JP2006038759A - Radio wave absorption characteristic measuring instrument and its method - Google Patents

Radio wave absorption characteristic measuring instrument and its method Download PDF

Info

Publication number
JP2006038759A
JP2006038759A JP2004222141A JP2004222141A JP2006038759A JP 2006038759 A JP2006038759 A JP 2006038759A JP 2004222141 A JP2004222141 A JP 2004222141A JP 2004222141 A JP2004222141 A JP 2004222141A JP 2006038759 A JP2006038759 A JP 2006038759A
Authority
JP
Japan
Prior art keywords
radio wave
waveguide
opening
magic tee
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222141A
Other languages
Japanese (ja)
Inventor
Takuya Kusaka
卓也 日下
Masakatsu Maruyama
政克 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004222141A priority Critical patent/JP2006038759A/en
Publication of JP2006038759A publication Critical patent/JP2006038759A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously measure radio wave absorption characteristics over a wide range of frequency band including a frequency band of 1 GHz or less by using one instrument, to dispense with a large measuring object, in particular, and further, to perform radio wave absorption characteristic measurement with a simplified instrument and signal processing. <P>SOLUTION: A radio wave inputted from an opening 1 by a signal generator 11 is divided into two with opposite phases, respectively, by a magic tee 12, and two radio waves obtained by the two-dividing are outputted through openings 2 and 3, respectively, in the magic tee 12. Further, the outputted radio waves are reflected by a metallic plate 30 that closes an end part of a waveguide 21 connected to the opening 2 in the magic tee 12 and by a measuring object 40 that closes an end part of a waveguide 22 connected to the opening 3, respectively. A mixed radio wave of two reflected radio waves severally returned to the openings 2 and 3 by the reflection, is outputted through an opening 4, and the outputted radio wave is measured by means of a signal receiver 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,測定対象物の電波吸収特性を測定するための電波吸収特性測定装置及びその方法に関するものである。   The present invention relates to a radio wave absorption characteristic measuring apparatus and method for measuring a radio wave absorption characteristic of a measurement object.

携帯電話機や無線LAN,ETC(自動料金収受システム)等の無線通信機器が普及し,電波の利用が広がるにつれて電波吸収体の需要も増大してきている。これに伴い,電波吸収体の電波吸収特性を効率的に測定する技術の開発が望まれている。
従来の電波吸収特性の測定(評価)方法として,以下の(a)〜(d)に示すものがあることが非特許文献1(特に,6〜7頁)等に示されている。
(A)Q値に着目する方法
これは,筐体内に測定対象物(吸収材)を配置しない場合と配置した場合との各々についてQ値を測定し,両者のQ値の差異に着目して測定対象物の電波吸収度合いを評価(測定)するものである。
(B)入出力特性に着目する方法
これは,筐体内に測定対象物を配置しない場合と配置した場合との各々について,その筐体内に対する電波(電磁界)の入出力特性(電力の減衰量)を測定し,両者の入出力特性の差異から測定対象物の電波吸収度合いを評価するものである。
(C)結合特性に着目する方法
これは,基本的には上記(b)と同様の原理であるが,筐体の代わりに電波の入力用及び出力用の微小ループアンテナを設け,その微小ループアンテナに測定対象物を近接配置した場合と配置しない場合との各々について,両微小ループアンテナの結合特性によって変化する微小ループアンテナの入出力特性を測定し,測定対象物の電波吸収度合いを評価するものである。
(D)伝送特性に着目する方法
これは,ストリップ線路において,ストリップライン導体とグランド面導体との間に測定対象物を設けない場合と設けた場合とにおける伝送特性(高周波信号の通過特性)の変化から,測定対象物の電波吸収度合いを評価するものである。
橋本 修 監修「次世代電波吸収体の技術と応用展開」(エレクトロニクス材料・技術シリーズ),シーエムシー出版,2003年3月発行
As wireless communication devices such as mobile phones, wireless LANs, and ETCs (automatic toll collection systems) become widespread and the use of radio waves spreads, the demand for radio wave absorbers has increased. In connection with this, development of the technique which measures the radio wave absorption characteristic of a radio wave absorber efficiently is desired.
Non-Patent Document 1 (especially, pages 6 to 7) and the like show that there are methods shown in the following (a) to (d) as conventional methods for measuring (evaluating) radio wave absorption characteristics.
(A) Method of paying attention to the Q value This is because the Q value is measured for each of the case where the measurement object (absorbing material) is not placed and the case where the measurement object is placed in the housing, and the difference between the Q values is noticed. It evaluates (measures) the degree of radio wave absorption of the measurement object.
(B) Method focusing attention on input / output characteristics This is the case of the input / output characteristics of radio waves (electromagnetic fields) with respect to the inside of the case (the amount of power attenuation) for each of the cases where the measurement object is not placed in the case and the case where it is placed. ) And the radio wave absorption degree of the measurement object is evaluated from the difference between the input and output characteristics of the two.
(C) Method focusing attention on coupling characteristics This is basically the same principle as in (b) above, except that a minute loop antenna for input and output of radio waves is provided in place of the housing, and the minute loop is provided. Measure the input / output characteristics of the micro-loop antenna, which varies depending on the coupling characteristics of both micro-loop antennas, and evaluate the degree of radio wave absorption of the object to be measured, with and without the measurement object placed close to the antenna. Is.
(D) Method of paying attention to transmission characteristics This is because of the transmission characteristics (passage characteristics of high-frequency signals) in the strip line when the measurement object is not provided between the strip line conductor and the ground plane conductor. The degree of radio wave absorption of the measurement object is evaluated from the change.
Supervised by Osamu Hashimoto, “Technology and Application Development of Next-Generation Wave Absorber” (Electronic Materials and Technology Series), CMC Publishing, published in March 2003

