JP2006038652A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2006038652A
JP2006038652A JP2004219376A JP2004219376A JP2006038652A JP 2006038652 A JP2006038652 A JP 2006038652A JP 2004219376 A JP2004219376 A JP 2004219376A JP 2004219376 A JP2004219376 A JP 2004219376A JP 2006038652 A JP2006038652 A JP 2006038652A
Authority
JP
Japan
Prior art keywords
signal
measurement
distance
time
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219376A
Other languages
Japanese (ja)
Other versions
JP4529572B2 (en
Inventor
Tatsuya Honda
達也 本田
Atsushi Okita
篤志 沖田
Kazunari Yoshimura
一成 吉村
Takashi Kishida
貴司 岸田
Masato Kinoshita
雅登 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004219376A priority Critical patent/JP4529572B2/en
Publication of JP2006038652A publication Critical patent/JP2006038652A/en
Application granted granted Critical
Publication of JP4529572B2 publication Critical patent/JP4529572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distance measuring device which can accurately measure a distance by avoiding the effects of electronic components characteristics due to temperature variation and power source fluctuation of electronic components constituting an electronic circuit. <P>SOLUTION: In measurement initiation state, a pulsing laser beam is emitted from a transmission means 2 and the emitted laser beam is split into an irradiation wave and a reference wave in a branching means 3, and irradiated to a measuring object 6. The reflection wave from the measuring object 6 and the reference wave are introduced into a wave reception means 4 and transmitted to a signal separation means 14. With the signal separation means 14, either of the reference wave signal or the reflection wave signal is passed to count with a counter 15, measure the period of each signal and obtain the distance to the measuring object from those time. When counting with the counter 15, the order of measurement of the reference wave signal and the reflection wave signal are replaced by turns like reference wave signal measurement, reflction wave signal measurement, reflection wave signal measurement, reference wave signal measurement. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、パルス状の電磁波を測距対象物に照射して、測距対象物からの反射波を受波するまでの時間を計測し、その計測時間に基づいて測距対象物までの距離を測定する距離測定装置に関する。   The present invention irradiates a ranging object with a pulsed electromagnetic wave, measures the time taken to receive a reflected wave from the ranging object, and based on the measurement time, measures the distance to the ranging object. The present invention relates to a distance measuring device that measures

従来、パルスレーザ光を測定対象物に照射するとともに、測定対象物からの反射光を検出し、パルスレーザ光の投光から反射光の受光までの時間を計測することにより、測定対象物までの距離を求める距離計測装置が知られている。   Conventionally, by irradiating a measurement object with pulse laser light, detecting reflected light from the measurement object, and measuring the time from projecting the pulse laser light to receiving the reflected light, A distance measuring device for obtaining a distance is known.

例えば、図19に示すように従来の距離測定装置は構成されている。駆動回路部67の駆動信号により発信部61からパルス状のレーザ光が測定対象物69に向かって発射される。レーザ光は、ビームスプリッタ60によって、測定対象物69に向かう照射波と受信部62に向かう参照波とに分岐される。照射波は目的とする測定対象物69に照射され、測定対象物69からの反射波が受信部62で受信されて電気信号に変換される。一方、参照波は遅延部68によって遅延されて受信部62で受信され、電気信号に変換される。   For example, a conventional distance measuring apparatus is configured as shown in FIG. A pulsed laser beam is emitted from the transmitter 61 toward the measurement object 69 by a drive signal from the drive circuit 67. The laser beam is branched by the beam splitter 60 into an irradiation wave toward the measurement object 69 and a reference wave toward the reception unit 62. The irradiation wave is applied to the target measurement object 69, and the reflected wave from the measurement object 69 is received by the receiving unit 62 and converted into an electrical signal. On the other hand, the reference wave is delayed by the delay unit 68, received by the receiving unit 62, and converted into an electric signal.

電気信号に変換された反射波信号と参照波信号とは増幅部63で増幅された後、マスク部64で反射波信号か参照波信号かのどちらかが抽出されて、抽出された信号を計数回路部65でカウントする。   The reflected wave signal and the reference wave signal converted into the electrical signal are amplified by the amplification unit 63, and then either the reflected wave signal or the reference wave signal is extracted by the mask unit 64, and the extracted signals are counted. The circuit unit 65 counts.

上記マスク部64のマスク状態を切り替えることで、反射波信号か参照波信号のどちらか一方を抽出することができるので、反射波信号を計数回路部65で所定個数計数するのに要した時間と、参照波信号を計数回路部65所定個数計数するのに要した時間との差に基づいて処理部66で測定対象物69までの距離を算出する。   Since either the reflected wave signal or the reference wave signal can be extracted by switching the mask state of the mask unit 64, the time required for counting a predetermined number of reflected wave signals by the counting circuit unit 65 The distance to the measurement object 69 is calculated by the processing unit 66 based on the difference from the time required for counting the predetermined number of reference wave signals by the counting circuit unit 65.

測距光路を光が通過する時間はごく短時間であって誤差が生じやすいから、上記のように反射波信号周期も参照波信号周期も一定量蓄積しておいて平均をとるようにしているので、誤差分を平均化して測定距離の精度を高くするようにしている。   Since the time required for light to pass through the distance measuring optical path is very short and errors are likely to occur, the reflected wave signal period and the reference wave signal period are accumulated in a certain amount and averaged as described above. Therefore, the accuracy of the measurement distance is increased by averaging the error.

特開2001−124855号公報JP 2001-124855 A 特開平3−264885号公報Japanese Patent Laid-Open No. 3-264855

しかし、上記従来の技術では、装置の電子回路に用いられている電子部品の自己発熱などの部品特性に依存した変動要因を十分取り除くことができず、計測値がばらつくことがある。   However, in the above-described conventional technology, variation factors depending on component characteristics such as self-heating of electronic components used in the electronic circuit of the apparatus cannot be sufficiently removed, and the measurement value may vary.

通常、計測処理時の処理時間は非常に短時間であるので、処理部に適用した電子部品の内部状態が安定するまでに時間を要する場合や電源変動に敏感に反応する部品を使用している場合には、距離測定の精度に大きな影響を与える。特に電気的な遅延手段を用いている場合には、温度変化による遅延時間のゆらぎが距離測定の大きな誤差をもたらしていた。   Normally, the processing time during measurement processing is very short, so it takes time to stabilize the internal state of the electronic components applied to the processing unit, or parts that react sensitively to power fluctuations are used. In this case, the accuracy of distance measurement is greatly affected. In particular, when an electrical delay means is used, a delay time fluctuation due to a temperature change has caused a large error in distance measurement.

本発明は、上述した課題を解決するために創案されたものであり、電子回路を構成する電子部品の温度変化や電源変動による電子部品特性の影響を受けないようにし、精度の高い距離測定が行える距離測定装置を提供することを目的としている。   The present invention was devised to solve the above-mentioned problems, and is not affected by the characteristics of electronic components due to temperature changes or power supply fluctuations of the electronic components constituting the electronic circuit, so that accurate distance measurement is possible. It aims at providing the distance measuring device which can be performed.

上記目的を達成するために、請求項1記載の発明は、パルス状の電磁波を周期的に発信する送波手段と、発信された電磁波が測定対象物で反射した反射波を受信する受波手段と、前記発信された電磁波の一部を分岐し、参照波として前記受波手段に入射させる分岐手段と、前記受波手段で受信した信号を測定対象物からの反射信号成分と参照波に対応する参照信号成分に分離する信号分離手段と、前記信号分離手段により分離された反射信号成分または参照信号成分を基準信号として所定の遅延時間を与え、この信号を駆動信号として前記送波手段に送信する遅延手段と、前記反射信号成分の周期を所定回数加算する第1の計時手段と、前記参照信号成分の周期を所定回数加算する第2の計時手段と、前記第1の計時手段で計測された反射信号成分の所定回数分の加算周期と前記第2の計時手段で計測された参照信号成分の所定回数分の加算周期との差に基づいて前記測定対象物までの距離を算出する演算手段とを備え、前記前記第1の計時手段と前記第2の計時手段を連続して繰返して用いる際に、第1の計時手段と第2の計時手段による計測順序を入れ替えて繰返し計測することを特徴とする距離測定装置である。   In order to achieve the above object, the invention described in claim 1 includes a wave transmitting means for periodically transmitting a pulsed electromagnetic wave, and a wave receiving means for receiving a reflected wave reflected by the measurement object. Branching means for branching a part of the transmitted electromagnetic wave and making it incident on the receiving means as a reference wave, and a signal received by the receiving means corresponding to a reflected signal component from a measurement object and a reference wave A signal separation unit that separates the reference signal component into a reference signal component, a reflection signal component separated by the signal separation unit or a reference signal component as a reference signal, gives a predetermined delay time, and transmits this signal as a drive signal to the transmission unit Delay means, first timing means for adding a predetermined number of cycles of the reflected signal component, second timing means for adding a predetermined number of cycles of the reference signal component, and the first timing means. Reflection Computation means for calculating the distance to the measurement object based on the difference between the addition cycle of the predetermined number of components and the addition cycle of the reference signal component for the predetermined number of times measured by the second timing means. When the first time measuring means and the second time measuring means are repeatedly used in succession, the measurement order by the first time measuring means and the second time measuring means is switched and repeatedly measured. It is a distance measuring device.

