JP2006038623A - Nuclear power generation plant with boiling water reactor - Google Patents

Nuclear power generation plant with boiling water reactor Download PDF

Info

Publication number
JP2006038623A
JP2006038623A JP2004218660A JP2004218660A JP2006038623A JP 2006038623 A JP2006038623 A JP 2006038623A JP 2004218660 A JP2004218660 A JP 2004218660A JP 2004218660 A JP2004218660 A JP 2004218660A JP 2006038623 A JP2006038623 A JP 2006038623A
Authority
JP
Japan
Prior art keywords
water
heat removal
residual heat
nuclear power
removal system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218660A
Other languages
Japanese (ja)
Other versions
JP4352249B2 (en
Inventor
Hideyuki Hosokawa
秀幸 細川
Naoshi Usui
直志 碓井
Hiromitsu Inagaki
博光 稲垣
Michiaki Okamoto
道明 岡本
Hidetsugu Okada
英嗣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2004218660A priority Critical patent/JP4352249B2/en
Publication of JP2006038623A publication Critical patent/JP2006038623A/en
Application granted granted Critical
Publication of JP4352249B2 publication Critical patent/JP4352249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear power generation plant with a boiling water reactor including a means which can introduce to the residual heat removal systems the water with its quality that can suppress the quantity of generated corrosion products in the storage of carbon steel pipes composing residual heat removal systems during the normal operation of the reactor. <P>SOLUTION: During the operation of the reactor, pipes in the residual heat removal systems 17 to 25 are stored in a condition where they are filled with suppression pool water. In order to restrain the generation of iron hydroxide from the carbon steel pipes, it is necessary to control the concentration of dissolved oxygen and the conductivity of the stored water. As substitute water systems which can control the conductivity and the concentration of the dissolved oxygen, a device 31 (a nitrogen gas bubbling device) for the deoxidization treatment of the stored water, a device 33 for the desalination treatment of it, a valve 35 for supplying the stored water, and a pump 36, are provided. When the residual heat removal systems are stored with them filled with water during the operation of the reactor, the water in a substitute water storage tank 30 which has undergone at least one of the deoxidization treatment and the desalination treatment is introduced to the residual heat removal systems as the stored water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、沸騰水型原子力発電プラント(BWR)において余熱除去系統(残留熱除去系統)の線量率上昇の抑制に好適な余熱除去系統配管の保管方法に係り、BWR運転中で余熱除去系統停止中に配管表面での鉄腐食生成物の発生を抑制することにより、BWR停止中で余熱除去系統運転時の余熱除去系統配管への炉水中に含まれる放射性核種の付着を抑制する手段に関する。   The present invention relates to a method for storing a residual heat removal system pipe suitable for suppressing an increase in the dose rate of a residual heat removal system (residual heat removal system) in a boiling water nuclear power plant (BWR), and the residual heat removal system is stopped during BWR operation. It is related with the means which suppresses adhesion of the radionuclide contained in the reactor water to the residual heat removal system piping at the time of a residual heat removal system operation | movement at the time of BWR stop by suppressing generation | occurrence | production of the iron corrosion product in a piping surface inside.

BWRでは、燃料で発生した熱を原子炉圧力容器内の冷却水に効率的に移して蒸気にするために、再循環ポンプやインターナルポンプを用いて、冷却水を強制循環させる。原子炉内で発生した蒸気は、炉心上部に設けられたセパレータおよびドライヤで湿分を除去した後、タービンに送られる。一部の蒸気は、タービン抽気として取り出され、高圧ヒータおよび低圧ヒータの熱源として利用され、他の大部分の蒸気は、発電に利用された後、復水器で凝縮されて水に戻る。   In BWR, cooling water is forcibly circulated using a recirculation pump or an internal pump in order to efficiently transfer the heat generated in the fuel to the cooling water in the reactor pressure vessel to produce steam. The steam generated in the nuclear reactor is sent to the turbine after removing moisture with a separator and a dryer provided in the upper part of the core. Some steam is extracted as turbine bleed air and used as a heat source for high and low pressure heaters, and most of the other steam is used for power generation and then condensed in a condenser and returned to water.

復水は、復水器内でほぼ完全に脱気され、炉心での水の放射線分解により発生した酸素および水素もほぼ完全に除去される。復水は、給水として原子炉に再供給される。   The condensate is almost completely degassed in the condenser, and oxygen and hydrogen generated by radiolysis of water in the core are almost completely removed. Condensate is re-supplied to the reactor as feed water.

その際、原子炉での放射性腐食生成物の発生を抑制するために、復水中の主として金属不純物を除去する目的で、復水全量を脱塩処理装置などのイオン交換樹脂濾過装置で濾過し、次に、多段の低圧ヒータおよび高圧ヒータで200℃近くまで加熱する。   At that time, in order to suppress the generation of radioactive corrosion products in the nuclear reactor, in order to mainly remove metal impurities in the condensate, the total amount of the condensate is filtered with an ion exchange resin filtration device such as a desalination treatment device, Next, it heats to near 200 degreeC with a multistage low pressure heater and a high pressure heater.

一方、腐食生成物は、圧力容器内や再循環系などの接水部からも発生し、炉内を循環する放射性腐食生成物の源となるので、これらの主要な一次系構造材には、原則として、腐食の少ないステンレス鋼,ステライト鋼などの不銹鋼が使用されている。   On the other hand, the corrosion products are also generated from the water contact parts such as the pressure vessel and recirculation system, and become the source of radioactive corrosion products circulating in the furnace. As a rule, stainless steel and stainless steel such as stellite steel with low corrosion are used.