しかしながら,上記(A)「Q値に着目する方法」では,測定対象物を収容する筐体の共振周波数帯の電波については吸収特性を測定できるが,それ以外の周波数帯の電波についてはQ値を正確に測定できないため,1つの装置で広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定できないという問題点があった。
同様に,上記(B)「入出力特性に着目する方法」でも,筐体の共振周波数帯の電波については,筐体内に蓄積されるエネルギーが大きく出力電力が小さいため,測定対象物の電波吸収による出力電力の変化を比較的高分解能で検出できる。しかし,筐体の共振周波数帯以外の電波については,筐体内に蓄積されるエネルギーが小さくなって出力電力が大きくなるため,これに対する測定対象物の電波吸収による電力変化量が小さくなり,電波吸収特性の評価精度が悪化する。このため,1つの装置で広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定できないという問題点があった。
また,上記(C)「結合特性に着目する方法」では,測定対象物の有無によって2つの微小ループアンテナ間の電波の伝播状態が変わるため,測定対象物の配置前後における微小ループアンテナの入出力信号の差分を単純に比較するだけでは評価できず,電波吸収特性評価のための信号処理が複雑になるという問題点があった。
また,上記(D)「伝送特性に着目する方法」では,1GHz以下の電波については,大きな測定対象物(サンプル)が必要となるという問題点があった。また,金属部材の表面に電波吸収体の膜が形成されたような測定対象物である場合,ストリップ線路におけるストリップライン導体とグランド面導体との間に金属部材が近接することによってストリップ線路上の信号の伝播モードが変化するため,測定が困難になるという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,1つの装置で1GHz以下の周波数帯域を含む広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定でき,特に大きな測定対象物を必要とせず,さらに装置及び信号処理が簡易な電波吸収特性測定装置及びその方法を提供することにある。
However, in the above (A) “Method focusing on the Q value”, the absorption characteristic can be measured for the radio wave in the resonance frequency band of the housing accommodating the measurement object, but the Q value is obtained for the radio wave in other frequency bands. Therefore, it is impossible to measure the radio wave absorption characteristics continuously over a wide frequency band with a single device.
Similarly, in (B) “Method focusing on input / output characteristics”, the radio wave in the resonance frequency band of the casing has a large energy accumulated in the casing and a small output power. It is possible to detect a change in output power due to a relatively high resolution. However, for radio waves outside the resonance frequency band of the housing, the energy stored in the housing is reduced and the output power is increased. The evaluation accuracy of characteristics deteriorates. For this reason, there has been a problem that it is impossible to measure the radio wave absorption characteristics continuously over a wide frequency band with a single device.
In (C) “Method focusing on coupling characteristics”, the propagation state of the radio wave between the two minute loop antennas changes depending on the presence or absence of the measurement object. There is a problem that the signal processing for evaluating the radio wave absorption characteristic becomes complicated because the signal difference cannot be evaluated simply by comparing the signal differences.
Further, the above (D) “Method focusing on transmission characteristics” has a problem that a large measurement object (sample) is required for radio waves of 1 GHz or less. In addition, in the case of a measurement object in which a radio wave absorber film is formed on the surface of a metal member, the metal member approaches the strip line between the strip line conductor and the ground plane conductor in the strip line. Since the signal propagation mode changes, there is a problem that measurement becomes difficult.
Accordingly, the present invention has been made in view of the above circumstances, and its object is to continuously measure radio wave absorption characteristics over a wide frequency band including a frequency band of 1 GHz or less with one apparatus. An object of the present invention is to provide a radio wave absorption characteristic measuring apparatus and method that do not require a particularly large measurement object and that are simple in apparatus and signal processing.

