JP2006038646A - Electric resistance measuring device of conductive sheet body - Google Patents

Electric resistance measuring device of conductive sheet body Download PDF

Info

Publication number
JP2006038646A
JP2006038646A JP2004219210A JP2004219210A JP2006038646A JP 2006038646 A JP2006038646 A JP 2006038646A JP 2004219210 A JP2004219210 A JP 2004219210A JP 2004219210 A JP2004219210 A JP 2004219210A JP 2006038646 A JP2006038646 A JP 2006038646A
Authority
JP
Japan
Prior art keywords
conductive sheet
sheet body
voltage
conductive
current supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219210A
Other languages
Japanese (ja)
Inventor
Kenichi Takashima
健一 高島
Susumu Takagi
進 高木
Kunio Oyagi
邦雄 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2004219210A priority Critical patent/JP2006038646A/en
Publication of JP2006038646A publication Critical patent/JP2006038646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric resistance measuring device of a conductive sheet body capable of measuring stably and accurately the electric resistance of the conductive sheet body during conveyance, and capable of measuring without damaging the conductive sheet body. <P>SOLUTION: This device has a constitution wherein current supply electrode parts 3a/3b are arranged on both ends of a measuring guide roll 2, and voltage measuring electrode parts 5a/5b are arranged between the current supply electrode parts 3a/3b, and the four electrode parts are mutually insulated by a core body 9. A constant current is made to flow from a constant current source 12 into the conductive sheet body 14 in contact with the current supply electrode parts 3a/3b through current supply terminals 4a/4b, and a voltage drop between the voltage measuring electrode parts 5a/5b is measured by a voltmeter 11 through voltage measuring terminals 7a/7b, and the electric resistance value of the conductive sheet body 14 is measured continuously during conveyance from the measured voltage value and the constant current value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性シート体の電気抵抗測定装置に関する。より詳しくは、導電性シート体を搬送しながら連続して電気抵抗を測定する電気抵抗測定装置に関するものである。   The present invention relates to a device for measuring electrical resistance of a conductive sheet. More specifically, the present invention relates to an electrical resistance measurement device that continuously measures electrical resistance while conveying a conductive sheet.

導電性シート体としては、例えば、金属繊維等の導電性繊維からなる織編物、金属めっき処理した導電性フィルムといったものが挙げられるが、こうした導電性シート体は、その製造工程や検査工程などの搬送時に、電気的特性、特に電気抵抗の連続的測定が要求される場合が極めて多い。搬送される導電性シート体の電気抵抗を測定する方法としては、例えばテスターに用いられるような測定用棒状測定子を搬送される導電性シート体に直接接触させる方法があるが、この方法では、導電性シート体にシワや偏りが発生するので、安定した電気的接触状態を保つことができず、正確な測定値が得られないばかりでなく、導電性シート体を損傷させるおそれがある。   Examples of the conductive sheet include woven and knitted fabrics made of conductive fibers such as metal fibers, and conductive films that have been subjected to metal plating. Very often, continuous measurements of electrical properties, particularly electrical resistance, are required during transport. As a method for measuring the electrical resistance of the conveyed conductive sheet, for example, there is a method of directly contacting a measuring rod-shaped measuring element used in a tester with the conveyed conductive sheet, but in this method, Since wrinkles and unevenness occur in the conductive sheet body, a stable electrical contact state cannot be maintained, and an accurate measurement value cannot be obtained, and the conductive sheet body may be damaged.

そこで、こうした課題に対処するための様々な方策が提案されている。例えば、特許文献1では、軸に向かって垂直に絶縁された両端を有する測定用ガイドロールの表面に、走行する導電性フィルムを、抵抗を測定する面が接するように配設し、前記両端を2つの電極として電圧を印加し、電流を測定することによって、電極間の抵抗を測定し、これを導電性フィルムの抵抗とする方法が記載されている。また、特許文献2には、導電性繊維の長手方向の電気的抵抗を連続して測定するに際し、測定回路に4端子法の原理を取り入れることにより、導電性繊維と接触子との接触抵抗の影響を排除し、高精度に測定する方法が記載されている。より具体的には、直列的に配された4つの通電手段(接触子の役目をする金属ロールなどから構成される)に導電性繊維を順次接触させて走行させ、第1及び第4通電手段を介して導電性繊維に電流を供給し、導電性繊維に供給された電流を測定する。同時に、第1及び第4通電手段の間に配された第2及び第3通電手段を介して導電性繊維に生じた電圧降下を測定する。そして、第2及び第3通電手段の間の導電性繊維の電気抵抗を、前記電圧降下に対応する電圧値と前記電流値から求めるものである。
特開平11−148953号公報 特開2001−221819号公報
Therefore, various measures for coping with such problems have been proposed. For example, in Patent Document 1, a running conductive film is disposed on the surface of a measurement guide roll having both ends insulated perpendicularly to an axis so that the resistance measurement surface is in contact with the both ends. A method is described in which a voltage is applied as two electrodes and a current is measured to measure the resistance between the electrodes, which is used as the resistance of the conductive film. Further, in Patent Document 2, when the electrical resistance in the longitudinal direction of the conductive fiber is continuously measured, the contact resistance between the conductive fiber and the contact is obtained by incorporating the principle of the four-terminal method into the measurement circuit. A method of eliminating the influence and measuring with high accuracy is described. More specifically, the first and fourth energization means are driven by sequentially contacting the conductive fibers with four energization means arranged in series (comprising a metal roll or the like serving as a contact). An electric current is supplied to the conductive fiber through the wire, and the current supplied to the conductive fiber is measured. At the same time, a voltage drop generated in the conductive fiber is measured via the second and third energizing means arranged between the first and fourth energizing means. And the electrical resistance of the conductive fiber between the 2nd and 3rd electricity supply means is calculated | required from the voltage value corresponding to the said voltage drop, and the said electric current value.
Japanese Patent Application Laid-Open No. 11-148953 JP 2001-221819 A

上述した特許文献1においては、導電性フィルムに接触しているロールに対して測定子を接触させるため、測定子が導電性フィルムと直接接することがなく測定面を損傷することがないが、正確な電気抵抗を測定するには、被測定物である導電性フィルムとロールとの接触が常に安定している必要がある。しかしながら、実際には、導電性フィルムとロールとの接触圧力や接触面積が経時的に変化し、導電性フィルムとロールとの接触抵抗が変化する。この接触抵抗の変動が測定に影響し、正確な電気抵抗が得られない。   In Patent Document 1 described above, since the measuring element is brought into contact with the roll in contact with the conductive film, the measuring element does not directly contact the conductive film and does not damage the measuring surface. In order to measure the electrical resistance, it is necessary that the contact between the conductive film as the object to be measured and the roll is always stable. However, actually, the contact pressure and contact area between the conductive film and the roll change with time, and the contact resistance between the conductive film and the roll changes. The fluctuation of the contact resistance affects the measurement, and an accurate electric resistance cannot be obtained.