また、請求項2記載の発明は、前記第1の計時手段により行われた計測と前記第2の計時手段により行われた計測との切替時間の間隔を一定にすることを特徴とする請求項1記載の距離測定装置である。   The invention according to claim 2 is characterized in that the interval of the switching time between the measurement performed by the first timing unit and the measurement performed by the second timing unit is made constant. The distance measuring device according to claim 1.

また、請求項3記載の発明は、前記測定対象物までの距離を算出する測定動作処理を開始する前に、前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段を駆動させて擬似距離測定動作を行わせることを特徴とする請求項1〜請求項2記載の距離測定装置である。   According to a third aspect of the present invention, the transmission means, the reception means, the signal separation means, the delay means, and the first time measurement means are started before the measurement operation processing for calculating the distance to the measurement object is started. The distance measuring device according to claim 1, wherein the pseudo-distance measuring operation is performed by driving the second timing means.

また、請求項4記載の発明は、前記測定対象物までの距離を算出する測定動作処理を開始する前に、前記演算手段と前記遅延手段との間で信号がループするようにして、少なくとも前記遅延手段を駆動させるようにしたことを特徴とする請求項1〜請求項2記載の距離測定装置である。   According to a fourth aspect of the present invention, before starting the measurement operation process for calculating the distance to the measurement object, at least the signal is looped between the calculation unit and the delay unit. 3. The distance measuring device according to claim 1, wherein the delay means is driven.

また、請求項5記載の発明は、前記ループ信号は所定の周波数を有する信号となるように前記演算手段で周波数制御を行うことを特徴とする請求項4記載の距離測定装置である。   The invention according to claim 5 is the distance measuring device according to claim 4, wherein the arithmetic means controls the frequency so that the loop signal becomes a signal having a predetermined frequency.

また、請求項6記載の発明は、前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて前記ループ信号の周波数を制御することを特徴とする請求項5記載の距離測定装置である。   The invention according to claim 6 is provided with a temperature sensor installed to measure the temperature in the vicinity of the delay means, and controls the frequency of the loop signal in accordance with the temperature detected from the temperature sensor. The distance measuring device according to claim 5.

また、請求項7記載の発明は、前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて前記ループ信号のループ回数を変化させることを特徴とする請求項4記載の距離測定装置である。   The invention according to claim 7 is provided with a temperature sensor installed to measure the temperature in the vicinity of the delay means, and changes the number of loops of the loop signal according to the detected temperature from the temperature sensor. The distance measuring device according to claim 4.

また、請求項8記載の発明は、前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて、前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段、演算手段に電圧を供給する電源手段の供給電圧を制御するようにしたことを特徴とする請求項1〜請求項2記載の距離測定装置である。   The invention according to claim 8 is provided with a temperature sensor installed to measure the temperature in the vicinity of the delay means, and according to the temperature detected from the temperature sensor, the wave transmitting means and the wave receiving means. 3. The supply voltage of the power supply means for supplying voltage to the signal separating means, delay means, first time measuring means, second time measuring means, and arithmetic means is controlled. It is a distance measuring apparatus of description.

また、請求項9記載の発明は、前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段、演算手段に電圧を供給する電源手段には、常時負荷となる電子部品が設けられていることを特徴とする請求項1〜請求項7記載の距離測定装置である。   Further, the power supply means for supplying a voltage to the transmission means, the reception means, the signal separation means, the delay means, the first time measurement means, the second time measurement means, and the calculation means, 8. The distance measuring device according to claim 1, wherein an electronic component that is always loaded is provided.

本発明によれば、電子回路を構成する電子部品の温度変化や電源変動による電子部品特性の影響を受けないようにし、精度の高い距離測定を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, it can avoid being influenced by the electronic component characteristic by the temperature change of an electronic component which comprises an electronic circuit, or a power supply variation, and can perform distance measurement with high precision.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による距離測定装置の基本構成例を示す図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a basic configuration example of a distance measuring apparatus according to the present invention.

装置は、処理手段1、送波手段2、分岐手段3、受波手段4、投光レンズ5、集光レンズ7、光学的遅延手段8、電源手段9、計測開始スイッチ10で構成されている。
また、処理手段1は、演算手段11、計測ゲート12、電気的遅延手段13、信号分離手段14、カウンタ15、水晶振動子16で構成されている。
The apparatus comprises processing means 1, wave sending means 2, branching means 3, wave receiving means 4, light projecting lens 5, condenser lens 7, optical delay means 8, power supply means 9, and measurement start switch 10. .
The processing unit 1 includes a calculation unit 11, a measurement gate 12, an electrical delay unit 13, a signal separation unit 14, a counter 15, and a crystal resonator 16.

送波手段2は、レーザ駆動回路21、半導体レーザ22により、分岐手段3はハーフミラー31により、受波手段4はフォトダイオード41、増幅器42により構成されている。
光学的遅延手段8としては光ファイバー等が用いられ、カウンタ15には時計機能を有し、プログラム可能なものが用いられる。
The wave transmitting means 2 includes a laser drive circuit 21 and a semiconductor laser 22, the branching means 3 includes a half mirror 31, and the wave receiving means 4 includes a photodiode 41 and an amplifier.
An optical fiber or the like is used as the optical delay means 8, and a counter 15 having a clock function and programmable is used.

計測開始スイッチ10が押されると、演算手段11から制御信号が出力されて、計測ゲート12からレーザ駆動回路21に対しトリガ信号が伝達される。レーザ駆動回路21はこのトリガ信号により、半導体レーザ22に駆動信号を送信する。駆動信号を受信すると、半導体レーザ22は、パルス状のレーザ光を放射する。放射されたレーザ光はハーフミラー31で照射波と参照波とに分岐され、照射波は投光レンズ5を通過して測定対象物6に照射される。測定対象物6で反射した反射波は集光レンズ6を通過してフォトダイオード41に入射する。一方、ハーフミラー31で反射した参照波は、光学的遅延手段8で遅延された後、フォトダイオード41に入射する。   When the measurement start switch 10 is pressed, a control signal is output from the calculation means 11 and a trigger signal is transmitted from the measurement gate 12 to the laser drive circuit 21. The laser drive circuit 21 transmits a drive signal to the semiconductor laser 22 by this trigger signal. When receiving the drive signal, the semiconductor laser 22 emits pulsed laser light. The emitted laser light is branched into an irradiation wave and a reference wave by the half mirror 31, and the irradiation wave passes through the light projection lens 5 and is irradiated onto the measurement object 6. The reflected wave reflected by the measurement object 6 passes through the condenser lens 6 and enters the photodiode 41. On the other hand, the reference wave reflected by the half mirror 31 is delayed by the optical delay means 8 and then enters the photodiode 41.

フォトダイオード41では、反射波、参照波ともに電気信号に変換されて増幅器42に送られ、増幅器42で増幅されて信号分離手段14に送信される。信号分離手段は、マスク機能を有しており、受信した反射波信号、参照波信号のどちらか一方を通過させ、他方の信号を除去できるようになっている。このマスク状態の切り替えはカウンタ15からの制御信号によって行われ、カウンタ15にあらかじめプログラムしておくことで、その切り替えのパターンを変えることができる。   In the photodiode 41, both the reflected wave and the reference wave are converted into an electric signal, sent to the amplifier 42, amplified by the amplifier 42, and transmitted to the signal separation means 14. The signal separating means has a mask function, and allows one of the received reflected wave signal and reference wave signal to pass through and removes the other signal. The switching of the mask state is performed by a control signal from the counter 15, and the switching pattern can be changed by programming the counter 15 in advance.