上記目的を達成するために本発明は,4つの開口を備えたマジックティの1つの開口(第1の開口)から入力された電波を各々逆位相で2分岐出力する2つの開口(第2の開口及び第3の開口)各々に導波管を設けた簡易な構成によって測定対象物の電波吸収特性を測定する装置及びその測定方法として適用されるものである。
即ち,前記マジックティの信号入力用の開口(第1の開口)から電波を入力することによってその電波を前記マジックティの機能によって各々逆位相で2分岐させ,その分岐した電波各々を第2の開口に接続された導波管(第1の導波管)及び第3の開口に接続された導波管(第2の導波管)に出力させる。これにより,その出力電波が,前記導波管各々の一方(前記マジックティとの接続端に対する反対側)を塞ぐ電波の反射部材と測定対象物を有する部材との各々に反射して戻ってくる(反射して前記第2の開口及び第3の開口各々に入力される)。そして,戻ってきた両反射電波の合成電波が前記マジックティの機能によって第4の開口に出力されるので,その出力される前記合成電波を受信して測定するものである。ここで,測定対象物を有する部材には,測定対象物そのもの,及び測定対象物が設けられた部材(電波の反射部材の表面に測定対象物が配置されたもの等)を含む。
このような測定は,測定対象物を収容する筐体の共振に依存するものでなく,また,ストリップ線路を用いるものでもないので,マジックティ及び導波管で伝送できる周波数帯域の電波である限り,1つの装置で1GHz以下の周波数帯域を含む広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定できる。
また,導波管の一方を塞ぐ程度の大きさ或いはそれ以下の大きさの測定対象物を用意すれば足り,特に大きな被測定物を必要としない。
さらに,装置は簡易であり,また,前記合成電波は,その合成前の2つの反射電波相互の逆位相状態が維持されている限り,その信号レベル(振幅或いは電力ともいえる)は,前記電波の反射部材(金属板等)と測定対象物との電波吸収量の差分を表すものとなり,ごく簡易な信号処理によって測定対象物の電波吸収特性を評価できる。
ここで,周波数掃引により前記マジックティに入力する電波を発生させれば,測定対象物の電波吸収の周波数特性を容易に測定できる。
また,一方の前記導波管(第2の導波管)を塞ぐ前記測定対象物を有する部材を前記電波の反射部材に置き換えた場合(即ち,2つの導波管両方を前記反射部材で塞いだ場合)に,前記マジックティの前記第4の開口から出力される前記合成電波の信号レベルが略0となるよう構成する。即ち,前記合成電波の合成前の2つの反射電波が相互に逆位相となるようにする。
これにより,前記測定対象物を前記導波管の一方に設け,他方に前記反射部材を設けたときの前記合成電波の信号レベル(振幅或いは電力ともいえる)は,前記反射部材(金属板等)が電波を全反射するものと近似すれば,測定対象物の電波吸収量を直接的に表すことになる。
例えば,前記2つの導波管の一方(第1の導波管)における前記開口(第2の開口)から前記反射部材までの寸法と,他方(第2の導波管)における前記開口(第3の開口)から測定対象物までの寸法とを略同一とすれば,前記合成電波の信号レベルが測定対象物の電波吸収量そのものを表すことになる。
In order to achieve the above-described object, the present invention provides two openings (second outputs) each of which outputs a radio wave input from one opening (first opening) of a magic tee having four openings in opposite phases. (Aperture and Third Aperture) Each of them is applied as an apparatus for measuring the radio wave absorption characteristics of a measurement object with a simple configuration in which a waveguide is provided, and a measurement method thereof.
That is, by inputting a radio wave from the magicty signal input opening (first opening), the radio wave is split into two in opposite phases by the function of the magic tee, and each of the branched radio waves is Output is made to the waveguide connected to the opening (first waveguide) and the waveguide connected to the third opening (second waveguide). As a result, the output radio wave is reflected and returned to each of the radio wave reflecting member and the member having the object to be measured, which block one of the waveguides (the side opposite to the connection end with the magic tee). (Reflected and input to each of the second opening and the third opening). Then, since the combined radio wave of the two reflected radio waves that has returned is output to the fourth opening by the function of the magic tee, the output synthetic radio wave is received and measured. Here, the member having the measurement object includes the measurement object itself and a member provided with the measurement object (such as a measurement object disposed on the surface of a radio wave reflection member).
Such measurement does not depend on the resonance of the housing that houses the object to be measured, nor does it use a strip line, so that radio waves in the frequency band that can be transmitted by Magicty and waveguides are used. , One device can continuously measure radio wave absorption characteristics over a wide frequency band including a frequency band of 1 GHz or less.
Moreover, it is sufficient to prepare a measurement object having a size enough to block one of the waveguides or less, and a particularly large measurement object is not required.
Further, the apparatus is simple, and the signal level (also referred to as amplitude or power) of the synthesized radio wave is the same as that of the two radio waves before synthesis. This represents the difference in the amount of radio wave absorption between the reflecting member (metal plate, etc.) and the measurement object, and the radio wave absorption characteristics of the measurement object can be evaluated by very simple signal processing.
Here, if the radio wave input to the magic tee is generated by frequency sweep, the frequency characteristic of radio wave absorption of the measurement object can be easily measured.
Further, when a member having the measurement object that closes one of the waveguides (second waveguide) is replaced with the radio wave reflecting member (that is, both the two waveguides are closed with the reflecting member). The signal level of the synthetic radio wave output from the fourth opening of the magic tee is substantially zero. That is, the two reflected radio waves before the synthesis of the synthesized radio waves are in opposite phases.
As a result, the signal level (also referred to as amplitude or power) of the synthetic radio wave when the object to be measured is provided on one side of the waveguide and the reflection member is provided on the other is the reflection member (metal plate or the like). Approximates the total reflection of the radio wave, it directly represents the radio wave absorption of the measurement object.
For example, the dimension from the opening (second opening) to the reflecting member in one of the two waveguides (first waveguide) and the opening (first in the other (second waveguide) If the dimensions from the aperture 3) to the measurement object are substantially the same, the signal level of the synthesized radio wave represents the radio wave absorption amount of the measurement object itself.

また,前記導波管(第1の導波管又は第2の導波管)における前記反射部材の位置や測定対象物の位置を移動させる機構(部材移動手段)を設ければ,さらに多用な測定が可能となる。
例えば,前記2つの導波管の両方に前記反射部材を設けた状態で前記合成電波の信号レベルが略0となるように事前校正を行うことができる。
その場合の測定手順としては,まず,前記2つの導波管(第1の導波管及び第2の導波管)各々における前記マジックティとの接続端に対する反対側を前記反射部材で塞いだ状態で,電波を前記マジックティの前記第1の開口に入力させ,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルが略0となるように,一方の前記導波管(第1の導波管)における前記反射部材の位置を調整する(事前校正)。
次に,そのようにして調整された状態から他方の前記導波管(第2の導波管)における前記反射部材を測定対象物に置き換え,その状態で電波を前記マジックティの前記第1の開口に入力させる。さらに,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルを測定し,その測定結果に基づいて測定対象物の電波吸収特性を評価すればよい。
また,他の例としては,前記2つの導波管(第1の導波管及び第2の導波管)各々における前記マジックティとの接続端に対する反対側を各々前記反射部材及び測定対象物を有する部材で塞いだ状態で電波を前記マジックティの前記第1の開口に入力させるとともに,前記導波管各々における前記反射部材の位置と前記測定対象物を有する部材の位置の一方又は両方を順次移動させ,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルを測定し,その測定結果に基づいて測定対象物の電波吸収特性を評価すること等も考えられる。
また,前記マジックティの前記第1の開口に入力させる前記電波を周波数掃引により発生させれば,所望の周波数帯域に渡って連続的に電波の吸収特性を測定できる。
Further, if a mechanism (member moving means) for moving the position of the reflecting member or the position of the measurement object in the waveguide (first waveguide or second waveguide) is provided, it is more versatile. Measurement is possible.
For example, it is possible to perform pre-calibration so that the signal level of the combined radio wave is substantially zero in a state where the reflection member is provided in both of the two waveguides.
As a measurement procedure in that case, first, the opposite side of each of the two waveguides (the first waveguide and the second waveguide) with respect to the connection end with the magic tee was closed with the reflecting member. In one state, radio waves are input to the first opening of the magic tee so that the level of the synthesized radio wave output from the fourth opening of the magic tee is approximately zero. The position of the reflecting member in the wave tube (first waveguide) is adjusted (preliminary calibration).
Next, the reflecting member in the other waveguide (second waveguide) is replaced with an object to be measured from the state adjusted as described above, and in this state, radio waves are transmitted to the first of the magic tee. Input to the opening. Furthermore, the level of the synthetic radio wave output from the fourth opening of the magic tee may be measured thereby, and the radio wave absorption characteristic of the measurement object may be evaluated based on the measurement result.
As another example, the opposite side of each of the two waveguides (the first waveguide and the second waveguide) with respect to the connection end with the magic tee is the reflection member and the measurement object. The radio wave is input to the first opening of the magic tee in a state where it is blocked by a member having a shape, and one or both of the position of the reflecting member and the position of the member having the measurement object in each of the waveguides is set. It is also conceivable to sequentially move, thereby measuring the level of the synthetic radio wave output from the fourth opening of the magic tee, and evaluating the radio wave absorption characteristics of the measurement object based on the measurement result.
In addition, if the radio wave input to the first opening of the magic tee is generated by frequency sweep, the radio wave absorption characteristics can be continuously measured over a desired frequency band.