また、特許文献2においては、測定方法に用いられる装置が長手方向に4つの金属ロールを要するなど機械的な構造が複雑であり、導電性繊維がシート状である場合に、幅方向の電気抵抗に関しては構造上測定できない。したがって、導電性シート体の測定に重要となる幅方向の電気抵抗の測定については想定されていないものである。   Further, in Patent Document 2, when the mechanical structure is complicated such that the apparatus used for the measurement method requires four metal rolls in the longitudinal direction, and the conductive fibers are in sheet form, the electrical resistance in the width direction Cannot be measured structurally. Therefore, the measurement of the electrical resistance in the width direction, which is important for the measurement of the conductive sheet body, is not assumed.

そこで、本発明は、搬送する導電性シート体の電気抵抗を安定して精度よく測定することができると共に導電性シート体を損傷することなく測定可能な導電性シート体の電気抵抗測定装置を提供することを目的とするものである。   Therefore, the present invention provides an electrical resistance measuring device for a conductive sheet body that can stably and accurately measure the electrical resistance of the conductive sheet body to be conveyed and can measure without damaging the conductive sheet body. It is intended to do.

本発明に係る導電性シート体の電気抵抗測定装置は、搬送される導電性シート体に圧接するガイドロールの外周面に一対の電流供給電極部を設けると共に当該電流供給電極部の間に一対の電圧測定電極部を設け、前記導電性シート体が各電極部に接触して電気的に導通した状態で前記電流供給電極部の間に供給される電流値及び前記電圧測定電極部の間で測定される電圧値に基づいて前記導電性シート体の電気抵抗値を測定する導電性シート体の電気抵抗測定装置であって、各電極部は、前記ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって導電体が露出して形成されており、各電極部の間には、前記ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって絶縁体が露出して形成されていることを特徴とする。さらに、前記電圧測定電極部の幅は、前記電圧測定電極部の間の絶縁体の幅以下に設定されていることを特徴とする。さらに、前記ガイドロールの両端にはそれぞれ導電体からなる回転軸が突設されると共に前記回転軸にはそれぞれ絶縁体を介してリング状の導電部材が固定されており、前記電流供給電極部はそれぞれ前記回転軸の一方と電気的に接続されており、前記電圧測定電極部はそれぞれ前記導電部材の一方と電気的に接続されており、前記回転軸にはそれぞれ電流供給端子が摺接するように配設されていると共に前記導電部材にはそれぞれ電圧測定端子が摺接するように配設されていることを特徴とする。   The electrical resistance measuring apparatus for a conductive sheet according to the present invention is provided with a pair of current supply electrode portions on the outer peripheral surface of a guide roll pressed against the conductive sheet being conveyed and a pair of current supply electrode portions between the current supply electrode portions. A voltage measurement electrode unit is provided, and a current value supplied between the current supply electrode unit and the voltage measurement electrode unit measured in a state where the conductive sheet body is in electrical contact with each electrode unit. An electrical resistance measuring device for a conductive sheet body that measures an electrical resistance value of the conductive sheet body based on a voltage value applied, wherein each electrode portion is predetermined in the axial direction along the outer peripheral surface of the guide roll. The conductor is exposed over the entire circumference with a width of, and between each electrode portion, the insulator is exposed over the entire circumference with a predetermined width in the axial direction along the outer peripheral surface of the guide roll. It is formed. Furthermore, the width of the voltage measurement electrode part is set to be equal to or less than the width of the insulator between the voltage measurement electrode parts. Furthermore, a rotating shaft made of a conductor projects from both ends of the guide roll, and a ring-shaped conductive member is fixed to the rotating shaft via an insulator, and the current supply electrode portion is Each of the rotating shafts is electrically connected to one of the rotating shafts, and each of the voltage measuring electrode portions is electrically connected to one of the conductive members, and a current supply terminal is in sliding contact with the rotating shaft. The voltage measuring terminals are arranged in sliding contact with the conductive members.

上記のような構成を有することで、搬送される導電性シート体に圧接するガイドロールの外周面に一対の電流供給電極部を設けると共に当該電流供給電極部の間に一対の電圧測定電極部を設け、前記導電性シート体が各電極部に接触して電気的に導通した状態で前記電流供給電極部の間に供給される電流値及び前記電圧測定電極部の間で測定される電圧値に基づいて前記導電性シート体の電気抵抗値を測定するので、4端子法と等価の回路構成で測定することができ、精度の高い測定が可能となる。   By having the configuration as described above, a pair of current supply electrode portions are provided on the outer peripheral surface of the guide roll pressed against the conductive sheet conveyed, and a pair of voltage measurement electrode portions are provided between the current supply electrode portions. Providing a current value supplied between the current supply electrode parts and a voltage value measured between the voltage measurement electrode parts in a state where the conductive sheet body is in electrical contact with each electrode part. Since the electrical resistance value of the conductive sheet body is measured based on this, it can be measured with a circuit configuration equivalent to the four-terminal method, and high-accuracy measurement is possible.

また、各電極部は、ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって導電体が露出して形成されており、各電極部の間には、ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって絶縁体が露出して形成されているので、ガイドロールの軸方向に沿って各電極部が配列されており、ガイドロールの軸方向−すなわち、搬送される導電性シート体の幅方向の電気抵抗を測定することができる。   Further, each electrode portion is formed by exposing the conductor over the entire circumference with a predetermined width in the axial direction along the outer circumferential surface of the guide roll, and between each electrode portion, the outer circumferential surface of the guide roll is formed. Since the insulator is exposed and formed over the entire circumference with a predetermined width in the axial direction, the respective electrode portions are arranged along the axial direction of the guide roll, and the axial direction of the guide roll—that is, the conveyance It is possible to measure the electrical resistance in the width direction of the conductive sheet body.

また、電圧測定電極部の幅は、電圧測定電極部の間の絶縁体の幅以下に設定されているので、測定される電圧値の変動を抑えることができる。すなわち、電圧測定電極部の幅が広いと、測定される電圧値は、2つの電極部の導電性シート体との接触部分の間に様々に設定された測定距離で測定された電圧値の平均的な値となってその分変動が大きくなる。したがって、電圧測定電極部の幅は狭いほうが好ましいが、幅が狭くなると導電性シート体との接触状態が不安定となる。そのため、電圧測定電極部の幅を電圧測定電極部の間の絶縁体の幅以下に設定することで、電圧値の変動を抑え安定して電圧測定ができるようになる。   Moreover, since the width of the voltage measurement electrode part is set to be equal to or less than the width of the insulator between the voltage measurement electrode parts, fluctuations in the measured voltage value can be suppressed. That is, when the width of the voltage measurement electrode portion is wide, the measured voltage value is the average of the voltage values measured at various measurement distances set between the contact portions of the two electrode portions with the conductive sheet body. As a result, the fluctuation increases accordingly. Therefore, it is preferable that the voltage measurement electrode portion has a narrow width. However, when the width is narrow, the contact state with the conductive sheet body becomes unstable. Therefore, by setting the width of the voltage measurement electrode portion to be equal to or less than the width of the insulator between the voltage measurement electrode portions, it becomes possible to stably measure the voltage while suppressing the fluctuation of the voltage value.