例えば、最初、参照波信号を計数するように設定されていると、信号分離手段14では参照波信号のみを通過させてカウンタ15と電気的遅延手段13に供給する。電気的遅延手段13は、参照波信号を基準として遅延時間を与えた信号をレーザ駆動回路21に供給する。レーザ駆動回路21は、この供給信号を受けて半導体レーザ22に対して駆動信号を送出する。そして、レーザ光は上述したような測定経路を通り、再び信号分離手段14から参照波信号を出力させ、測定動作が繰り返される。   For example, if the reference wave signal is initially set to be counted, the signal separation means 14 passes only the reference wave signal and supplies it to the counter 15 and the electrical delay means 13. The electrical delay means 13 supplies the laser drive circuit 21 with a signal given a delay time based on the reference wave signal. The laser drive circuit 21 receives this supply signal and sends a drive signal to the semiconductor laser 22. Then, the laser light passes through the measurement path as described above, and the reference wave signal is output again from the signal separation means 14, and the measurement operation is repeated.

一方、カウンタ15では、参照波信号をカウントアップしていき、所定の設定値(例えば、30000回等)に達すると、この設定値に達するまでに要した時間を演算手段11に送信するとともに、マスク状態を反射波信号のみを通過させる状態に切り替えるように信号分離手段14に指令を出す。この切り替え信号を受けて信号分離手段14は、次の受信信号から反射波信号のみを通過させるようにする。そして、反射波信号についても上記と同様な測定処理が行われる。したがって、カウンタ15は、反射信号成分の周期を計測する第1の計時手段と参照信号成分の周期を計測する第2の計時手段とを兼ねていることになる。   On the other hand, the counter 15 counts up the reference wave signal, and when a predetermined set value (for example, 30000 times) is reached, the time required to reach this set value is transmitted to the computing means 11, A command is issued to the signal separation means 14 to switch the mask state to a state in which only the reflected wave signal is allowed to pass. In response to this switching signal, the signal separation means 14 allows only the reflected wave signal to pass from the next reception signal. The same measurement process as described above is performed on the reflected wave signal. Therefore, the counter 15 serves as both the first time measuring means for measuring the period of the reflected signal component and the second time measuring means for measuring the period of the reference signal component.

図2は、計測が行われていく状態をタイムチャートで示したものであり、図3は図2における反射波信号周期と参照波信号周期の計測時間と電気的遅延手段の発熱との関係を示す熱曲線を表す。図4は反射波信号周期と参照波信号周期の計測動作を示す。以下、図を参照しつつ計測動作を説明する。   FIG. 2 is a time chart showing a state in which measurement is performed, and FIG. 3 shows the relationship between the measurement time of the reflected wave signal period and the reference wave signal period and the heat generation of the electrical delay means in FIG. The thermal curve shown is represented. FIG. 4 shows the measurement operation of the reflected wave signal cycle and the reference wave signal cycle. Hereinafter, the measurement operation will be described with reference to the drawings.

図2のタイムチャートで破線で描いてある信号成分は、信号分離手段14に入力した後、信号分離手段14内でマスクされて通過できない(除去される)ものを示している。半導体レーザ22からの発信信号と受信された参照波信号との遅延時間をTa、参照波信号と次の発信信号との遅延時間をTd、参照波信号の1周期分をT1とすると、Taは光学的遅延手段8が与える遅延時間に相当し、Tdは電気的遅延手段13が与える遅延時間に相当する。また、T1=Ta+Tdの関係にある。例えば、発信信号のパルス幅が4nsであれば、Tdは800nsが最適となる。   The signal component drawn with a broken line in the time chart of FIG. 2 indicates that the signal component is masked in the signal separation unit 14 and cannot be passed (removed) after being input to the signal separation unit 14. When the delay time between the transmission signal from the semiconductor laser 22 and the received reference wave signal is Ta, the delay time between the reference wave signal and the next transmission signal is Td, and one period of the reference wave signal is T1, Ta is This corresponds to the delay time provided by the optical delay means 8, and Td corresponds to the delay time provided by the electrical delay means 13. Further, T1 = Ta + Td. For example, if the pulse width of the transmission signal is 4 ns, Td is optimally 800 ns.

同様に、発信信号と受信された反射波信号との遅延時間をTb、反射波信号と次の発信信号との遅延時間をTd、反射波信号の1周期分をT2とすると、Tbは測定対象物6の距離を求めるために必要な時間に相当し、Tdは電気的遅延手段13が与える遅延時間に相当する。また、T2=Tb+Tdの関係にある。なお、電子回路内を電気信号が伝達する時間があるが、その伝達時間は、遅延手段の遅延時間に比べれば無視できる程度であり、また、T1−T2といったように、後で減算処理を行うこと等によりその影響は相殺されることにもなるので、伝達時間については考慮しないでおく。   Similarly, if the delay time between the transmitted signal and the received reflected wave signal is Tb, the delay time between the reflected wave signal and the next transmitted signal is Td, and one period of the reflected wave signal is T2, Tb is the measurement target. This corresponds to the time required to obtain the distance of the object 6, and Td corresponds to the delay time given by the electrical delay means 13. Further, there is a relationship of T2 = Tb + Td. There is a time for the electric signal to be transmitted through the electronic circuit, but the transmission time is negligible compared to the delay time of the delay means, and a subtraction process is performed later, such as T1-T2. Since the influence is canceled out by this, the transmission time is not taken into consideration.

最初は、信号分離手段14では、カウンタ15からの制御信号により参照波のみを通過させるようになっている。したがって、信号分離手段14は受信信号の内、参照波信号を分離する(S1)。分離された参照波信号をカウンタ15は計数し、参照波受信時間T1(参照波信号周期)を蓄積する(S2)。参照波信号を次々と計数していき、所定回数検出したかどうか判定し(S3)、所定回数に達するまではカウンタ15で計数を行う。この測定状態を示すのが図2の測定1である。   Initially, in the signal separation means 14, only the reference wave is passed by the control signal from the counter 15. Therefore, the signal separation unit 14 separates the reference wave signal from the received signals (S1). The counter 15 counts the separated reference wave signal, and accumulates the reference wave reception time T1 (reference wave signal cycle) (S2). The reference wave signals are counted one after another, and it is determined whether or not a predetermined number of times is detected (S3), and the counter 15 counts until the predetermined number of times is reached. This measurement state is shown as measurement 1 in FIG.

所定回数に達したならば、カウンタ15は、計測した蓄積時間を演算手段11に送り、信号分離手段14に対して反射信号成分のみを通過させるように指令を出す。
この指令を受けて、信号分離手段14は反射波信号を分離する(S4)。分離された参照波信号をカウンタ15は計数し、反射波受信時間T2(反射波信号周期)を蓄積する(S5)。反射波信号を次々と計数していき、所定回数検出したかどうか判定し(S6)、所定回数に達するまではカウンタ15で計数を行う。この測定状態を示すのが図2の測定2である。
When the predetermined number of times is reached, the counter 15 sends the measured accumulation time to the calculation means 11 and instructs the signal separation means 14 to pass only the reflected signal component.
In response to this command, the signal separation means 14 separates the reflected wave signal (S4). The counter 15 counts the separated reference wave signal, and accumulates the reflected wave reception time T2 (reflected wave signal period) (S5). The reflected wave signals are counted one after another, and it is determined whether or not a predetermined number of times is detected (S6), and the counter 15 counts until the predetermined number of times is reached. This measurement state is shown by measurement 2 in FIG.

所定回数に達したならば、カウンタ15は、計測した蓄積時間を演算手段11に送り、信号分離手段14に対して今度も反射信号成分のみを通過させるように指令を出す。
演算手段11は、参照波蓄積時間から反射波蓄積時間を減算した値をΣTa(光学的遅延手段8が与える遅延時間の所定回数分の総和)から引き算をしてDnを算出する(S7)。
When the predetermined number of times is reached, the counter 15 sends the measured accumulation time to the calculation means 11 and instructs the signal separation means 14 to pass only the reflected signal component again.
The calculating means 11 calculates Dn by subtracting a value obtained by subtracting the reflected wave accumulation time from the reference wave accumulation time from ΣTa (the total number of delay times given by the optical delay means 8) (S7).

例えば、所定回数をnとすると、参照波蓄積時間=(n−1)×T1、反射波蓄積時間=(n−1)×T2となるので、Dn=ΣTa−((n−1)×T1−(n−1)×T2)となる。   For example, if the predetermined number of times is n, the reference wave accumulation time = (n−1) × T 1 and the reflected wave accumulation time = (n−1) × T 2, so that Dn = ΣTa − ((n−1) × T 1 − (N−1) × T2).