本発明によれば,マジックティとこれに接続される導波管を備えた簡易な装置により,その1つの装置で1GHz以下の周波数帯域を含む広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定でき,特に大きな測定対象物を必要としない。さらに,前記マジックティから出力される合成電波の信号レベル,即ち,電波の反射部材に対する反射電波と測定対象物に対する反射電波との合成電波の信号レベルは,測定対象物の電波吸収量に相当するレベルとなるので,簡易な信号処理で電波吸収特性を評価できる。   According to the present invention, a simple device including a magic tee and a waveguide connected to the magic tee absorbs radio waves continuously over a wide frequency band including a frequency band of 1 GHz or less. Characteristic can be measured, and no large measuring object is required. Further, the signal level of the synthesized radio wave output from the magic tee, that is, the signal level of the synthesized radio wave of the reflected radio wave with respect to the reflecting member of the radio wave and the reflected radio wave with respect to the measurement object corresponds to the radio wave absorption amount of the measurement object. Because it is a level, the radio wave absorption characteristics can be evaluated with simple signal processing.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係る電波吸収特性測定装置X1の概略構成を表す図,図2は本発明の第2実施形態に係る電波吸収特性測定装置X2の概略構成を表す図,図3はマジックティの斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a diagram showing a schematic configuration of the radio wave absorption characteristic measuring device X1 according to the first embodiment of the present invention, and FIG. 2 is a schematic configuration of the radio wave absorption characteristic measuring device X2 according to the second embodiment of the present invention. FIG. 3 is a perspective view of the magic tee.

(第1実施形態)
まず,図1を用いて,本発明の第1実施形態に係る電波吸収特性測定装置X1(以下,測定装置X1という)について説明する。
図1に示すように測定装置X1は,電波(高周波信号)を発生する信号発生器11と,マジックティ12と,電波を受信する信号受信器13と,前記マジックティ12に接続された2つの導波管21,22とを具備している。
前記信号発生器11は,周波数掃引により,連続的に周波数を変化させて電波を発生させることがきりるものである(電波発生手段の一例)。
前記マジックティ3の斜視図を図3に示す。
前記マジックティ3は,4つの開口(1〜4)を備え,開口(1)から入力された電波を各々逆位相で2分岐して開口(2)及び開口(3)の各々へ出力する。また,前記開口(2)及び前記開口(3)から電波が入力された場合,その合成電波を開口(4)へ出力するものである。
(First embodiment)
First, a radio wave absorption characteristic measuring apparatus X1 (hereinafter referred to as measuring apparatus X1) according to a first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the measuring apparatus X1 includes a signal generator 11 that generates radio waves (high-frequency signals), a magic tee 12, a signal receiver 13 that receives radio waves, and two connected to the magic tee 12. Waveguides 21 and 22 are provided.
The signal generator 11 is capable of generating radio waves by continuously changing the frequency by frequency sweeping (an example of radio wave generating means).
A perspective view of the magic tee 3 is shown in FIG.
The magic tee 3 has four openings (1 to 4), and the radio wave input from the opening (1) is bifurcated in opposite phases and is output to each of the opening (2) and the opening (3). Further, when radio waves are input from the opening (2) and the opening (3), the synthesized radio wave is output to the opening (4).

図1に戻って,前記導波管21(第1の導波管)は,前記マジックティ12における前記開口(2)に接続され,その接続端に対する反対側が電波の反射部材である金属板30により塞がれている。
また,前記導波管22(第2の導波管)は,前記マジックティ12における前記開口(3)に接続され,その接続端に対する反対側が電波吸収特性の測定対象物40により塞がれている。この導波管22は,前記測定対象物40を着脱可能に構成されており,前記測定対象物40の代わりに,電波の反射部材である前記金属板30を取り付けることも可能である。
このような構成により,前記マジックティ12において,前記信号発生器11により開口(1)から入力された電波が各々逆位相で2分岐され,その2分岐された電波各々が開口(2)及び開口(3)の各々へ出力される。さらに,その出力電波が前記マジックティ12の外部,即ち,前記導波管21の端部を塞ぐ前記金属板30と前記導波管22の端部を塞ぐ前記測定対象物40との各々に反射し,その反射によって前記開口(2)及び開口(3)の各々に入力される(戻ってくる)両反射電波の合成電波が,前記開口(4)に出力される。
Returning to FIG. 1, the waveguide 21 (first waveguide) is connected to the opening (2) in the magic tee 12, and the metal plate 30 whose opposite side to the connection end is a radio wave reflection member. It is blocked by
In addition, the waveguide 22 (second waveguide) is connected to the opening (3) in the magic tee 12, and the opposite side to the connection end is closed by the measurement object 40 having radio wave absorption characteristics. Yes. The waveguide 22 is configured so that the measurement object 40 can be attached and detached. Instead of the measurement object 40, the metal plate 30 which is a radio wave reflection member can be attached.
With such a configuration, in the magic tee 12, the radio wave input from the aperture (1) by the signal generator 11 is bifurcated in opposite phases, and each of the bifurcated radio waves is separated into the aperture (2) and the aperture. Output to each of (3). Further, the output radio wave is reflected to the outside of the magic tee 12, that is, to each of the measurement object 40 that closes the end of the waveguide 22 and the metal plate 30 that closes the end of the waveguide 21. Then, a combined radio wave of both reflected radio waves input (returned) to each of the aperture (2) and the aperture (3) by the reflection is output to the aperture (4).