そして、ガイドロールの両端にそれぞれ導電体からなる回転軸を突設すると共に回転軸にそれぞれ絶縁体を介してリング状の導電部材を固定し、電流供給電極部をそれぞれ回転軸の一方と電気的に接続し、電圧測定電極部はそれぞれ導電部材の一方と電気的に接続し、回転軸にそれぞれ電流供給端子を摺接するように配設すると共に導電部材にそれぞれ電圧測定端子を摺接するように配設することで、導電体シート体に損傷を与えることなく測定を行うことができる。すなわち、電流供給端子及び電圧測定端子は、いずれもガイドロールの両端部に突設した回転軸部分に配設されており、導電体シート体が接触するガイドロールの外周面とは離れた位置にあるため、導電体シート体に影響を与えることなく、電流を電流供給電極部に供給し、電圧測定電極部の間の電圧を測定することができる。   Then, a rotating shaft made of a conductor is provided at both ends of the guide roll, and a ring-shaped conductive member is fixed to the rotating shaft via an insulator, and the current supply electrode portion is electrically connected to one of the rotating shafts. The voltage measurement electrode part is electrically connected to one of the conductive members, and the current supply terminal is slidably contacted with the rotating shaft and the voltage measurement terminal is slidably contacted with the conductive member. By providing, it can measure, without damaging a conductor sheet | seat body. That is, both the current supply terminal and the voltage measurement terminal are disposed on the rotating shaft portions protruding from both ends of the guide roll, and are located at positions away from the outer peripheral surface of the guide roll that the conductor sheet body contacts. Therefore, the current between the voltage measurement electrode portions can be measured by supplying current to the current supply electrode portion without affecting the conductor sheet body.

以下、本発明の実施形態を図面を用いて説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明に係る実施形態に関する概略斜視図を示している。電気抵抗測定装置1は、後述するような電極部を有する測定用ガイドロール2と、電圧計11及び定電流源12を有する抵抗測定器10を備えてなるもので、導電性シート体14は、図示せぬシート搬送装置により矢印方向に搬送される。そして、導電性シート体14は、測定用ガイドロール2に巻き付けられて搬送方向を変えて搬送され、測定用ガイドロール2に密着した状態で電気抵抗測定装置1により電気抵抗値が測定される。   FIG. 1 shows a schematic perspective view of an embodiment according to the present invention. The electrical resistance measuring device 1 includes a measurement guide roll 2 having an electrode portion as described later, and a resistance measuring device 10 having a voltmeter 11 and a constant current source 12, and the conductive sheet body 14 is It is conveyed in the direction of the arrow by a sheet conveying device (not shown). The conductive sheet body 14 is wound around the measurement guide roll 2 and conveyed while changing the conveyance direction, and the electric resistance value is measured by the electric resistance measurement device 1 in a state of being in close contact with the measurement guide roll 2.

図2は、測定用ガイドロール2の回転軸を通る断面をA−Aの方向からみた概略断面図を示している。測定用ガイドロール2は、絶縁性の合成樹脂材料からなる芯体9の外周面に4つの電極部が配設されている。芯体9の両端部には、一対の電流供給電極部3a及び3bが配設されており、電流供給電極部3a及び3bの間には一対の電圧測定電極部5a及び5bが配設されている。   FIG. 2 is a schematic cross-sectional view of the cross section passing through the rotation axis of the measurement guide roll 2 as seen from the direction AA. The measurement guide roll 2 is provided with four electrode portions on the outer peripheral surface of a core body 9 made of an insulating synthetic resin material. A pair of current supply electrode portions 3a and 3b are disposed at both ends of the core body 9, and a pair of voltage measurement electrode portions 5a and 5b are disposed between the current supply electrode portions 3a and 3b. Yes.

導電性シート体14の製造装置又は検査装置に配設されている巻取りガイドロールやターン用ガイドロールなどのガイドロールのうち、少なくとも1つを測定用ガイドロール2に交換又は改造して用いるとよい。   When at least one of the guide rolls such as the winding guide roll and the turn guide roll disposed in the manufacturing apparatus or the inspection apparatus of the conductive sheet body 14 is replaced or modified with the measurement guide roll 2 and used. Good.

電流供給電極部3a及び3bは、金属材料を筒状に成形して構成されており、測定用ガイドロール2の全周にわたって所定の幅で金属面が露出した状態となっている。そして、電流供給電極部3a及び3bの外端部は閉鎖されて軸体15a及び15bが回転軸方向に沿って突設されており、軸体15a及び15bは電流供給電極部3a及び3bとともに金属材料で一体成形されている。   The current supply electrode portions 3 a and 3 b are configured by molding a metal material into a cylindrical shape, and the metal surface is exposed with a predetermined width over the entire circumference of the measurement guide roll 2. The outer ends of the current supply electrode portions 3a and 3b are closed, and shaft bodies 15a and 15b are projected along the rotation axis direction. The shaft bodies 15a and 15b are made of metal together with the current supply electrode portions 3a and 3b. It is integrally molded with materials.

電圧測定電極部5a及び5bも金属材料を筒状に成形して構成されており、測定用ガイドロール2の全周にわたって所定の幅で金属面が露出した状態となっている。そして、4つの電極部の間には、芯体9が測定用ガイドロール2の全周にわたって所定の幅で露出した状態となっており、各電極部の露出面及び芯体9の露出面は、全体として円柱状の外周面となるようにつなぎ目に段差なく形成されている。芯体9は絶縁体のため、各電極部は電気的に絶縁した状態となっている。   The voltage measurement electrode portions 5a and 5b are also formed by molding a metal material into a cylindrical shape, and the metal surface is exposed with a predetermined width over the entire circumference of the measurement guide roll 2. Between the four electrode portions, the core body 9 is exposed with a predetermined width over the entire circumference of the measurement guide roll 2, and the exposed surface of each electrode portion and the exposed surface of the core body 9 are The joints are formed without any step so as to form a cylindrical outer peripheral surface as a whole. Since the core body 9 is an insulator, each electrode part is in an electrically insulated state.

電極部の形状は、筒状以外にも円柱状に形成したものを用いることもできる。外周面が所定の幅で露出するものであれば、それ以外の部分の形状は特に限定されない。電極部に用いる金属材料としては、無機薬品や有機溶剤に対して耐食性に優れたステンレス鋼が好ましい。   As the shape of the electrode portion, a cylindrical shape other than the cylindrical shape can be used. The shape of the other parts is not particularly limited as long as the outer peripheral surface is exposed with a predetermined width. As the metal material used for the electrode part, stainless steel having excellent corrosion resistance against inorganic chemicals and organic solvents is preferable.