次に、信号分離手段14は反射波信号を分離し(S8)、分離された参照波信号をカウンタ15は計数し、反射波受信時間T2(反射波信号周期)を蓄積する(S9)。
反射波信号を次々と計数していき、所定回数(n回)検出したかどうか判定し(S10)、所定回数に達するまではカウンタ15で計数を行う。この測定状態を示すのが図2の測定3である。
Next, the signal separation means 14 separates the reflected wave signal (S8), the counter 15 counts the separated reference wave signal, and accumulates the reflected wave reception time T2 (reflected wave signal period) (S9).
The reflected wave signals are counted one after another, and it is determined whether or not a predetermined number (n times) has been detected (S10), and the counter 15 counts until the predetermined number is reached. This measurement state is shown by measurement 3 in FIG.

所定回数に達したならば、カウンタ15は、計測した蓄積時間を演算手段11に送り、信号分離手段14に対して参照信号成分のみを通過させるように指令を出す。この指令を受けて、信号分離手段14は参照波信号を分離する(S11)。分離された参照波信号をカウンタ15は計数し、参照波受信時間T1(参照波信号周期)を蓄積する(S2)。参照波信号を次々と計数していき、所定回数(n回)検出したかどうか判定し(S13)、所定回数に達するまではカウンタ15で計数を行う。この測定状態を示すのが図2の測定4である。   If the predetermined number of times has been reached, the counter 15 sends the measured accumulation time to the calculation means 11 and instructs the signal separation means 14 to pass only the reference signal component. In response to this command, the signal separation means 14 separates the reference wave signal (S11). The counter 15 counts the separated reference wave signal, and accumulates the reference wave reception time T1 (reference wave signal cycle) (S2). The reference wave signals are counted one after another, and it is determined whether or not a predetermined number (n times) has been detected (S13), and the counter 15 counts until the predetermined number is reached. This measurement state is shown by measurement 4 in FIG.

所定回数に達したならば、カウンタ15は、計測した蓄積時間を演算手段11に送り、演算手段11でステップS7と同様にDnを算出する(S14)。
Dn=ΣTa−((n−1)×T1−(n−1)×T2)である。参照波受信時間T1蓄積と反射波受信時間T2蓄積が所定回数(N回)行われたかどうか判断し(S15)、行われていない場合は、S1に戻る。
If the predetermined number of times has been reached, the counter 15 sends the measured accumulation time to the calculation means 11, and the calculation means 11 calculates Dn as in step S7 (S14).
Dn = ΣTa − ((n−1) × T1− (n−1) × T2). It is determined whether the reference wave reception time T1 accumulation and the reflected wave reception time T2 accumulation have been performed a predetermined number of times (N times) (S15). If not, the process returns to S1.

このようにして、参照波受信時間T1蓄積の後に反射波受信時間T2蓄積、そしてDn算出、次に反射波受信時間T2蓄積の後に参照波受信時間T1蓄積、そしてDn算出、次に参照波受信時間T1蓄積の後に反射波受信時間T2蓄積、そしてDn算出というように
参照波受信時間T1蓄積、反射波受信時間T2蓄積の計測処理を順序を入れ替えながら、交互に繰り返していく。
In this way, after the reference wave reception time T1 is accumulated, the reflected wave reception time T2 is accumulated, and then Dn is calculated. Then, after the reflected wave reception time T2 is accumulated, the reference wave reception time T1 is accumulated, and then Dn is calculated. The measurement processing of the reference wave reception time T1 accumulation and the reflected wave reception time T2 accumulation is alternately repeated while the order is changed, such as the reflected wave reception time T2 accumulation and the Dn calculation after the time T1 accumulation.

図2の測定1から測定6までは上記のように測定が繰り返して行われる様子を示す。
そして、参照波受信時間T1蓄積と反射波受信時間T2蓄積の回数がNに達したら、算出したN個のDnの最大値と最小値のものを除去し(S16)、算出した(N−2)個のDnの平均値を算出してDとする(S17)。このDより距離を計算する(S18)。S16では、計測した異常値を除去して距離測定を正確に行う目的で、Dnの最大値と最小値のものを除去しているが、Dnの最大値と最小値のものを除去せずに、平均化処理を行っても良い。
Measurements 1 to 6 in FIG. 2 show how the measurement is repeated as described above.
When the number of reference wave reception time T1 accumulations and reflected wave reception time T2 accumulations reaches N, the calculated N maximum values and minimum values of Dn are removed (S16) and calculated (N-2). ) The average value of Dn is calculated and set to D (S17). The distance is calculated from D (S18). In S16, the maximum value and the minimum value of Dn are removed for the purpose of accurately measuring the distance by removing the measured abnormal value, but without removing the maximum value and the minimum value of Dn. An averaging process may be performed.

図3は、図2で行った測定1〜測定6、計測結果A〜計測結果Cに対応する電気的遅延手段の熱曲線を示すものであるが、時間が経過して発熱が一定(温度が一定)になるまでは、カーブを描いて発熱量が上昇していることがわかる。このカーブを描いている期間は、温度上昇が続いているので、電気的遅延手段の特性が変化して、遅延時間が変動するので、距離測定にも大きな影響を与えるものである。   FIG. 3 shows a thermal curve of the electrical delay means corresponding to the measurements 1 to 6 and the measurement results A to C performed in FIG. 2, but the heat generation is constant over time (the temperature is constant). It can be seen that the calorific value rises in a curve until it becomes constant. During the period in which this curve is drawn, since the temperature continues to rise, the characteristics of the electrical delay means change and the delay time fluctuates, which greatly affects the distance measurement.

しかし、測定結果Aでは、参照波受信時間T1蓄積の後に反射波受信時間T2蓄積を行い、測定結果Bでは、反射波受信時間T2蓄積の後に参照波受信時間T1蓄積を行い、測定結果Cでは、参照波受信時間T1蓄積の後に反射波受信時間T2蓄積を行うようにしているので、参照波受信時間T1蓄積で受ける温度上昇に基づく遅延時間の影響と、反射波受信時間T2蓄積で受ける温度上昇に基づく遅延時間の影響とが同じようなものとなって相殺され、距離測定を正確に行えるものである。   However, in the measurement result A, the reflected wave reception time T2 is accumulated after the reference wave reception time T1 is accumulated. In the measurement result B, the reference wave reception time T1 is accumulated after the reflection wave reception time T2 is accumulated. Since the reflected wave reception time T2 is accumulated after the reference wave reception time T1 accumulation, the influence of the delay time based on the temperature rise received by the reference wave reception time T1 accumulation and the temperature received by the reflected wave reception time T2 accumulation. The effect of the delay time based on the rise is offset in the same way, and distance measurement can be performed accurately.

ところで、上述したように、図3の測定1〜測定6では、参照波信号計測、反射波信号計測、反射波信号計測、参照波信号計測、参照波信号計測、反射波信号計測、というように切り替わっていくが、この計測の切り替わる間の時間間隔(ループ切替時間)を所定時間設けるようにして、各ループ切替時間を一定に保つようにした状態を示すのが図5である。図で参照信号ループ規定回数到達時間としているのは、上述した参照波信号の計測をn回行うことに相当し、反射信号ループ規定回数到達時間は、反射波信号の計測をn回行うことに相当する。ループ切替時間間隔を広げておくことで、処理手段1内の電子部品に放熱を促し、極端な温度上昇を防ぐことができる。この電子部品の発熱量とループ切替時間との関係を示すのが、図6である。   Incidentally, as described above, in measurement 1 to measurement 6 in FIG. 3, reference wave signal measurement, reflected wave signal measurement, reflected wave signal measurement, reference wave signal measurement, reference wave signal measurement, reflected wave signal measurement, and so on. FIG. 5 shows a state in which each loop switching time is kept constant by providing a predetermined time interval (loop switching time) during the switching of the measurement. In the figure, the reference signal loop specified number arrival time corresponds to the above-described measurement of the reference wave signal n times, and the reflected signal loop specified number of times arrival time refers to the measurement of the reflected wave signal n times. Equivalent to. By widening the loop switching time interval, it is possible to promote heat dissipation to the electronic components in the processing means 1 and prevent an extreme temperature rise. FIG. 6 shows the relationship between the heat generation amount of the electronic component and the loop switching time.