そして,前記信号受信器13は,前記マジックティ12における前記開口(4)から出力される前記合成電波を受信し,その受信レベル(受信電力)を測定する電波測定手段である。この信号受信器13により測定された前記合成電波の受信レベルは,不図示の計算機等に入力され,該計算機等によって前記受信レベルを前記測定対象物の電波吸収量に換算する処理,即ち,電波吸収特性の評価が行われる。
ここで,2つの前記導波管21,22は,各々同一寸法(長さも同一)同一材料のものであり,その端部(前記マジックティ12との接続端に対して反対側の端部)に前記金属板30,前記測定対象物40が設けられる。即ち,前記2つの導波管の一方(21,第1の導波管)における前記開口(2)から前記金属板30までの寸法と,他方(22,第2の導波管)における前記開口(3)から測定対象物40までの寸法とが同一である。
これにより,前記マジックティ12において,前記開口(1)から入力され,それが2分岐されて各々逆位相で前記開口(2)及び開口(3)へ出力された電波は,各々前記金属板30と測定対象物40とに反射して前記開口(1),(3)各々に戻ってきた時点で,相互に逆位相の状態が維持されるよう構成されている。
従って,前記導波管22(第2の導波管)を塞ぐ測定対象物40を前記金属板40(反射部材)に置き換えた場合,前記マジックティ12の前記開口(4)から出力される前記合成電波の信号レベルは0(ゼロ)となる。
このため,前記金属板30を前記導波管21の端部に,測定対象物40を前記導波管22の端部に各々設けた状態(図1の状態)では,前記信号受信器13により測定される前記合成電波の信号レベルは,前記金属板30が電波を全反射するものと近似できるので,測定対象物40の電波吸収量を直接的に表すことになり,ごく簡易な信号処理によって測定対象物40の電波吸収特性を評価できる。。
尚、信号レベルを完全に“0”とすることが測定精度上は好ましいが、測定結果に大きな影響を及ぼさない程度であれば、“0”とする必要はなく、“0”でないレベル(略0とする)でもよい。
The signal receiver 13 is a radio wave measuring unit that receives the synthesized radio wave output from the opening (4) in the magic tee 12 and measures the reception level (reception power). The reception level of the synthesized radio wave measured by the signal receiver 13 is input to a computer or the like (not shown), and processing for converting the reception level into the radio wave absorption amount of the measurement object by the computer or the like, that is, radio wave Absorption characteristics are evaluated.
Here, the two waveguides 21 and 22 are made of the same material with the same dimensions (the same length), and their end portions (end portions opposite to the connection end with the magic tee 12). The metal plate 30 and the measurement object 40 are provided on the substrate. That is, the dimension from the opening (2) to the metal plate 30 in one of the two waveguides (21, first waveguide) and the opening in the other (22, second waveguide) The dimensions from (3) to the measurement object 40 are the same.
As a result, in the magic tee 12, radio waves that are input from the opening (1), branched into two and output to the opening (2) and the opening (3) in opposite phases are respectively transmitted to the metal plate 30. And the object to be measured 40 and when they return to the openings (1) and (3), they are configured to maintain mutually opposite phases.
Therefore, when the measurement object 40 that closes the waveguide 22 (second waveguide) is replaced with the metal plate 40 (reflection member), the output from the opening (4) of the magic tee 12 is performed. The signal level of the synthesized radio wave is 0 (zero).
Therefore, in a state where the metal plate 30 is provided at the end of the waveguide 21 and the measurement object 40 is provided at the end of the waveguide 22 (the state shown in FIG. 1), the signal receiver 13 Since the signal level of the synthetic radio wave to be measured can be approximated to that the metal plate 30 totally reflects the radio wave, it directly represents the amount of radio wave absorption of the measurement object 40, which is very simple signal processing. The radio wave absorption characteristics of the measurement object 40 can be evaluated. .
Although it is preferable in terms of measurement accuracy that the signal level is completely “0”, it is not necessary to set it to “0” as long as it does not greatly affect the measurement result. 0).

また,前記測定装置X1は,測定対象物40を収容する筐体の共振に依存するものでなく,また,ストリップ線路を用いるものでもないので,前記マジックティ12及び前記導波管21,22で伝送できる周波数帯域の電波である限り,1つの前記測定装置X1で,1GHz以下の周波数帯域を含む広範囲の周波数帯域に渡って連続的に電波の吸収特性を測定できる。
また,前記導波管22の一方を塞ぐ程度の大きさ或いはそれ以下の大きさの測定対象物40を用意すれば足り,特に大きな被測定物を必要としない。
また,前記信号発生器11により,周波数掃引を行って連続的(多段階で)に発生電波の周波数を変更すれば,測定対象物40の電波吸収の周波数特性を容易に測定できる。
Further, since the measuring device X1 does not depend on the resonance of the housing that accommodates the measurement object 40 and does not use a strip line, the magic tee 12 and the waveguides 21 and 22 are used. As long as it is a radio wave in a frequency band that can be transmitted, it is possible to measure the radio wave absorption characteristics continuously over a wide frequency band including a frequency band of 1 GHz or less with one measuring device X1.
Further, it is sufficient to prepare a measuring object 40 that is large enough to block one of the waveguides 22 or smaller, and does not require a particularly large object to be measured.
Further, if the frequency of the generated radio wave is changed continuously (in multiple steps) by the signal generator 11 and the frequency of the generated radio wave is changed, the frequency characteristics of radio wave absorption of the measurement object 40 can be easily measured.