芯体の形状は、一体成形してもよく、分割成形して組み合わせてもよい。また、筒状に形成したり、円柱状に形成することもできる。芯体に用いる絶縁材料としては、同様に耐食性に優れたポリアセタールといった樹脂材料が好ましい。   The shape of the core may be formed integrally or may be divided and combined. Further, it can be formed in a cylindrical shape or a cylindrical shape. As the insulating material used for the core, a resin material such as polyacetal having excellent corrosion resistance is also preferable.

軸体15a及び15bには、絶縁性の合成樹脂材料からなるリング状の絶縁体16a及び16bがそれぞれ嵌合固定されており、リング状の絶縁体16a及び16bの外周にはリング状の導電部材6a及び6bが固定されている。そして、導電部材6aは、芯体9内を通って配設された金属線8aを介して電圧測定電極部5aと電気的に接続されている。金属線8aは、絶縁皮膜で被覆されているため、導電部材6a及び電圧測定電極部5aの間のみを電気的に導通した状態とするようになっている。同様に、導電部材6bは、芯体9内を通って配設された金属線8bを介して電圧測定電極部5bと電気的に接続されている。   Ring-shaped insulators 16a and 16b made of an insulating synthetic resin material are fitted and fixed to the shaft bodies 15a and 15b, respectively. 6a and 6b are fixed. The conductive member 6a is electrically connected to the voltage measurement electrode portion 5a through a metal wire 8a disposed through the core body 9. Since the metal wire 8a is covered with an insulating film, only the conductive member 6a and the voltage measuring electrode portion 5a are electrically connected. Similarly, the conductive member 6b is electrically connected to the voltage measurement electrode portion 5b through a metal wire 8b disposed through the core body 9.

そして、軸体15a及び15bには電流供給端子4a及び4bがそれぞれ当接した状態とされており、導電部材6a及び6bには電圧測定端子7a及び7bがそれぞれ当接した状態となっている。したがって、測定用ガイドロール2が導電性シート体14を搬送中に回転すると、各端子は、軸体又は導電部材に摺接した状態となり、電気的に接続された状態を維持するようになっている。各端子は、例えば、棒状の導電体をバネ等の付勢手段により軸体又は導電部材に圧接するように構成すればよい。   The current supply terminals 4a and 4b are in contact with the shaft bodies 15a and 15b, respectively, and the voltage measurement terminals 7a and 7b are in contact with the conductive members 6a and 6b, respectively. Therefore, when the measurement guide roll 2 is rotated while the conductive sheet body 14 is being conveyed, each terminal is in a state of sliding contact with the shaft body or the conductive member, and maintains an electrically connected state. Yes. Each terminal may be configured so that, for example, a rod-shaped conductor is pressed against the shaft body or the conductive member by a biasing means such as a spring.

そして、電流供給端子4a及び4bには、定電流源12が接続され、電圧測定端子7a及び7bには、電圧計11が接続される。図3は、以上のような構成を等価回路で示している。すなわち、測定用ガイドロール2に導電性シート体14が密着した状態では、各電極部は導電性シート体14を介して電気的に接続された状態となり、図3に示すように4端子法と同様の回路構成となる。定電流源12から流れる定電流iの経路は、電流供給端子4a→軸体15a→電流供給電極部3a→導電性シート体14→電流供給電極部3b→軸体15b→電流供給端子4bとなり、電圧測定端子7aは、導電部材6a→金属線8a→電圧測定電極部5aと接続され、電圧測定端子7bは、導電部材6b→金属線8b→電圧測定電極部5bと接続されて、電圧測定電極部5a及び5bの間の導電性シート体14の電気抵抗値を4端子法により測定することができる。4端子法の場合、電圧計の内部抵抗が非常に高く設定されることにより、定電流源12から供給される電流はすべて導電性シート体に流れる。定電流源12から流れる電流値iと電圧計11で測定された電圧値Vから次の式により電気抵抗値を求めることができる。
R=V/i
A constant current source 12 is connected to the current supply terminals 4a and 4b, and a voltmeter 11 is connected to the voltage measurement terminals 7a and 7b. FIG. 3 shows the above configuration with an equivalent circuit. That is, in a state where the conductive sheet body 14 is in close contact with the measurement guide roll 2, each electrode portion is in a state of being electrically connected via the conductive sheet body 14, and as shown in FIG. The circuit configuration is the same. The path of the constant current i flowing from the constant current source 12 is as follows: current supply terminal 4a → shaft body 15a → current supply electrode portion 3a → conductive sheet body 14 → current supply electrode portion 3b → shaft body 15b → current supply terminal 4b. The voltage measurement terminal 7a is connected to the conductive member 6a → the metal wire 8a → the voltage measurement electrode portion 5a, and the voltage measurement terminal 7b is connected to the conductive member 6b → the metal wire 8b → the voltage measurement electrode portion 5b to obtain the voltage measurement electrode. The electric resistance value of the conductive sheet 14 between the parts 5a and 5b can be measured by the four-terminal method. In the case of the 4-terminal method, since the internal resistance of the voltmeter is set very high, all the current supplied from the constant current source 12 flows through the conductive sheet body. The electric resistance value can be obtained from the current value i flowing from the constant current source 12 and the voltage value V measured by the voltmeter 11 by the following equation.
R = V / i

こうした導電性シート体の電気抵抗値の測定方法としては、JIS K 7194に規定された測定方法がある。この測定方法では、導電性プラスチックの抵抗率を4探針法で試験する方法が規定されており、導電性プラスチックは、80mm×50mmの試験片を用い、その厚さは20mm以下と規定されていることから、導電性シート体の電気抵抗値の標準的な測定方法として用いられている。   As a method for measuring the electrical resistance value of such a conductive sheet body, there is a measurement method defined in JIS K 7194. In this measurement method, a method for testing the resistivity of conductive plastics by a four-probe method is defined, and the conductive plastic is a test piece of 80 mm × 50 mm, and its thickness is defined as 20 mm or less. Therefore, it is used as a standard measuring method for the electric resistance value of the conductive sheet body.