破線で囲んだ信号部分がループ切替時間間隔に相当し、他の時間は計測動作を行っている部分に相当する。ループ切替時間の間に放熱して発熱量が少し下がってきていることがわかる。各ループ切替時間間隔を一定に保持することで、次のループ規定回数開始時には前のループ規定回数開始時と同レベルの発熱状態にすることができ、発熱状態に影響されずに距離測定を行うことができる。用いられる信号の例としては、参照信号ループ規定回数到達時間が15ms程度である場合、ループ切替時間間隔としては560μsが最適となる。   A signal portion surrounded by a broken line corresponds to a loop switching time interval, and the other time corresponds to a portion performing a measurement operation. It can be seen that during the loop switching time, heat is released and the calorific value is slightly reduced. By keeping each loop switching time interval constant, at the start of the next specified number of loops, it is possible to make the heat generation state at the same level as at the start of the previous specified number of loops, and measure the distance without being affected by the heat generation state be able to. As an example of a signal to be used, when the reference signal loop prescribed number arrival time is about 15 ms, 560 μs is optimal as the loop switching time interval.

図7は、図1の構成において擬似距離測定動作を行わせる手順を示すフローチャートであり、図8はその基本的な信号のタイムチャートを示す。擬似距離測定動作とは、通常の距離測定動作とほとんど変わらないのであるが、違いがあるのは演算手段11で測定対象物6までの距離を算出しないことである。 FIG. 7 is a flowchart showing a procedure for performing the pseudo distance measurement operation in the configuration of FIG. 1, and FIG. 8 shows a time chart of the basic signal. The pseudo distance measurement operation is almost the same as a normal distance measurement operation, but the difference is that the calculation means 11 does not calculate the distance to the measurement object 6.

計測開始スイッチ10がONになると(S31)、前述したように通常の距離測定動作が始まり、測定対象物6からの反射波、ハーフミラー31からの参照波を受信して信号分離手段14で分離され、カウンタ15で計数が行われる。最初は参照波信号が分離されて受信され(S32)、参照波受信時間蓄積が行われる(S33)。参照波受信を所定回数計数していない場合(S34 NO)、は次の参照波信号を繰り返して受信する。   When the measurement start switch 10 is turned on (S31), the normal distance measurement operation starts as described above, and the reflected wave from the measurement object 6 and the reference wave from the half mirror 31 are received and separated by the signal separation unit 14. The counter 15 performs counting. Initially, the reference wave signal is separated and received (S32), and reference wave reception time accumulation is performed (S33). When the reference wave reception is not counted a predetermined number of times (S34 NO), the next reference wave signal is repeatedly received.

一方、参照波受信を所定回数計数した場合(S34 YES)、次に反射波受信に切り替えて受信し(S35)、反射波受信信号蓄積を行う(S36)。反射波受信を所定回数計数していない場合(S37 NO)、は次の反射波信号を繰り返して受信する。反射波受信を所定回数計数した場合(S37 YES)、次も反射波受信の状態で受信し(S38)、反射波受信信号蓄積を行う(S39)。反射波受信を所定回数計数した場合(S40 YES)、次は参照波受信に切り替えて受信し(S41)、反射波受信信号蓄積を行う(S42)。   On the other hand, when the reference wave reception is counted a predetermined number of times (S34 YES), the reception is switched to the reception of the reflected wave (S35) and the reflected wave reception signal is accumulated (S36). When the reflected wave reception is not counted a predetermined number of times (S37 NO), the next reflected wave signal is repeatedly received. When the reflected wave reception is counted a predetermined number of times (S37 YES), the next reception is also performed in the reflected wave reception state (S38), and the reflected wave reception signal is accumulated (S39). When the reflected wave reception is counted a predetermined number of times (YES in S40), the reception is switched to the reference wave reception (S41), and the reflected wave reception signal is accumulated (S42).

参照波受信を所定回数計数した場合(S43 YES)、参照波受信時間蓄積と反射波受信時間蓄積を所定回数行ったかどうかを検出して(S44)、所定回数行っていない場合には、再度、参照波受信時間蓄積と反射波受信時間蓄積を行い、所定回数に達していれば、計測開始スイッチ10がONになってから、一定時間経過していれば(S45 YES)、通常の距離計測処理を行う(S46)。   When the reference wave reception is counted a predetermined number of times (YES in S43), it is detected whether the reference wave reception time accumulation and the reflected wave reception time accumulation are performed a predetermined number of times (S44). Reference wave reception time accumulation and reflected wave reception time accumulation are performed, and if the predetermined number of times has been reached, if a predetermined time has elapsed since the measurement start switch 10 was turned on (YES in S45), normal distance measurement processing (S46).

図8のタイムチャートを見てもわかるように、通常の距離計測処理を行うように、半導体レーザ22からパルス状のレーザを発射して反射波と参照波を得て、一定時間、処理手段1、送波手段2、受波手段4等を駆動させた後、本来の距離測定処理動作を行うようにしているので、処理手段1内の電子部品の発熱状態を一定に保つことができ、距離測定値を安定させることができる。   As can be seen from the time chart of FIG. 8, a pulsed laser is emitted from the semiconductor laser 22 to obtain a reflected wave and a reference wave so as to perform a normal distance measurement process. Since the original distance measurement processing operation is performed after driving the wave transmitting means 2, the wave receiving means 4, etc., the heat generation state of the electronic components in the processing means 1 can be kept constant, and the distance The measured value can be stabilized.

図9は、計測ゲート12から電気的遅延手段13Aに信号を供給できるように、電気的遅延手段13Aから計測ゲート12に信号を伝達できるように、計測ゲート12から演算手段11に出力できるように配線が行われたものである。一定の信号を演算手段11、計測ゲート12、電気的遅延手段13Aの順にループさせようというものである。この信号ループを行うための回路構成を示すのが、図10である。   FIG. 9 shows that the signal can be output from the measurement gate 12 to the calculation means 11 so that the signal can be transmitted from the electrical delay means 13A to the measurement gate 12 so that the signal can be supplied from the measurement gate 12 to the electrical delay means 13A. Wiring is performed. A certain signal is looped in the order of the calculation means 11, the measurement gate 12, and the electrical delay means 13A. FIG. 10 shows a circuit configuration for performing this signal loop.

電気的遅延手段13Aは、図1の電気的遅延手段13と同じ遅延処理を行う電気的遅延回路部131と、電気的遅延手段13とは異なり新たに付加された、NOT回路132、AND回路133、AND回路134からなる。図8の回路の動作をフローチャートで示したのが図12であり、図11は基本的な信号のタイムチャートを示す。これらの図を参照しつつ説明する。   The electrical delay means 13A includes an electrical delay circuit section 131 that performs the same delay processing as the electrical delay means 13 of FIG. 1, and a NOT circuit 132 and an AND circuit 133 that are newly added unlike the electrical delay means 13. , AND circuit 134. FIG. 12 is a flowchart showing the operation of the circuit of FIG. 8, and FIG. 11 is a basic signal time chart. This will be described with reference to these drawings.

演算手段11より駆動信号と制御信号が計測ゲート12に送信される(S21)。計測ゲート12から電気的遅延回路部131に駆動信号が供給されて、遅延処理が行われる。遅延時間が与えられた信号は、AND回路133の入力端子に送られる。一方、計測ゲート12に送信された制御信号はHIGHであり、AND回路134の入力端子に入力される。
AND回路134の入力端子の一方は、HIGHなので遅延時間が与えられた信号はAND回路134の出力端子から出力される。
A drive signal and a control signal are transmitted from the calculation means 11 to the measurement gate 12 (S21). A drive signal is supplied from the measurement gate 12 to the electrical delay circuit unit 131 to perform delay processing. The signal given the delay time is sent to the input terminal of the AND circuit 133. On the other hand, the control signal transmitted to the measurement gate 12 is HIGH and is input to the input terminal of the AND circuit 134.
Since one of the input terminals of the AND circuit 134 is HIGH, a signal given a delay time is output from the output terminal of the AND circuit 134.

他方の伝達ルートで、制御HIGH信号はNOT回路132で反転してLOW信号となった後、AND回路133の入力端子に入力されるので、AND回路133のゲートは閉じられており、AND回路133の出力端子から遅延時間が与えられた信号は出力されない。   In the other transmission route, the control HIGH signal is inverted by the NOT circuit 132 to become a LOW signal and then input to the input terminal of the AND circuit 133. Therefore, the gate of the AND circuit 133 is closed and the AND circuit 133 is closed. No signal with a delay time is output from the output terminal.