(第2実施形態)
次に,図2を用いて,本発明の第2実施形態に係る電波吸収特性測定装置X2(以下,測定装置X2という)について説明する。
本測定装置X2は,前記測定装置X1の構成に加え,一方の前記導波管21(第1の導波管)に,該導波管21における前記金属板30(反射部材)の位置を該導波管21の長手方向に移動させるスライド機構50(反射部材移動手段の一例)を設けたものである。
以下,この測定装置X2を用いた電波吸収特性の測定手順について説明する。
<調整工程>
まず,前記導波管21,22両方における前記マジックティ12との接続端に対する反対側を,前記金属板40(反射部材)で塞いだ状態(図2における測定対象物40を前記金属板40に置き換えた状態)で,前記信号発生器11により電波を前記マジックティ12の前記開口(1)に入力させる。
そして,前記マジックティ12の前記開口(4)から出力される前記合成電波のレベルが0となるように,前記スライド機構50により,前記導波管21(第1の導波管)の長手方向における前記金属板30の位置を調整する。
(Second Embodiment)
Next, a radio wave absorption characteristic measurement device X2 (hereinafter referred to as measurement device X2) according to a second embodiment of the present invention will be described with reference to FIG.
In addition to the configuration of the measurement device X1, the measurement device X2 has one waveguide 21 (first waveguide) in which the position of the metal plate 30 (reflection member) in the waveguide 21 is changed. A slide mechanism 50 (an example of a reflecting member moving means) that moves in the longitudinal direction of the waveguide 21 is provided.
Hereinafter, a procedure for measuring the radio wave absorption characteristics using the measuring device X2 will be described.
<Adjustment process>
First, the state opposite to the connection end with the magic tee 12 in both the waveguides 21 and 22 is closed with the metal plate 40 (reflecting member) (the measurement object 40 in FIG. In the replaced state), the signal generator 11 inputs radio waves to the opening (1) of the magic tee 12.
Then, the longitudinal direction of the waveguide 21 (first waveguide) is caused by the slide mechanism 50 so that the level of the synthetic radio wave output from the opening (4) of the magic tee 12 becomes zero. The position of the metal plate 30 is adjusted.

<測定工程>
次に,前述の調整工程により調整された状態(前記スライド機構50での位置決めがなされた状態)から,前記導波管22(第2の導波管)の端部に設けられた前記金属板40を測定対象物40に置き換え,その状態で前記信号発生器11により電波を前記マジックティ12の前記開口(1)に入力させる。
そして,これによって前記マジックティ12の前記開口(4)から出力される前記合成電波のレベルを前記信号受信器13によって測定し,その測定結果に基づいて測定対象物40の電波吸収特性を評価する。
これにより,測定対象物40の形状の違いや,その取り付け誤差等によって前記開口(2),(3)各々に戻ってくる反射電波相互の逆位相状態がくずれ,測定誤差が生じることを防止できる。
また,例えば,測定対象物40の電波吸収量が小さい等の場合には,図2に示すように,測定対象物40を前記導波管22の端部とその内側の側壁部とに配置すれば,電波吸収量が増えて測定感度を高めることができる。しかしこの場合,前記導波管22内の実質的な内部寸法が前記導波管21の内部寸法と異なることになる。このような場合に,前記導波管22の端部とその内側の側壁部とに,測定対象物40と同形状(同寸法)の金属部材を設けた状態で前述の調整工程を実施しておけば,前記開口(2),(3)各々に戻ってくる反射電波の位相を調整でき,測定誤差が生じることを防止できる。
<Measurement process>
Next, the metal plate provided at the end of the waveguide 22 (second waveguide) from the state adjusted by the adjusting step (the state in which the slide mechanism 50 is positioned). 40 is replaced with the measurement object 40, and in this state, the signal generator 11 inputs radio waves to the opening (1) of the magic tee 12.
Thus, the level of the synthetic radio wave output from the opening (4) of the magic tee 12 is measured by the signal receiver 13, and the radio wave absorption characteristic of the measurement object 40 is evaluated based on the measurement result. .
Thereby, it is possible to prevent a measurement error from occurring due to a difference in the opposite phase state of the reflected radio waves returning to each of the openings (2) and (3) due to a difference in the shape of the measurement object 40, an attachment error, and the like. .
Further, for example, when the amount of radio wave absorption of the measurement object 40 is small, the measurement object 40 is disposed on the end portion of the waveguide 22 and the side wall portion inside thereof as shown in FIG. For example, the amount of radio wave absorption can be increased and the measurement sensitivity can be increased. However, in this case, the substantial internal dimension in the waveguide 22 is different from the internal dimension of the waveguide 21. In such a case, the adjustment process described above is performed in a state in which a metal member having the same shape (same size) as the measurement object 40 is provided on the end portion of the waveguide 22 and the inner side wall portion thereof. If so, the phase of the reflected radio wave returning to each of the apertures (2) and (3) can be adjusted, and measurement errors can be prevented from occurring.

また,前記導波管21における前記金属板30の位置を順次移動させて測定を行うことも考えられる。
即ち,2つの前記導波管21,22各々における前記マジックティとの接続端に対する反対側を各々前記金属板30(反射部材)及び測定対象物40で塞いだ状態で,前記信号発生器11により電波を前記マジックティ12の前記開口(1)に入力させるとともに,前記導波管21における前記金属板30のを前記スライド機構50により順次移動させ,これによって前記マジックティ12の前記開口(4)から出力される前記合成電波のレベルを前記信号受信器13によって測定し,その測定結果に基づいて測定対象物40の電波吸収特性を評価する。
この場合,例えば,前記金属板30を順次移動させたときに得られる前記合成波電波のレベルについて,それらの最小レベルや平均レベル等を用いて電波吸収特性を評価すること等が考えられる。
また,図2に示した第2実施形態では,前記導波管21における前記金属板30の位置を移動可能とする前記スライド機構50を設けたが,その代わりに,同様の構成を前記導波管22における測定対象物40の位置を移動可能とする機構を設けたものも考えられる。また,両方の前記導波管21,22に前記スライド機構50を設けたものも考えられる。
It is also conceivable to perform measurement by sequentially moving the position of the metal plate 30 in the waveguide 21.
That is, in the state where the opposite side of each of the two waveguides 21 and 22 with respect to the connection end with the magic tee is closed with the metal plate 30 (reflecting member) and the measurement object 40, the signal generator 11 A radio wave is input to the opening (1) of the magic tee 12, and the metal plate 30 in the waveguide 21 is sequentially moved by the slide mechanism 50, whereby the opening (4) of the magic tee 12 is moved. Is measured by the signal receiver 13 and the radio wave absorption characteristic of the measuring object 40 is evaluated based on the measurement result.
In this case, for example, with respect to the level of the synthetic wave radio wave obtained when the metal plate 30 is sequentially moved, it is conceivable to evaluate the radio wave absorption characteristic using the minimum level, the average level, or the like.
In the second embodiment shown in FIG. 2, the slide mechanism 50 that can move the position of the metal plate 30 in the waveguide 21 is provided. Instead, the same configuration is provided in the waveguide. It is also possible to provide a mechanism that enables the position of the measurement object 40 in the tube 22 to be moved. Further, a configuration in which the slide mechanism 50 is provided in both the waveguides 21 and 22 is also conceivable.

