shown in FIG. 5A, the blunting of the branching clad tip 26 is assumed to be a case where there is a flat portion having a width W, but by providing a structure, an ideal case where there is no blunting ( It can be seen that the loss can be further reduced (when W = 0). Even when the apex of the structure is dull or when a triangular or circular structure is used, the same level of loss can be reduced by optimizing the number and interval of the structures.

Y分岐光導波路は多段に接続することにより、1×4、1×8、1×16、1×32等の多分岐光スプリッタを構成できる。図4は本発明のY分岐光導波路を7素子接続して8分岐光スプリッタを構成した例を示している。このような場合に、各Y分岐光導波路の損失が小さいことは、複数の分岐光導波路が縦続されることによる損失の増大を抑えるために極めて重要である。また各Y分岐光導波路の分岐比のばらつきが小さいことも多分岐化する際、所望の分岐比を得るために極めて重要である。したがって本発明のY分岐光導波路は多段化のために適しているといえる。   By connecting Y branch optical waveguides in multiple stages, a 1 × 4, 1 × 8, 1 × 16, 1 × 32, etc. multi-branch optical splitter can be configured. FIG. 4 shows an example in which an 8-branch optical splitter is configured by connecting seven Y-branch optical waveguides of the present invention. In such a case, the small loss of each Y branch optical waveguide is extremely important in order to suppress an increase in loss due to the cascade connection of a plurality of branch optical waveguides. Also, the small variation in the branching ratio of each Y branching optical waveguide is extremely important for obtaining a desired branching ratio when multi-branching. Therefore, it can be said that the Y-branch optical waveguide of the present invention is suitable for multistage.

Figure 2006039080
Figure 2006039080

光分割構造体の原理を説明する図である。It is a figure explaining the principle of a light splitting structure. 本発明の分岐光導波路の実施例を示す模式図である。It is a schematic diagram which shows the Example of the branch optical waveguide of this invention. 計算モデルとして使用した分岐光導波路の例を示す模式図である。It is a schematic diagram which shows the example of the branch optical waveguide used as a calculation model. 本発明の多分岐光スプリッタの構成の一例を示す図である。It is a figure which shows an example of a structure of the multi-branch optical splitter of this invention. 従来の光スプリッタの構成例を示す図である。It is a figure which shows the structural example of the conventional optical splitter. 従来のY分岐光導波路の問題点を示す図である。It is a figure which shows the problem of the conventional Y branch optical waveguide.

符号の説明Explanation of symbols

10、20 光導波路
30 テーパ状光導波路
50、52、53、54、55,56 光分割構造体
100 光ビーム
10, 20 Optical waveguide 30 Tapered optical waveguide 50, 52, 53, 54, 55, 56 Light splitting structure 100 Light beam

Claims (3)

1本の光導波路と2本の光導波路が、テーパ状光導波路によりY字型に接続された分岐光導波路において、前記テーパ状光導波路のコア内に、コアと屈折率の異なる光分割構造体を設けたこと特徴とする分岐光導波路。   In a branched optical waveguide in which one optical waveguide and two optical waveguides are connected in a Y shape by a tapered optical waveguide, an optical splitting structure having a refractive index different from that of the core in the core of the tapered optical waveguide A branched optical waveguide characterized by comprising: 前記光分割構造体は三角形、四角形、多角形、円形、楕円形の、互いに分離した島状あるいは連結された島状であることを特徴とする請求項1に記載の分岐光導波路。   2. The branched optical waveguide according to claim 1, wherein the light splitting structure has a triangular shape, a quadrangular shape, a polygonal shape, a circular shape, or an elliptical shape, which are islands separated from each other or connected to each other. 請求項1または2に記載の分岐光導波路を多段に接続したことを特徴とする分岐光導波路。
A branched optical waveguide, wherein the branched optical waveguide according to claim 1 is connected in multiple stages.
JP2004216880A 2004-07-26 2004-07-26 Optical branch waveguide Pending JP2006039080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216880A JP2006039080A (en) 2004-07-26 2004-07-26 Optical branch waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216880A JP2006039080A (en) 2004-07-26 2004-07-26 Optical branch waveguide

Publications (1)

Publication Number Publication Date
JP2006039080A true JP2006039080A (en) 2006-02-09

Family

ID=35904160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216880A Pending JP2006039080A (en) 2004-07-26 2004-07-26 Optical branch waveguide

Country Status (1)

Country Link
JP (1) JP2006039080A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140051363A (en) * 2011-09-27 2014-04-30 니폰덴신뎅와 가부시키가이샤 Light merging/branching device, bidirectional light propagation device, and light transmission/reception system
CZ305196B6 (en) * 2014-03-26 2015-06-03 České Vysoké Učení Technické V Praze Fakulta Elektrotechnická Optical planar multimode branching point
JP7198769B2 (en) 2017-04-18 2023-01-04 ネオフォトニクス・コーポレイション Optical splitter/mixer for planar lightwave circuits

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140051363A (en) * 2011-09-27 2014-04-30 니폰덴신뎅와 가부시키가이샤 Light merging/branching device, bidirectional light propagation device, and light transmission/reception system
US9306670B2 (en) 2011-09-27 2016-04-05 Nippon Telegraph And Telephone Corporation Optical coupling/splitting device, two-way optical propagation device, and optical-transmit-receive system
KR101639602B1 (en) 2011-09-27 2016-07-14 니폰덴신뎅와 가부시키가이샤 Optical coupling/splitting device, two-way optical propagation device, and optical transmit-receive system
CZ305196B6 (en) * 2014-03-26 2015-06-03 České Vysoké Učení Technické V Praze Fakulta Elektrotechnická Optical planar multimode branching point
JP7198769B2 (en) 2017-04-18 2023-01-04 ネオフォトニクス・コーポレイション Optical splitter/mixer for planar lightwave circuits

Similar Documents

Publication Publication Date Title
JP4749724B2 (en) Method and apparatus for high density coupling of optical fiber and planar optical waveguide
JP4361030B2 (en) Mode splitter and optical circuit
EP1530736B1 (en) Improved optical splitter with taperd multimode interference waveguide
CN201237651Y (en) Mono-mode light path using multimode waveguide
Danaie et al. Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes
CN110720065B (en) Optical splitter/mixer for planar lightwave circuit
US20110194572A1 (en) Composite optical waveguide, variable-wavelength laser, and method of oscillating laser
CN110376753B (en) High-performance polarization beam splitter and design method thereof
US6970625B2 (en) Optimized Y-branch design
CN107092056A (en) A kind of Wavelength division multiplexer/demultiplexer and preparation method thereof
KR102424082B1 (en) Planar lightwave circuit (PLC) with controllable transmittance/reflectance
JP2006039080A (en) Optical branch waveguide
JP2000258648A (en) Optical planar waveguide
JP5370690B2 (en) Waveguide connection structure
US20050041924A1 (en) Optical device comprising a mode adapter on an optical component with photonic band gap
GB2369449A (en) Optical waveguide device with tapered branches
CN112630887A (en) Method for manufacturing optical waveguide mode converter and mode converter
WO2020031865A1 (en) Optical multiplexer and rgb coupler
JPH09211244A (en) Y-branch optical waveguide
JPH01169407A (en) Wavelength filter
JP2009122461A (en) Optical wavelength multiplexer/demultiplexer circuit
JP2006323019A (en) Multiple branch optical circuit
CN117970573A (en) Coarse wavelength division multiplexer
Lee et al. Novel design of optical filters based on a pair of MMI power divider/combiner
CN118859410A (en) Oblique asymmetric waveguide light-splitting uniform light path structure