本実施形態では、後述する実施例で実証されるように、上述した電極部の構成を用いて4端子法の回路構成で電気抵抗値を測定するので、高精度の測定を安定して行うことができ、その測定結果は、上記のJIS規格による測定結果とよい相関関係を有している。特に、電圧測定電極部5a及び5bの幅Da及びDbを電圧測定電極部5a及び5bの間隔d以下に設定することで、非常に安定して良好な相関関係を有していることから、導電性シート体の搬送中に連続して電気抵抗値を測定することで、標準的なJIS規格による測定結果に極めて近い測定値を予め求められた相関関係から簡単に算出することが可能となる。したがって、精度の高い測定値が連続して得られるので、導電性シート体のきめ細かい品質チェックを容易に行うことができ、導電性シート体の品質向上に資する。電圧測定電極部5a及び5bの幅Da及びDbが大きいと、測定される電圧値は、2つの電極部の導電性シート体との接触部分の間に様々に設定された測定距離で測定された電圧値の平均的な値となってその分変動が大きくなることから、電圧測定電極部の幅は狭いほうが好ましいが、幅が狭くなると導電性シート体との接触状態が不安定となる。そこで、幅Da及びDbは、間隔dの3%から50%が好ましく、さらに好ましくは5%から10%に設定するとよい。   In this embodiment, as demonstrated in the examples to be described later, since the electrical resistance value is measured with the circuit configuration of the four-terminal method using the above-described configuration of the electrode portion, high-precision measurement can be stably performed. The measurement result has a good correlation with the measurement result according to the above JIS standard. In particular, since the widths Da and Db of the voltage measuring electrode portions 5a and 5b are set to be equal to or less than the distance d between the voltage measuring electrode portions 5a and 5b, the conductive properties are obtained in a very stable manner. By continuously measuring the electric resistance value during conveyance of the conductive sheet body, it is possible to easily calculate a measurement value very close to the measurement result according to the standard JIS standard from the correlation obtained in advance. Therefore, since a highly accurate measurement value is obtained continuously, a fine quality check of the conductive sheet body can be easily performed, which contributes to an improvement in the quality of the conductive sheet body. When the widths Da and Db of the voltage measuring electrode portions 5a and 5b are large, the measured voltage value was measured at various measurement distances set between the contact portions of the two electrode portions with the conductive sheet body. Since the voltage value becomes an average value and the fluctuation increases accordingly, the width of the voltage measurement electrode portion is preferably narrow. However, when the width is narrowed, the contact state with the conductive sheet body becomes unstable. Therefore, the widths Da and Db are preferably set to 3% to 50% of the distance d, and more preferably set to 5% to 10%.

また、こうした精度の高い測定値が導電性シート体の搬送中にリアルタイムで得ることができることから、測定値の変動に応じて導電性シート体の製造工程を変化させることも可能となる。例えば、電気抵抗値が上昇した場合には、金属メッキにより導電性を付与するメッキ槽への浸漬時間を長くするために導電性シート体の搬送速度を調整することもできる。   In addition, since such a highly accurate measurement value can be obtained in real time during the conveyance of the conductive sheet body, it becomes possible to change the manufacturing process of the conductive sheet body in accordance with the variation of the measurement value. For example, when the electrical resistance value is increased, the conveyance speed of the conductive sheet can be adjusted in order to increase the immersion time in a plating tank that imparts conductivity by metal plating.

また、電流供給端子4a及び4b並びに電圧測定端子7a及び7bを軸体15a及び15bにそれぞれ配設しているので、これらの端子は導電性シート体に接触せず、導電性シート体の搬送に何ら支障が生じることなく安定して測定を行うことができる。   In addition, since the current supply terminals 4a and 4b and the voltage measuring terminals 7a and 7b are respectively disposed on the shaft bodies 15a and 15b, these terminals do not contact the conductive sheet body and are used for transporting the conductive sheet body. Measurement can be performed stably without any trouble.

また、測定対象となる導電性シート体14としては、上記のJIS規格で抵抗測定が可能な導電性を有するシート状のものであれば測定できる。例えば、導電性繊維からなる布帛や、非導電性繊維からなる布帛の繊維表面に導電性被膜を形成させたもの、非導電性繊維からなる布帛あるいは樹脂製フィルムの一面に導電性皮膜を積層させたものなどを挙げることができ、特に限定されない。また、繊維やフィルムの材質もいかなるものであってもよく、本発明の目的を逸脱するものではない。特に、本発明の場合、網目が形成されている織編物のようにプローブを安定して接触させるのが難しいものであっても安定して測定することができる。   Moreover, as the electroconductive sheet body 14 used as a measuring object, if it is a sheet-like thing which has the electroconductivity which can measure resistance by said JIS specification, it can measure. For example, a conductive film is formed on the surface of a cloth made of conductive fibers, a cloth made of non-conductive fibers, a conductive film formed on the fiber surface, a cloth made of non-conductive fibers, or a resin film. There is no particular limitation. Further, the material of the fiber or film may be any material and does not depart from the object of the present invention. In particular, in the case of the present invention, even if it is difficult to contact the probe stably, such as a woven or knitted fabric in which a mesh is formed, it can be measured stably.

本発明に係る測定装置を用いた測定結果について、以下に説明する。   The measurement results using the measuring apparatus according to the present invention will be described below.

[実施例1]
図1に示す電気抵抗測定装置1を用い、抵抗測定器10として、ミリオームハイテスタ3220(日置電機株式会社製)を使用した。抵抗測定器10の内部定電流源から電流供給端子4a及び4bを通じて電流供給電極部3a及び3bに印加し、電圧測定電極部6a及び6b(幅10mm)の間に生じる電圧を電圧測定端子7a及び7bを介して内部電圧計により測定し、印加電流値と測定電圧値から抵抗値を算出した。導電性シート体として次の導電性織物Aを用いた。
[Example 1]
A milliohm high tester 3220 (manufactured by Hioki Electric Co., Ltd.) was used as the resistance measuring instrument 10 using the electrical resistance measuring apparatus 1 shown in FIG. The voltage generated between the voltage measurement electrode portions 6a and 6b (width 10 mm) is applied to the current supply electrode portions 3a and 3b from the internal constant current source of the resistance measuring instrument 10 through the current supply terminals 4a and 4b. The resistance value was calculated from the applied current value and the measured voltage value. The following conductive fabric A was used as the conductive sheet.

<導電性織物A>
経糸、緯糸ともにポリエチレンテレフタレート製マルチフィラメント糸条(56dtex/72f)から構成され、経糸密度が155本/インチ、緯糸密度が118本/インチである平織物の繊維表面に、無電解めっきにより銅被膜を形成し、さらに無電解めっきによりニッケル被膜を積層させたもの。長さ100m。幅(長手方向に垂直な方向の長さ)134cm。
<Conductive fabric A>
Both warp and weft are made of polyethylene terephthalate multifilament yarn (56 dtex / 72f), and the copper surface is coated by electroless plating on the fiber surface of a plain woven fabric with a warp density of 155 yarns / inch and a weft density of 118 yarns / inch. And a nickel film laminated by electroless plating. Length 100m. Width (length in a direction perpendicular to the longitudinal direction) 134 cm.