演算手段11は、上記AND回路134からの出力信号を100μS毎にチェックしており(S22、S23)、計測ゲート12を通ってAND回路134からの出力信号が到達すれば、処理手段内回路伝搬が終了したとしてS24に進む。演算手段11に信号が到達していない場合は、例えば、100μS待って信号をチェックする。信号が到達すると、計測開始スイッチ10がONになったかどうかを検出し(S24)、ONになっていない場合は、2回目の駆動信号を演算手段11より送信して遅延処理を行わせ、上記と同様の処理を行う。 計測開始スイッチ10がONになった場合は、通常の距離計測処理を行う(S25)。   The computing means 11 checks the output signal from the AND circuit 134 every 100 μS (S22, S23), and if the output signal from the AND circuit 134 arrives through the measurement gate 12, the circuit propagates within the processing means. The process proceeds to S24. When the signal does not reach the computing means 11, for example, the signal is checked after waiting for 100 μS. When the signal arrives, it is detected whether or not the measurement start switch 10 is turned on (S24). If the measurement start switch 10 is not turned on, the second drive signal is transmitted from the computing means 11 to perform delay processing, and The same processing is performed. When the measurement start switch 10 is turned on, normal distance measurement processing is performed (S25).

すなわち、図11に示すように、通常の距離計測処理が始まるまで(計測開始スイッチ10がONになるまで)は、演算手段11から駆動信号を一定の周期(例えば800ns)で送信し続け、演算手段11、計測ゲート12、電気的遅延手段13Aの順に信号をループさせる。計測開始スイッチ10がONになると、演算手段11からの駆動信号をストップさせて制御信号をLOWにする。AND回路133のゲートは開き、AND回路134のゲートは閉まるので、通常の距離計測処理を行うことができる。   That is, as shown in FIG. 11, until the normal distance measurement process starts (until the measurement start switch 10 is turned ON), the driving signal is continuously transmitted from the calculation means 11 at a constant period (for example, 800 ns), and the calculation is performed. The signal is looped in the order of the means 11, the measurement gate 12, and the electrical delay means 13A. When the measurement start switch 10 is turned on, the drive signal from the calculation means 11 is stopped and the control signal is set to LOW. Since the gate of the AND circuit 133 is opened and the gate of the AND circuit 134 is closed, normal distance measurement processing can be performed.

このように、通常の距離計測処理前に、処理手段内の一部を動作させておくことで、電子部品の発熱状態が通常の距離計測段階に移行したとしても、移行前の発熱状態と比較して急激な変化が起こらないので、電子部品の特性の変動が少なくなり、計測値を安定させることができる。   In this way, by operating a part of the processing means before the normal distance measurement processing, even if the heat generation state of the electronic component has shifted to the normal distance measurement stage, it is compared with the heat generation state before the transition As a result, a sudden change does not occur, so that fluctuations in the characteristics of the electronic component are reduced, and the measurement value can be stabilized.

ループ信号周期は、駆動信号周期を変更することにより変えることができるので、演算手段11の制御によって変更することができる。例えば、通常の距離計測段階に移行した場合の電子部品の発熱状態に最も近い状態になるように、演算手段11、計測ゲート12、電気的遅延手段13Aを駆動させるようループ信号の周期を設定しても良い。   Since the loop signal cycle can be changed by changing the drive signal cycle, it can be changed by the control of the calculation means 11. For example, the period of the loop signal is set so as to drive the calculation means 11, the measurement gate 12, and the electrical delay means 13A so as to be in the state closest to the heat generation state of the electronic component when the normal distance measurement stage is entered. May be.

図13は、図9の構成に温度センサ17を付加し、演算手段11から電源手段9に対して制御信号を供給する信号ラインを付加したものである。温度センサ17は、電気的遅延手段13の近くに配置され、処理手段1内の温度を検出して、検出信号を逐次演算手段11に送信している。演算手段11、計測ゲート12、電気的遅延手段13Aとループする信号の周期を温度センサ17の検出温度に応じて変化させるようにしている。図14は、検出温度に応じてループ信号周期を変化させる手順を示している。   FIG. 13 is obtained by adding a temperature sensor 17 to the configuration of FIG. 9 and adding a signal line for supplying a control signal from the calculation means 11 to the power supply means 9. The temperature sensor 17 is disposed near the electrical delay unit 13, detects the temperature in the processing unit 1, and transmits a detection signal to the sequential calculation unit 11. The period of the signal that loops with the calculation means 11, the measurement gate 12, and the electrical delay means 13A is changed according to the temperature detected by the temperature sensor 17. FIG. 14 shows a procedure for changing the loop signal period in accordance with the detected temperature.

計測開始スイッチがONになる(S51)と、温度センサ17により処理手段内野温度が検出される(S52)。検出温度がTMP1と等しいかそれよりも大きくなると(S53)、ループ信号周期を大きい方のF1にし(S54)、検出温度がTMP2とTMP1の間にあれば(S55)、ループ信号周期を中間のF2にし(S56)、検出温度がTMP2よりも小さいときは、ループ信号周期を小さい方のF3にする(S57)。S59以下は図12の処理と同様であるので説明は省略する。   When the measurement start switch is turned on (S51), the temperature inside the processing means is detected by the temperature sensor 17 (S52). When the detected temperature is equal to or larger than TMP1 (S53), the loop signal cycle is set to F1, which is the larger one (S54). If the detected temperature is between TMP2 and TMP1 (S55), the loop signal cycle is set to an intermediate value. F2 is set (S56), and when the detected temperature is lower than TMP2, the loop signal cycle is set to F3, which is smaller (S57). S59 and subsequent steps are the same as the processing in FIG.

ここで、F3<F2<F1の関係にあり、例えば、TMP1=30度、TMP2=20度に設定した場合、F3=500ns、F2=800ns、F1=1000nsのように設定する。   Here, there is a relationship of F3 <F2 <F1. For example, when TMP1 = 30 degrees and TMP2 = 20 degrees are set, F3 = 500 ns, F2 = 800 ns, and F1 = 1000 ns.

以上のように、検出温度が高ければ、ループ信号周期を長くして電子部品の発熱量を低下させ、検出温度が低ければ、ループ信号周期を短くして発熱量を増加させることができるので、処理手段内の温度を正確に調整することができ、発熱状態の変動による影響を受けない距離測定を行うことができる。   As described above, if the detection temperature is high, the loop signal cycle is lengthened to reduce the heat generation amount of the electronic component, and if the detection temperature is low, the loop signal cycle can be shortened to increase the heat generation amount. The temperature in the processing means can be adjusted accurately, and distance measurement that is not affected by fluctuations in the heat generation state can be performed.

図15は、検出温度に応じてループ信号のループ回数を変化させる手順を示している。
計測開始スイッチがONになる(S71)と、温度センサ17により処理手段内の温度が検出される(S72)。検出温度がTMP1と等しいかそれよりも大きくなると(S73)、ループ回数を小さい方のCNT1にし(S74)、検出温度がTMP2とTMP1の間にあれば(S75)、ループ回数を中間のCNT2にし(S76)、検出温度がTMP2よりも小さいときは、ループ回数を大きい方のCNT3にする(S77)。S79以下は図12の処理と同様であるので説明は省略する。
FIG. 15 shows a procedure for changing the number of loops of the loop signal in accordance with the detected temperature.
When the measurement start switch is turned on (S71), the temperature in the processing means is detected by the temperature sensor 17 (S72). If the detected temperature is equal to or greater than TMP1 (S73), the loop count is set to the smaller CNT1 (S74). If the detected temperature is between TMP2 and TMP1 (S75), the loop count is set to the intermediate CNT2. (S76) When the detected temperature is lower than TMP2, the larger number of loops is set to CNT3 (S77). S79 and subsequent steps are the same as the processing in FIG.

ここで、CNT1<CNT2<CNT3の関係にあり、例えば、TMP1=30度、TMP2=20度に設定した場合、CNT1=10回、CNT2=20回、CNT3=40回のように設定する。   Here, there is a relationship of CNT1 <CNT2 <CNT3. For example, when TMP1 = 30 degrees and TMP2 = 20 degrees are set, CNT1 = 10 times, CNT2 = 20 times, and CNT3 = 40 times.

以上のように、検出温度が高ければ、ループ信号のループ回数を少なくして電子部品の発熱量を低下させ、検出温度が低ければ、ループ信号のループ回数を多くして発熱量を増加させることができるので、処理手段内の温度を正確に調整することができ、発熱状態の変動による影響を受けない距離測定を行うことができる。   As described above, if the detection temperature is high, the number of loops of the loop signal is decreased to reduce the heat generation amount of the electronic component, and if the detection temperature is low, the number of loops of the loop signal is increased to increase the heat generation amount. Therefore, the temperature in the processing means can be adjusted accurately, and distance measurement that is not affected by fluctuations in the heat generation state can be performed.