本発明は,電波吸収特性測定装置に利用可能である。   The present invention can be used for a radio wave absorption characteristic measuring apparatus.

本発明の第1実施形態に係る電波吸収特性測定装置X1の概略構成を表す図。The figure showing the schematic structure of the electromagnetic wave absorption characteristic measuring apparatus X1 which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る電波吸収特性測定装置X2の概略構成を表す図。The figure showing schematic structure of the electromagnetic wave absorption characteristic measuring apparatus X2 which concerns on 2nd Embodiment of this invention. マジックティの斜視図。FIG.

符号の説明Explanation of symbols

X1,X2…電波吸収特性測定装置
1〜4…マジックティの開口
11…信号発生器
12…マジックティ
13…信号受信器
21,22…導波管
30…金属板(電波の反射部材)
40…測定対象物(電波吸収体)
50…スライド機構
X1, X2 ... Radio wave absorption characteristic measuring devices 1 to 4 ... Magicty opening 11 ... Signal generator 12 ... Magicty 13 ... Signal receivers 21 and 22 ... Waveguide 30 ... Metal plate (radio wave reflection member)
40 ... Measurement object (electromagnetic wave absorber)
50 ... Slide mechanism

Claims (8)

4つの開口を備え,電波発生手段により第1の開口から入力された電波を各々逆位相で2分岐して第2の開口及び第3の開口各々へ出力するとともに,その出力電波が外部で反射して前記第2の開口及び第3の開口各々に入力される両反射電波の合成電波を第4の開口へ出力するマジックティと,
前記マジックティにおける前記第2の開口に接続されその接続端に対する反対側が前記電波の反射部材により塞がれる第1の導波管と,
前記マジックティにおける前記第3の開口に接続されその接続端に対する反対側が電波吸収特性の測定対象物を有する部材により塞がれる第2の導波管と,
を具備し,
前記マジックティにおける前記第4の開口から出力される前記合成電波に基づいて前記測定対象物の電波吸収特性が測定されてなることを特徴とする電波吸収特性測定装置。
It has four apertures. The radio wave input from the first aperture by the radio wave generation means is bifurcated in opposite phase and output to each of the second aperture and the third aperture, and the output radio wave is reflected outside. A magic tee for outputting a combined radio wave of both reflected radio waves input to each of the second aperture and the third aperture to the fourth aperture;
A first waveguide that is connected to the second opening in the magic tee and whose opposite side to the connection end is blocked by the radio wave reflecting member;
A second waveguide that is connected to the third opening in the magic tee and whose side opposite to the connection end is closed by a member having a measurement object of radio wave absorption characteristics;
Comprising
A radio wave absorption characteristic measuring apparatus, wherein the radio wave absorption characteristic of the measurement object is measured based on the synthetic radio wave output from the fourth opening in the magic tee.
前記電波発生手段が,周波数掃引により電波を発生させてなる請求項1に記載の電波吸収特性測定装置。   The radio wave absorption characteristic measuring apparatus according to claim 1, wherein the radio wave generating means generates radio waves by frequency sweeping. 前記第2の導波管を塞ぐ前記測定対象物を有する部材を前記反射部材に置き換えた場合に,前記マジックティの前記第4の開口から出力される前記合成電波の信号レベルが略0である請求項1又は2に記載の電波吸収特性測定装置。   When the member having the measurement object that closes the second waveguide is replaced with the reflecting member, the signal level of the synthetic radio wave output from the fourth opening of the magic tee is approximately zero. The radio wave absorption characteristic measuring apparatus according to claim 1 or 2. 前記第1の導波管における前記第2の開口から前記反射部材までの寸法と前記第2の導波管における前記第3の開口から前記測定対象物までの寸法とが略同一である請求項1〜3のいずれかに記載の電波吸収特性測定装置。   The dimension from the second opening to the reflecting member in the first waveguide is substantially the same as the dimension from the third opening to the measurement object in the second waveguide. The radio wave absorption characteristic measuring apparatus according to any one of 1 to 3. 前記第1の導波管における前記反射部材の位置及び/又は前記第2の導波管における前記測定対象物の位置を移動させる部材移動手段を具備してなる請求項1〜4のいずれかに記載の電波吸収特性測定装置。   5. The apparatus according to claim 1, further comprising a member moving unit that moves a position of the reflecting member in the first waveguide and / or a position of the measurement object in the second waveguide. The radio wave absorption characteristic measuring device described. 4つの開口を備え,第1の開口から入力された電波を各々逆位相で2分岐して第2の開口及び第3の開口各々へ出力するとともに,その出力電波が外部で反射して前記第2の開口及び第3の開口各々に入力される両反射電波の合成電波を第4の開口へ出力するマジックティと,前記マジックティにおける前記第2の開口及び第3の開口各々に接続された第1の導波管及び第2の導波管と,を用いて測定対象物の電波吸収特性を測定する電波吸収特性測定方法であって,
前記第1の導波管及び第2の導波管各々における前記マジックティとの接続端に対する反対側を前記電波の反射部材で塞いだ状態で電波を前記マジックティの前記第1の開口に入力させ,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルが略0となるように前記第1の導波管における前記反射部材の位置及び/又は前記第2の導波管における前記反射部材の位置を調整する調整工程と,
前記調整工程により調整された状態から前記第2の導波管における前記反射部材を前記測定対象物を有する部材に置き換えた状態で前記電波を前記マジックティの前記第1の開口に入力させ,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルを測定した結果に基づいて前記測定対象物の電波吸収特性を評価する測定工程と,
を有してなることを特徴とする電波吸収特性測定方法。
4 openings are provided, the radio waves input from the first opening are bifurcated in opposite phases and output to the second opening and the third opening, respectively, and the output radio waves are reflected outside and the first A magic tee that outputs a combined radio wave of both reflected radio waves input to each of the second aperture and the third aperture to the fourth aperture, and is connected to each of the second aperture and the third aperture in the magic tee. A radio wave absorption characteristic measuring method for measuring a radio wave absorption characteristic of an object to be measured using a first waveguide and a second waveguide,
A radio wave is input to the first opening of the magic tee in a state where the opposite side of the first waveguide and the second waveguide with respect to the connection end with the magic tee is covered with the radio wave reflecting member. As a result, the position of the reflecting member in the first waveguide and / or the second guide is set so that the level of the synthetic radio wave output from the fourth opening of the magic tee becomes substantially zero. An adjusting step of adjusting the position of the reflecting member in the wave tube;
The radio wave is input to the first opening of the magic tee in a state where the reflecting member in the second waveguide is replaced with a member having the measurement object from the state adjusted by the adjusting step. A measurement step of evaluating the radio wave absorption characteristics of the measurement object based on the result of measuring the level of the synthetic radio wave output from the fourth opening of the magic tee,
A method for measuring radio wave absorption characteristics, comprising:
4つの開口を備え,第1の開口から入力された電波を各々逆位相で2分岐して第2の開口及び第3の開口各々へ出力するとともに,その出力電波が外部で反射して前記第2の開口及び第3の開口各々に入力される両反射電波の合成電波を第4の開口へ出力するマジックティと,前記マジックティにおける前記第2の開口及び第3の開口各々に接続された第1の導波管及び第2の導波管と,を用いて測定対象物の電波吸収特性を測定する電波吸収特性測定方法であって,
前記第1の導波管及び第2の導波管各々における前記マジックティとの接続端に対する反対側を各々前記電波の反射部材及び前記測定対象物を有する部材で塞いだ状態で電波を前記マジックティの前記第1の開口に入力させるとともに,前記第1の導波管における前記反射部材の位置及び/又は前記第2の導波管における前記反射部材の位置を順次移動させ,これにより前記マジックティの前記第4の開口から出力される前記合成電波のレベルを測定した結果に基づいて前記測定対象物の電波吸収特性を評価してなることを特徴とする電波吸収特性測定方法。
4 openings are provided, the radio waves input from the first opening are bifurcated in opposite phases and output to the second opening and the third opening, respectively, and the output radio waves are reflected outside and the first A magic tee that outputs a combined radio wave of both reflected radio waves input to each of the second aperture and the third aperture to the fourth aperture, and is connected to each of the second aperture and the third aperture in the magic tee. A radio wave absorption characteristic measuring method for measuring a radio wave absorption characteristic of an object to be measured using a first waveguide and a second waveguide,
In each of the first waveguide and the second waveguide, the side opposite to the connection end with the magic tee is covered with the radio wave reflecting member and the member having the measurement object, and the radio wave is transmitted. And the position of the reflecting member in the first waveguide and / or the position of the reflecting member in the second waveguide are sequentially moved, thereby the magic. A radio wave absorption characteristic measuring method comprising: evaluating a radio wave absorption characteristic of the measurement object based on a result of measuring a level of the synthetic radio wave output from the fourth opening of the tee.
前記マジックティの前記第1の開口に入力させる前記電波を周波数掃引により発生させてなる請求項6又は7に記載の電波吸収特性測定方法。   The radio wave absorption characteristic measuring method according to claim 6 or 7, wherein the radio wave input to the first opening of the magic tee is generated by a frequency sweep.
JP2004222141A 2004-07-29 2004-07-29 Radio wave absorption characteristic measuring instrument and its method Pending JP2006038759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222141A JP2006038759A (en) 2004-07-29 2004-07-29 Radio wave absorption characteristic measuring instrument and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222141A JP2006038759A (en) 2004-07-29 2004-07-29 Radio wave absorption characteristic measuring instrument and its method