導電性織物Aの長手方向に10mから90mまで10m間隔で測定位置を決め、以下の2つの設定値を変化させて各測定位置で電気抵抗値を算出した。
(1)ロールに対する巻き付け角度θ(ロールとの接触面積と相関関係有り)
90度(接触面積7.85cm2
120度(接触面積10.47cm2
(2)導電性シート体に加えられる張力F(ロール表面への接触圧力と相関関係あり)
2.2kgf〜14.6kgfの間で8段階に設定
以上の測定条件による測定結果を図4に示す。
Measurement positions were determined at intervals of 10 m from 10 m to 90 m in the longitudinal direction of the conductive fabric A, and the following two set values were changed to calculate an electrical resistance value at each measurement position.
(1) Winding angle θ with respect to the roll (correlation with the contact area with the roll)
90 degrees (contact area 7.85 cm 2 )
120 degrees (contact area 10.47 cm 2 )
(2) Tension F applied to the conductive sheet (correlation with the contact pressure on the roll surface)
FIG. 4 shows the measurement results under the measurement conditions set in 8 steps between 2.2 kgf and 14.6 kgf.

[比較例1]
実施例1において、内部電圧計及び内部定電流源をともに電圧測定端子7a及び7bに接続し、意図的に2端子法で測定するように設定し、その他の条件は、実施例1と同様に設定して測定を行った。測定結果を図5に示す。
[Comparative Example 1]
In Example 1, both the internal voltmeter and the internal constant current source are connected to the voltage measuring terminals 7a and 7b, and are intentionally set to measure by the two-terminal method. Other conditions are the same as in Example 1. Measurement was performed with setting. The measurement results are shown in FIG.

[試験例1]
実施例1において設定した測定位置で、電圧測定電極部の間の導電性織物AをJIS規格(JIS K 7194)に従って切断して試験片を作成し、Loresta−EP MCP−T360 ESPタイプの低抵抗率計(三菱化学株式会社製)を用いて4探針法により抵抗を測定した。測定結果を、実施例1で測定した電気抵抗値の平均値、比較例1で測定した電気抵抗値の平均値と共に、図6に示す。
[Test Example 1]
At the measurement position set in Example 1, the conductive fabric A between the voltage measurement electrode portions was cut according to JIS standard (JIS K 7194) to create a test piece, which was a low resistance of Loresta-EP MCP-T360 ESP type. Resistance was measured by a four-probe method using a rate meter (manufactured by Mitsubishi Chemical Corporation). The measurement results are shown in FIG. 6 together with the average value of the electrical resistance value measured in Example 1 and the average value of the electrical resistance value measured in Comparative Example 1.

図4及び図5を比較すれば明らかなように、実施例1で測定した場合の抵抗測定値は、ガイドロールとの接触面積及びテンションのバラツキによる影響を受けることがなく、安定した測定結果を得ることができる。また、図6に示すように、試験例1で測定した抵抗測定値と比較すると、実施例1で測定した場合の抵抗値は、試験例1での値と高い相関関係があり、本発明に係る測定装置を用いることで、4探針法を用いた低抵抗率計と同様の高い精度で導電性シート体の電気抵抗値を得ることができる。そして、導電性シート体を搬送中に連続して測定が可能であることから、従来検査工程で使用されてきた4探針法を用いた低抵抗率計による測定作業を大幅に簡略化することが可能となる。   As is clear from comparison between FIG. 4 and FIG. 5, the resistance measurement value measured in Example 1 is not affected by variations in contact area with the guide roll and tension, and stable measurement results are obtained. Obtainable. Further, as shown in FIG. 6, when compared with the resistance measurement value measured in Test Example 1, the resistance value measured in Example 1 has a high correlation with the value in Test Example 1, and the present invention By using such a measuring device, it is possible to obtain the electrical resistance value of the conductive sheet body with the same high accuracy as the low resistivity meter using the four-probe method. Since the conductive sheet can be continuously measured while being conveyed, the measurement work by the low resistivity meter using the four-probe method that has been used in the conventional inspection process is greatly simplified. Is possible.

本発明に係る測定装置において電圧測定電極部の幅を変化させた場合の測定結果について、以下に説明する。本実施例で用いた導電性シート体は次の通りである。   The measurement results when the width of the voltage measurement electrode unit is changed in the measurement apparatus according to the present invention will be described below. The conductive sheet used in this example is as follows.

<導電性織物B>
経糸、緯糸ともにポリエチレンテレフタレート製マルチフィラメント糸条(56dtex/72f)から構成され、経糸密度が152本/インチ、緯糸密度が125本/インチである平織物の繊維表面に、無電解めっきにより銅被膜を形成し、さらに無電解めっきによりニッケル被膜を積層させたもの。長さ300m。幅135cm。
<Conductive fabric B>
Both the warp and weft are made of polyethylene terephthalate multifilament yarn (56 dtex / 72f), and the copper surface is coated by electroless plating on the fiber surface of a plain woven fabric having a warp density of 152 yarns / inch and a weft density of 125 yarns / inch. And a nickel film laminated by electroless plating. Length 300m. Width 135cm.

[実施例2]
実施例1と同様の測定装置を用い、一対の電圧測定電極部の間の間隔dを100mmに設定し、電極の幅Da及びDbを10mm及び100mmに設定して測定した。導電性シート体として導電性織物Bをガイドロールに90度巻き付くようにセットし、8.2kgfの張力を付与した。測定は、導電性織物Bを固定しガイドロールを手動で90度ずつ回転させて導電性織物Bに対して摺動させ、ガイドロールの接触位置を変化させて行った。なお、電極幅が10mmの場合電極部と導電性織物Bとの接触面積は7.85cm2となり、電極幅が100mmの場合には78.5cm2であった。測定結果を図7に示す。
[Example 2]
Using the same measurement apparatus as in Example 1, the distance d between the pair of voltage measurement electrode portions was set to 100 mm, and the electrode widths Da and Db were set to 10 mm and 100 mm. The conductive fabric B was set as a conductive sheet body so as to be wound around the guide roll 90 degrees, and a tension of 8.2 kgf was applied. The measurement was performed by fixing the conductive fabric B, manually rotating the guide roll by 90 degrees and sliding it on the conductive fabric B, and changing the contact position of the guide roll. When the electrode width was 10 mm, the contact area between the electrode portion and the conductive fabric B was 7.85 cm 2 , and when the electrode width was 100 mm, it was 78.5 cm 2 . The measurement results are shown in FIG.

図7から明らかなように、電極幅が10mm及び100mmの場合に、導電性織物に対してガイドローラの接触位置が変化しても安定して測定を行うことができる。特に、10mmの場合の方が100mmの場合よりも安定していることがわかる。   As is apparent from FIG. 7, when the electrode width is 10 mm and 100 mm, the measurement can be stably performed even if the contact position of the guide roller with respect to the conductive fabric changes. In particular, it can be seen that the case of 10 mm is more stable than the case of 100 mm.

本発明に係る測定装置において電圧測定電極部の幅を変化させた場合の測定結果とJIS規格(JIS K 7194)に基づく測定結果との相関関係について、以下に説明する。本実施例で用いた導電性シート体は、実施例2で用いた導電性織物Bと次の2つの導電性織物である。   The correlation between the measurement result when the width of the voltage measurement electrode unit is changed in the measurement apparatus according to the present invention and the measurement result based on the JIS standard (JIS K 7194) will be described below. The conductive sheet used in this example is the conductive fabric B used in Example 2 and the following two conductive fabrics.