図16は、電源手段9の電源電圧を演算手段11からの制御信号により制御する具体的な構成を示す。電源手段9には電源ICが用いられており、演算手段11のCPU制御信号により、電圧を適宜変更できるようになっており、変更後の電源電圧は処理手段1、送波手段2、受波手段4に供給される。   FIG. 16 shows a specific configuration in which the power supply voltage of the power supply means 9 is controlled by a control signal from the calculation means 11. A power supply IC is used as the power supply means 9, and the voltage can be appropriately changed by a CPU control signal of the calculation means 11. The changed power supply voltage is the processing means 1, the transmission means 2, the reception wave. Supplied to means 4.

制御信号による電源手段9の動作を示すのが図17である。計測開始スイッチがONになる(S91)と、温度センサ17により処理手段内の温度が検出される(S92)。検出温度がTMP1と等しいかそれよりも大きくなると(S93)、演算手段11は制御信号1を電源手段に送信し(S94)、検出温度がTMP2とTMP1の間にあれば(S95)、演算手段11は制御信号2を電源手段に送信し(S96)、検出温度がTMP2よりも小さいときは、演算手段11は制御信号3を電源手段に送信し(S97)。待ち時間が経過した(S98)後、距離計測処置(S99)を行う。   FIG. 17 shows the operation of the power supply means 9 according to the control signal. When the measurement start switch is turned on (S91), the temperature in the processing means is detected by the temperature sensor 17 (S92). When the detected temperature is equal to or greater than TMP1 (S93), the calculation means 11 transmits the control signal 1 to the power supply means (S94), and if the detected temperature is between TMP2 and TMP1 (S95), the calculation means. 11 transmits the control signal 2 to the power supply means (S96), and when the detected temperature is lower than TMP2, the calculation means 11 transmits the control signal 3 to the power supply means (S97). After the waiting time has elapsed (S98), a distance measurement procedure (S99) is performed.

検出温度が高ければ、電源手段9の電源電圧の値が基準値より大きくなっていると考えられるので、制御信号1は電源電圧を低下させる方向へ制御する。検出温度がTMP2とTMP1の間にあるのは標準なので、制御信号2は電源電圧の調整を行わない信号である。検出温度が低ければ電源電圧の値が基準値より低くなっていると考えられるので、制御信号3は電源電圧の増大させる方向へ制御する。   If the detected temperature is high, the value of the power supply voltage of the power supply means 9 is considered to be larger than the reference value, so the control signal 1 controls the power supply voltage to decrease. Since it is standard that the detected temperature is between TMP2 and TMP1, the control signal 2 is a signal that does not adjust the power supply voltage. If the detected temperature is low, the value of the power supply voltage is considered to be lower than the reference value, so the control signal 3 is controlled to increase the power supply voltage.

例えば、TMP1=30度、TMP2=20度に設定した場合、制御信号1は電源の基準電圧よりも0.2ボルト低下させるように、制御信号3は電源の基準電圧よりも0.2ボルト増加させるように設定する。   For example, when TMP1 = 30 degrees and TMP2 = 20 degrees, the control signal 3 is increased by 0.2 volts from the power supply reference voltage so that the control signal 1 is lowered by 0.2 volts from the power supply reference voltage. Set to

上記のように、周囲温度状況に応じて電源電圧を自動的に調整することができるので、発熱状態の影響を受けずに、距離測定動作を行うことができる。   As described above, since the power supply voltage can be automatically adjusted according to the ambient temperature condition, the distance measuring operation can be performed without being affected by the heat generation state.

図18は、電源手段9の内部に負荷を備えた構成を示す。電源電圧発生部分に抵抗Rが並列に接続されている。この抵抗Rには常時電流が流れており、電流が消費されているので、処理手段が動作して急激に負荷変動が発生しても緩衝することができる。したがって、電源状態の安定が保たれて、距離測定を安定して行うことができる。例えば、処理手段をCPLDで構成し、電源1.8ボルトとした場合、Rは100Ωが考えられる。   FIG. 18 shows a configuration in which a load is provided inside the power supply means 9. A resistor R is connected in parallel to the power supply voltage generating portion. Since a current always flows through the resistor R and the current is consumed, it can be buffered even when the processing means operates and a load fluctuation occurs suddenly. Therefore, the stability of the power supply state is maintained, and the distance measurement can be performed stably. For example, when the processing means is constituted by CPLD and the power supply is 1.8 volts, R can be 100Ω.

本発明による距離測定装置の基本構成例を示す図である。It is a figure which shows the basic structural example of the distance measuring device by this invention. 参照波信号と反射波信号の計測が行われていく状態を示すタイムチャート図である。It is a time chart figure which shows the state in which the measurement of a reference wave signal and a reflected wave signal is performed. 図2の測定と電気的遅延手段の発熱との関係を示す図である。It is a figure which shows the relationship between the measurement of FIG. 2, and the heat_generation | fever of an electrical delay means. 距離測定処理動作を示すフローチャート図である。It is a flowchart figure which shows a distance measurement process operation. 参照波信号計測と反射波信号計測との切替時の状態を示すタイムチャート図である。It is a time chart figure which shows the state at the time of switching with reference wave signal measurement and reflected wave signal measurement. 図5に対応した処理手段の発熱状態を示すタイムチャート図である。It is a time chart which shows the heat_generation | fever state of the process means corresponding to FIG. 距離測定処理動作開始前に擬似測定動作を行う状態を示すフローチャート図である。It is a flowchart figure which shows the state which performs a pseudo measurement operation | movement before a distance measurement process operation start. 図7の基本信号の関係を示すタイムチャート図である。FIG. 8 is a time chart showing the relationship of basic signals in FIG. 7. 処理手段内で信号がループするように構成した例を示す図である。It is a figure which shows the example comprised so that a signal might loop within a processing means. 図9の信号ループ部分の具体的構成例を示す図であるIt is a figure which shows the specific structural example of the signal loop part of FIG. 図9の基本的な信号のタイムチャート図である。It is a time chart figure of the basic signal of FIG. 図9の構成の動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement of the structure of FIG. 図9の構成に温度センサを設置した構成を示す図である。It is a figure which shows the structure which installed the temperature sensor in the structure of FIG. 温度センサの検出温度によりループ信号周期を変化させる動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement which changes a loop signal period with the detection temperature of a temperature sensor. 温度センサの検出温度によりループ信号のループ回数を変化させる動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement which changes the loop frequency | count of a loop signal with the detection temperature of a temperature sensor. 電源手段の電源電圧を変化させる具体的構成例を示す図である。It is a figure which shows the specific structural example which changes the power supply voltage of a power supply means. 図16の構成で電源電圧を変化させる動作を示すフローチャート図である。FIG. 17 is a flowchart showing an operation for changing a power supply voltage in the configuration of FIG. 16. 負荷を備えた電源手段の構成例を示す図である。It is a figure which shows the structural example of the power supply means provided with load. 従来の距離測定装置を示す図である。It is a figure which shows the conventional distance measuring apparatus.

符号の説明Explanation of symbols

1 処理手段
2 送波手段
3 分岐手段
4 受波手段
5 投光レンズ
6 測定対象物
7 集光レンズ
8 光学的遅延素子
9 電源手段
10 計測開始スイッチ
11 演算手段
12 計測ゲート
13 電気的遅延手段
14 信号分離手段
15 カウンタ
16 水晶振動子
21 レーザ駆動回路
22 半導体レーザ
31 ハーフミラー
41 フォトダイオード
42 増幅器
DESCRIPTION OF SYMBOLS 1 Processing means 2 Wave transmission means 3 Branch means 4 Wave receiving means 5 Light projection lens 6 Measuring object 7 Condensing lens 8 Optical delay element 9 Power supply means 10 Measurement start switch 11 Calculation means 12 Measurement gate 13 Electrical delay means 14 Signal separating means 15 Counter 16 Crystal resonator 21 Laser drive circuit 22 Semiconductor laser 31 Half mirror 41 Photo diode 42 Amplifier

Claims (9)