Publications (1)

Publication Number Publication Date
JP2006038759A true JP2006038759A (en) 2006-02-09

Family

ID=35903901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222141A Pending JP2006038759A (en) 2004-07-29 2004-07-29 Radio wave absorption characteristic measuring instrument and its method

Country Status (1)

Country Link
JP (1) JP2006038759A (en)

Similar Documents

Publication Publication Date Title
JP5427606B2 (en) Radiated power measuring method and radiated power measuring apparatus
CN106770374B (en) Wave-absorbing material reflection measurement device and method
JP5171903B2 (en) Radiated power measuring method and radiated power measuring apparatus
EP3971560A1 (en) Measurement device, measurement system, and measurement method
US11372037B2 (en) Freespace antenna measurement system
US7675294B2 (en) System and method for determining attenuation of electromagnetic waves impacting an electromagnetic shield
KR102090789B1 (en) Simulation signal generator and method for measuring performance of radar receiver
CN115267356A (en) Boundary deformation cross coupling reverberation chamber shielding effectiveness testing device and method
RU2657016C1 (en) Method of measuring range
JP2006208019A (en) Electromagnetic wave coupling apparatus
US6188365B1 (en) Testing device and method
JP2006038759A (en) Radio wave absorption characteristic measuring instrument and its method
JP2004294449A (en) Distance measuring instrument for measuring distance by electromagnetic wave, based on radar principle
JP2004520582A (en) Level measurement device
JP4732177B2 (en) Radar apparatus calibration apparatus and method
JPH06281685A (en) Measuring apparatus for electromagnetic wave absorption characteristic
JP2007033093A (en) Antenna delay measuring method
JP2011158418A (en) Radiation power measuring method and radiation power measuring device
JPH1010173A (en) Method and apparatus for evaluating characteristics of antenna
Brooker et al. A High Resolution Radar-Acoustic Sensor for Detection of Close-in Air Turbulence
CN215986270U (en) Wave-absorbing material performance parameter testing device
Armbrecht et al. Obstacle based concept for compact mode-preserving waveguide transitions for high-precision radar level measurements
US20220229171A1 (en) System and method for microwave imaging
JP2004177338A (en) Ranging device
Armbrecht et al. Compact mode-matched excitation structures for radar distance measurements in overmoded circular waveguides