<導電性織物C>
経糸、緯糸ともにポリエチレンテレフタレート製マルチフィラメント糸条(56dtex/72f)から構成され、経糸密度が180本/インチ、緯糸密度が120本/インチである平織物の繊維表面に、無電解めっきにより銅被膜を形成し、さらに無電解めっきによりニッケル被膜を積層させたもの。長さ300m。幅100cm。
<Conductive fabric C>
Both warp and weft are made of polyethylene terephthalate multifilament yarn (56dtex / 72f), and copper coating is applied to the surface of plain woven fabric with warp density of 180 / inch and weft density of 120 / inch by electroless plating. And a nickel film laminated by electroless plating. Length 300m. Width 100cm.

<導電性織物D>
経糸、緯糸ともにポリエチレンテレフタレート製モノフィラメント糸条(13dtex)から構成され、経糸密度、緯糸密度とも136本/インチである平織物の繊維表面に、無電解めっきにより銅被膜を形成させたもの。長さ300m。幅145cm。
<Conductive fabric D>
Both warp and weft are made of polyethylene terephthalate monofilament yarn (13 dtex), and a copper film is formed by electroless plating on the surface of a plain woven fabric having a warp density and a weft density of 136 yarns / inch. Length 300m. Width 145cm.

[実施例3]
実施例2と同様の測定装置を用い 導電性織物B〜Dを順次搬送させながら10m間隔で測定を行った。まず、測定装置は、電圧測定電極部の幅を10mmに設定し、導電性織物の10m、20m、30mの測定位置で測定し、次に、測定装置の電圧測定電極部の幅を100mmに変更して、導電性織物の40m、50m、60mの測定位置で測定した。なお、ロールに対する巻き付け角度、電極との接触面積及び導電性織物に付与する張力は実施例2の場合と同一に設定した。
[Example 3]
Using the same measuring apparatus as in Example 2, the conductive fabrics B to D were measured at intervals of 10 m while being sequentially conveyed. First, the measuring device sets the width of the voltage measuring electrode section to 10 mm, measures at the measurement positions of 10 m, 20 m, and 30 m of the conductive fabric, and then changes the width of the voltage measuring electrode section of the measuring apparatus to 100 mm. And it measured in the measurement position of 40m, 50m, and 60m of conductive textiles. In addition, the winding angle with respect to the roll, the contact area with the electrode, and the tension applied to the conductive fabric were set to be the same as those in Example 2.

[試験例2]
次いで、導電性織物から10m〜60mの各測定位置で、電圧測定電極部の間の導電性織物をJIS規格(JIS K 7194)に従って切断して試験片を作成し、試験例1と同様に4探針法により抵抗を測定した。
[Test Example 2]
Next, at each measurement position from 10 m to 60 m from the conductive fabric, the conductive fabric between the voltage measurement electrode portions was cut according to the JIS standard (JIS K 7194) to create a test piece. Resistance was measured by the probe method.

実施例3及び試験例2の測定結果を図8に示す。図8から明らかなように、電極幅が10mm及び100mmでは、各導電性織物の実施例3及び試験例2の測定値は極めてよい相関関係を有し、シート体の種類や搬送動作に影響を受けることなく安定して精度の高い抵抗値を測定できることがわかる。また、電極幅が10mmと100mmの場合を比較すると、100mmの方がバラツキが出てきていることから、電圧測定電極部の間の間隔(100mm)よりも電極幅が大きくなると、バラツキが大きくなって4探針法による測定値との誤差が大きくなると考えられる。したがって、電圧測定電極部の電極幅は、その間隔以下に設定することが望ましい。電極幅が10mmでは極めて相関関係のよいデータが得られており、電極幅が狭い方がより安定したデータを得ることができると考えられるが、電極幅が狭くなると導電性織物との接触状態が搬送中に不安定になりやすく、こうした点を考慮すれば、5mmから10mmの幅とすることが好ましい。   The measurement results of Example 3 and Test Example 2 are shown in FIG. As is apparent from FIG. 8, when the electrode width is 10 mm and 100 mm, the measured values of Example 3 and Test Example 2 of each conductive fabric have a very good correlation, which affects the type of sheet body and the conveying operation. It can be seen that a highly accurate resistance value can be measured stably without receiving. In addition, when the electrode width is 10 mm and 100 mm, there is more variation in 100 mm. Therefore, when the electrode width is larger than the interval (100 mm) between the voltage measurement electrode portions, the variation becomes larger. Therefore, it is considered that the error from the measured value by the 4-probe method becomes large. Therefore, it is desirable to set the electrode width of the voltage measurement electrode portion to be equal to or less than the interval. When the electrode width is 10 mm, highly correlated data is obtained, and it is considered that more stable data can be obtained when the electrode width is narrow. However, when the electrode width is narrowed, the contact state with the conductive fabric is reduced. In view of these points, the width is preferably 5 mm to 10 mm.

本発明に係る実施形態に関する概略斜視図である。It is a schematic perspective view regarding embodiment which concerns on this invention. 図1においてローラの軸方向のA−Aからみた概略断面図である。It is a schematic sectional drawing seen from AA of the axial direction of a roller in FIG. 本実施形態の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of this embodiment. 実施例1に関する測定結果を示すグラフである。3 is a graph showing measurement results regarding Example 1. 比較例1に関する測定結果を示すグラフである。10 is a graph showing measurement results regarding Comparative Example 1. 実施例1、比較例1及び試験例1の測定結果を比較するグラフである。It is a graph which compares the measurement result of Example 1, the comparative example 1, and the test example 1. FIG. 実施例2に関する測定結果を示すグラフである。6 is a graph showing measurement results regarding Example 2. 実施例2と試験例2の測定結果の相関関係を示すグラフである。It is a graph which shows the correlation of the measurement result of Example 2 and Test Example 2.