パルス状の電磁波を周期的に発信する送波手段と、発信された電磁波が測定対象物で反射した反射波を受信する受波手段と、前記発信された電磁波の一部を分岐し、参照波として前記受波手段に入射させる分岐手段と、
前記受波手段で受信した信号を測定対象物からの反射信号成分と参照波に対応する参照信号成分に分離する信号分離手段と、
前記信号分離手段により分離された反射信号成分または参照信号成分を基準信号として所定の遅延時間を与え、この信号を駆動信号として前記送波手段に送信する遅延手段と、
前記反射信号成分の周期を所定回数加算する第1の計時手段と、
前記参照信号成分の周期を所定回数加算する第2の計時手段と、
前記第1の計時手段で計測された反射信号成分の所定回数分の加算周期と前記第2の計時手段で計測された参照信号成分の所定回数分の加算周期との差に基づいて前記測定対象物までの距離を算出する演算手段とを備え、
前記前記第1の計時手段と前記第2の計時手段を連続して繰返して用いる際に、第1の計時手段と第2の計時手段による計測順序を入れ替えて繰返し計測することを特徴とする距離測定装置。
A transmitting means for periodically transmitting a pulsed electromagnetic wave; a receiving means for receiving a reflected wave reflected by the object to be measured; a part of the transmitted electromagnetic wave; Branching means for entering the receiving means as:
A signal separating means for separating a signal received by the wave receiving means into a reflected signal component from a measurement object and a reference signal component corresponding to a reference wave;
A delay unit that gives a predetermined delay time using the reflected signal component or the reference signal component separated by the signal separation unit as a reference signal, and transmits the signal as a drive signal to the transmission unit;
First timing means for adding a predetermined number of cycles of the reflected signal component;
Second time measuring means for adding a predetermined number of cycles of the reference signal component;
The measurement object is based on a difference between a predetermined number of addition periods of the reflected signal component measured by the first time measuring means and a predetermined number of addition periods of the reference signal component measured by the second time measuring means. A calculation means for calculating the distance to the object,
When the first time measuring means and the second time measuring means are repeatedly used in succession, the distance is measured repeatedly by changing the order of measurement by the first time measuring means and the second time measuring means. measuring device.
前記第1の計時手段により行われた計測と前記第2の計時手段により行われた計測との切替時間の間隔を一定にすることを特徴とする請求項1記載の距離測定装置。   2. The distance measuring apparatus according to claim 1, wherein an interval of a switching time between the measurement performed by the first time measuring unit and the measurement performed by the second time measuring unit is made constant. 前記測定対象物までの距離を算出する測定動作処理を開始する前に、前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段を駆動させて擬似距離測定動作を行わせることを特徴とする請求項1〜請求項2のいずれか1項に記載の距離測定装置。   Before starting the measurement operation process for calculating the distance to the measurement object, the transmission means, reception means, signal separation means, delay means, first time measurement means, and second time measurement means are driven. The distance measuring apparatus according to claim 1, wherein a pseudo distance measuring operation is performed. 前記測定対象物までの距離を算出する測定動作処理を開始する前に、前記演算手段と前記遅延手段との間で信号がループするようにして、少なくとも前記遅延手段を駆動させるようにしたことを特徴とする請求項1〜請求項2のいずれか1項に記載の距離測定装置。   Before starting the measurement operation process for calculating the distance to the measurement object, at least the delay unit is driven so that a signal loops between the calculation unit and the delay unit. The distance measuring device according to claim 1, wherein the distance measuring device is characterized in that: 前記ループ信号は所定の周波数を有する信号となるように前記演算手段で周波数制御を行うことを特徴とする請求項4記載の距離測定装置。   5. The distance measuring device according to claim 4, wherein frequency control is performed by the calculating means so that the loop signal becomes a signal having a predetermined frequency. 前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて前記ループ信号の周波数を制御することを特徴とする請求項5記載の距離測定装置。   6. The distance according to claim 5, further comprising a temperature sensor installed to measure a temperature in the vicinity of the delay means, and controlling a frequency of the loop signal in accordance with a detected temperature from the temperature sensor. measuring device. 前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて前記ループ信号のループ回数を変化させることを特徴とする請求項4記載の距離測定装置。   The temperature sensor installed for measuring the temperature of the vicinity of the delay means is provided, and the number of loops of the loop signal is changed according to the detected temperature from the temperature sensor. Distance measuring device. 前記遅延手段近傍の温度を測定するために設置された温度センサを備えており、前記温度センサからの検出温度に応じて、前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段、演算手段に電圧を供給する電源手段の供給電圧を制御するようにしたことを特徴とする請求項1〜請求項2のいずれか1項に記載の距離測定装置。   A temperature sensor installed to measure the temperature in the vicinity of the delay means, and according to the detected temperature from the temperature sensor, the transmission means, the reception means, the signal separation means, the delay means, the first The distance measurement according to any one of claims 1 to 2, wherein the supply voltage of the power supply means for supplying voltage to the time measuring means, the second time measuring means, and the computing means is controlled. apparatus. 前記送波手段、受波手段、信号分離手段、遅延手段、第1の計時手段、第2の計時手段、演算手段に電圧を供給する電源手段には、常時負荷となる電子部品が設けられていることを特徴とする請求項1〜請求項7のいずれか1項に記載の距離測定装置。   The power transmitting means, the receiving means, the signal separating means, the delay means, the first timing means, the second timing means, and the power supply means for supplying voltage to the computing means are provided with electronic components that are always loaded. The distance measuring device according to any one of claims 1 to 7, wherein the distance measuring device is provided.
JP2004219376A 2004-07-27 2004-07-27 Distance measuring device Expired - Fee Related JP4529572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219376A JP4529572B2 (en) 2004-07-27 2004-07-27 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219376A JP4529572B2 (en) 2004-07-27 2004-07-27 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2006038652A true JP2006038652A (en) 2006-02-09
JP4529572B2 JP4529572B2 (en) 2010-08-25

Family

ID=35903801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219376A Expired - Fee Related JP4529572B2 (en) 2004-07-27 2004-07-27 Distance measuring device

Country Status (1)

Country Link
JP (1) JP4529572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117314A (en) * 2017-01-20 2018-07-26 アズビル株式会社 Light projection circuit
KR20210075784A (en) * 2019-12-13 2021-06-23 한국광기술원 LiDAR Apparatus and Method for Operating the Same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218152B1 (en) 2012-05-21 2013-01-03 삼성탈레스 주식회사 Oscillation control circuit of laser range finder improved mtbf and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368889A (en) * 1989-08-08 1991-03-25 Omron Corp Distance sensor
JPH07333341A (en) * 1994-06-07 1995-12-22 Kansei Corp Obstacle detector
JPH08220232A (en) * 1995-02-08 1996-08-30 Asahi Optical Co Ltd Light wave range finding device and optical path switching method in light wave range finding device
JPH1138135A (en) * 1997-07-23 1999-02-12 Denso Corp Distance measuring apparatus
JP2001124855A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Method and device for measuring distance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368889A (en) * 1989-08-08 1991-03-25 Omron Corp Distance sensor
JPH07333341A (en) * 1994-06-07 1995-12-22 Kansei Corp Obstacle detector
JPH08220232A (en) * 1995-02-08 1996-08-30 Asahi Optical Co Ltd Light wave range finding device and optical path switching method in light wave range finding device
JPH1138135A (en) * 1997-07-23 1999-02-12 Denso Corp Distance measuring apparatus
JP2001124855A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Method and device for measuring distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117314A (en) * 2017-01-20 2018-07-26 アズビル株式会社 Light projection circuit
KR20210075784A (en) * 2019-12-13 2021-06-23 한국광기술원 LiDAR Apparatus and Method for Operating the Same
KR102340970B1 (en) * 2019-12-13 2021-12-20 한국광기술원 LiDAR Apparatus and Method for Operating the Same

Also Published As

Publication number Publication date
JP4529572B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US7230966B2 (en) Injection locking type or MOPA type of laser device
JP2724993B2 (en) Laser processing device and laser device
US9797996B2 (en) Distance-measuring-device
JP6050607B2 (en) Laser processing apparatus and laser output calibration method
JP3654090B2 (en) Distance measuring method and apparatus
EP1811545A1 (en) Exposure equipment and exposure method
JP2010286448A (en) Optical range finder
CA2461754A1 (en) Pulse oscillating type solid laser unit and laser process unit
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
JP4529572B2 (en) Distance measuring device
US6965357B2 (en) Light-emitting element drive circuit
JP2002181934A (en) Apparatus and method for clocking as well as distance measuring apparatus
KR102164410B1 (en) Laser system
CN101517520B (en) Laser controller
JP2007198911A (en) Distance measuring instrument
JPH11204856A (en) Wavelength detection control device
WO2002054109A1 (en) Method for detecting emission timing, emission timing detector and distance measuring apparatus
KR20100005397A (en) Device and method for measuring distance
JP2003254858A (en) Optical pulse tester
JPH11281744A (en) Distance measuring instrument
US20080107143A1 (en) Pump light control of a lamp-pumped laser
KR101051981B1 (en) Distance measuring device and method
JP2003163395A (en) Gas laser system
JP4388149B2 (en) Pulsar pulse width measuring device
EP0831311A1 (en) Pulse laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100531

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130618

LAPS Cancellation because of no payment of annual fees