符号の説明Explanation of symbols

1 電気抵抗測定装置
2 測定用ガイドロール
3a 電流供給電極部
3b 電流供給電極部
4 電流供給端子
5a 電圧測定電極部
5b 電圧測定電極部
6a 導電部材
6b 導電部材
7 電圧測定端子
8a 金属線
8b 金属線
9 芯体
10 抵抗測定器
11 電圧計
12 定電流源
1 Electrical Resistance Measuring Device 2 Guide Roll for Measurement
3a Current supply electrode
3b Current supply electrode 4 Current supply terminal
5a Voltage measurement electrode
5b Voltage measurement electrode
6a Conductive member
6b Conductive member 7 Voltage measurement terminal
8a metal wire
8b Metal wire 9 core
10 Resistance measuring instrument
11 Voltmeter
12 Constant current source

Claims (3)

搬送される導電性シート体に圧接するガイドロールの外周面に一対の電流供給電極部を設けると共に当該電流供給電極部の間に一対の電圧測定電極部を設け、前記導電性シート体が各電極部に接触して電気的に導通した状態で前記電流供給電極部の間に供給される電流値及び前記電圧測定電極部の間で測定される電圧値に基づいて前記導電性シート体の電気抵抗値を測定する導電性シート体の電気抵抗測定装置であって、各電極部は、前記ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって導電体が露出して形成されており、各電極部の間には、前記ガイドロールの外周面に沿って軸方向に所定の幅で全周にわたって絶縁体が露出して形成されていることを特徴とする導電性シート体の電気抵抗測定装置。   A pair of current supply electrode portions are provided on the outer peripheral surface of the guide roll that is in pressure contact with the conveyed conductive sheet body, and a pair of voltage measurement electrode portions are provided between the current supply electrode portions. The electrical resistance of the conductive sheet body based on the current value supplied between the current supply electrode parts and the voltage value measured between the voltage measurement electrode parts in a state of being in electrical contact with the part An electrical resistance measuring device for a conductive sheet body for measuring a value, wherein each electrode portion is formed by exposing the conductor over the entire circumference with a predetermined width in the axial direction along the outer circumferential surface of the guide roll. And an insulating material is exposed between the electrode portions along the outer peripheral surface of the guide roll in the axial direction with a predetermined width over the entire circumference. Resistance measuring device. 前記電圧測定電極部の幅は、前記電圧測定電極部の間の絶縁体の幅以下に設定されていることを特徴とする請求項1に記載の導電性シート体の電気抵抗測定装置。   2. The electrical resistance measurement apparatus for a conductive sheet according to claim 1, wherein a width of the voltage measurement electrode portion is set to be equal to or less than a width of an insulator between the voltage measurement electrode portions. 前記ガイドロールの両端にはそれぞれ導電体からなる回転軸が突設されると共に前記回転軸にはそれぞれ絶縁体を介してリング状の導電部材が固定されており、前記電流供給電極部はそれぞれ前記回転軸の一方と電気的に接続されており、前記電圧測定電極部はそれぞれ前記導電部材の一方と電気的に接続されており、前記回転軸にはそれぞれ電流供給端子が摺接するように配設されていると共に前記導電部材にはそれぞれ電圧測定端子が摺接するように配設されていることを特徴とする請求項1又は2に記載の導電性シート体の電気抵抗測定装置。   Rotating shafts made of a conductor project from both ends of the guide roll, and ring-shaped conductive members are fixed to the rotating shafts via insulators, respectively, and the current supply electrode portions are respectively The voltage measuring electrode portion is electrically connected to one of the conductive members, and the current supply terminal is slidably in contact with the rotating shaft. The electrical resistance measuring device for a conductive sheet according to claim 1, wherein a voltage measuring terminal is slidably contacted with each of the conductive members.
JP2004219210A 2004-07-27 2004-07-27 Electric resistance measuring device of conductive sheet body Pending JP2006038646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219210A JP2006038646A (en) 2004-07-27 2004-07-27 Electric resistance measuring device of conductive sheet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219210A JP2006038646A (en) 2004-07-27 2004-07-27 Electric resistance measuring device of conductive sheet body

Publications (1)

Publication Number Publication Date
JP2006038646A true JP2006038646A (en) 2006-02-09

Family

ID=35903795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219210A Pending JP2006038646A (en) 2004-07-27 2004-07-27 Electric resistance measuring device of conductive sheet body

Country Status (1)

Country Link
JP (1) JP2006038646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226634A (en) * 2016-08-12 2016-12-14 杭州全盛机电科技有限公司 The multichannel insulation automatic checkout equipment of conducting slip ring and detection method thereof
JP2018184625A (en) * 2017-04-25 2018-11-22 名古屋メッキ工業株式会社 Metallic roller, electric resistance measuring means, and plating apparatus
KR102429423B1 (en) * 2022-05-25 2022-08-04 주식회사 에너피아 Resistance measuring apparatus for only heating film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226634A (en) * 2016-08-12 2016-12-14 杭州全盛机电科技有限公司 The multichannel insulation automatic checkout equipment of conducting slip ring and detection method thereof
CN106226634B (en) * 2016-08-12 2023-01-10 杭州全盛机电科技有限公司 Multi-path insulation automatic detection equipment of conductive slip ring and detection method thereof
JP2018184625A (en) * 2017-04-25 2018-11-22 名古屋メッキ工業株式会社 Metallic roller, electric resistance measuring means, and plating apparatus
KR102429423B1 (en) * 2022-05-25 2022-08-04 주식회사 에너피아 Resistance measuring apparatus for only heating film

Similar Documents

Publication Publication Date Title
JP4846452B2 (en) Brush member, and transfer device and image forming apparatus using the same
US8398827B2 (en) Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film with plated coating film
US11353366B2 (en) Method for producing a textile sensor
RU2600501C2 (en) Flexible current sensor arrangement
JP2006038646A (en) Electric resistance measuring device of conductive sheet body
KR20200135965A (en) Resistance measuring device, film manufacturing device, and conductive film manufacturing method
JP4448732B2 (en) Circuit board inspection equipment
EP3447514B1 (en) Magneto-impedance sensor
JP3668559B2 (en) Roller electrode for surface resistance measurement and surface resistance measuring device
US20120262191A1 (en) Extension sensor and method for measuring an extension of a textile
JP5214898B2 (en) FEEDING METHOD, CONTINUOUS ELECTROLYTIC PLATING APPARATUS FOR WEB, AND METHOD FOR PRODUCING PLASTIC FILM WITH PLATING FILM
KR101597028B1 (en) Estimation method and device of superconducting wire
US7645515B2 (en) Transfer arrangement and image forming apparatus
JP7299005B2 (en) Electrical resistance measuring device for conductive fiber thread
JP5029905B2 (en) Apparatus and measuring method for measuring electrical resistance of long sheet
KR100768256B1 (en) Flexible flat cable plating electrode
JP4474874B2 (en) Aluminum electrolytic capacitor manufacturing method and connection resistance inspection apparatus using the same
JP2001221819A (en) Method for measuring electrical resistance of conductive fiber and measurement apparatus thereof
US6498919B2 (en) High fatigue resistant metal sheet and fixing belt and fixing apparatus using the same and evaluation apparatus of metal material fatigue resistance and method thereof
JPH0954126A (en) Apparatus and method for measurement of volume resistance of sheet
US20130264331A1 (en) Sheet heater
HU192083B (en) Testing probe for testing printed wiring and printed circuit panels
VANDENBERG et al. Evaluating the pH sensitivity of carbon nanotube-polyaniline thin films with different dopants
JP2023057667A (en) Bend sensor and manufacturing method for bend sensor
JPH0484779A (en) Detection of partial discharge from electric power cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Effective date: 20091016

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202