低合金鋼製の原子炉圧力容器には、ステンレス鋼の内面肉盛りがなされ、低合金鋼が直接炉水と接触することを防いでいる。このような材料上の配慮に加えて、炉水の一部を炉水浄化装置により浄化し、炉水中に僅かに生成する金属不純物を積極的に除去している。   The reactor pressure vessel made of low-alloy steel is built up with an inner surface of stainless steel to prevent the low-alloy steel from coming into direct contact with the reactor water. In addition to such material considerations, a portion of the reactor water is purified by a reactor water purification device to positively remove metal impurities that are slightly generated in the reactor water.

しかし、このような材料および水質管理による腐食抑制対策にもかかわらず、炉水中に極僅かな金属不純物が存在することは避けられず、一部の金属不純物は、金属酸化物として燃料棒の沸騰表面に付着する。   However, in spite of such corrosion control measures by material and water quality control, it is inevitable that very few metal impurities exist in the reactor water, and some metal impurities are boiled in the fuel rods as metal oxides. Adhere to the surface.

燃料棒表面に付着した金属元素は、燃料から放射される中性子の照射を受けて原子核反応を起こし、コバルト60,コバルト58,クロム51,マンガン54などの放射性核種を生成する。これらの放射性核種は、大部分が酸化物の形態で、燃料棒表面に付着したままである。   The metal element attached to the surface of the fuel rod undergoes a nuclear reaction upon irradiation with neutrons emitted from the fuel, and generates radionuclides such as cobalt 60, cobalt 58, chromium 51, and manganese 54. These radionuclides are mostly in the form of oxides and remain attached to the fuel rod surface.

これらの放射性核種の一部は、取り込まれている酸化物の溶解度に応じて溶出したり、クラッドと呼ばれる不溶性固体として炉水中に再放出されたりする。これらの放射性物質は、炉水浄化系によって取り除かれる。   Some of these radionuclides are eluted depending on the solubility of the incorporated oxide or re-released into the reactor water as an insoluble solid called a clad. These radioactive materials are removed by the reactor water purification system.

除去できなかった放射性物質は、炉水とともに再循環系などを循環している間に、構造材接水部表面に蓄積していく。その結果、構造材表面から放射線が放射され、定期点検作業時の従事者に放射線被曝が生じる。作業被曝の線量は、各人ごとに規定値を超えないように管理されている。   The radioactive material that could not be removed accumulates on the surface of the wetted part of the structural material while circulating in the recirculation system together with the reactor water. As a result, radiation is radiated from the surface of the structural material, and radiation exposure occurs to workers during regular inspection work. The dose of work exposure is controlled so that it does not exceed the specified value for each person.

近年この規定値が引き下げられ、経済的に可能な限り各人の被曝線量を低くする必要が生じてきている。そこで配管への放射性核種付着を低減する種々の方法や、配管への放射性核種付着の駆動力となる炉水放射性核種濃度を低減する種々の方法が検討されている。   In recent years, this specified value has been reduced, and it has become necessary to reduce the exposure dose of each person as economically as possible. Therefore, various methods for reducing the attachment of radionuclide to the pipe and various methods for reducing the concentration of the radionuclide in the reactor water that serves as a driving force for the attachment of the radionuclide to the pipe have been studied.

このような方法の一つとして、亜鉛などの金属イオンを炉水中に共存させ、炉水と接触する再循環系配管表面に亜鉛を含む緻密な酸化皮膜を形成させ、酸化皮膜中へのコバルト60,コバルト58などの放射性核種の取り込みを抑制する方法が提案されている(例えば特許文献1参照)。   As one of such methods, metal ions such as zinc are allowed to coexist in the reactor water, a dense oxide film containing zinc is formed on the surface of the recirculation piping that contacts the reactor water, and cobalt 60 into the oxide film is formed. , A method for suppressing the uptake of radionuclides such as cobalt 58 has been proposed (see, for example, Patent Document 1).

原子炉運転中に炉水が通水される再循環系配管および炉水浄化系配管に対して一定条件で予備酸化皮膜を形成させる技術も提案されている(例えば特許文献2参照)。   There has also been proposed a technique for forming a pre-oxidized film under certain conditions on a recirculation system pipe and a reactor water purification system pipe through which reactor water is passed during operation of the nuclear reactor (see, for example, Patent Document 2).

しかし、これらの技術では、原子炉停止操作中に炉水が通水される余熱除去系統については、考慮されておらず、炉水中の放射性核種の付着抑制対策は、余熱除去系統には、及んでいなかった。   However, these technologies do not take into account the residual heat removal system through which reactor water is passed during the reactor shutdown operation, and measures to suppress the attachment of radionuclides in the reactor water extend to the residual heat removal system. It was n’t.

したがって、原子炉停止時の余熱除去系統運用によって、余熱除去系統が放射性核種を含む炉水に接触することで放射性核種の余熱除去系統への付着が起こり、定期点検作業時の被曝源となる。   Therefore, when the residual heat removal system is operated when the reactor is shut down, the residual heat removal system comes into contact with the reactor water containing the radionuclide, so that the radionuclide adheres to the residual heat removal system and becomes an exposure source during the periodic inspection work.

特に、再循環系のない改良型沸騰水型軽水炉では、定期点検作業時の被曝に与える寄与が大きくなる。また、余熱除去系統は、炭素鋼配管で構成されているので、除染によって過去に付着した放射性核種を含む酸化物を除去しても、原子炉運転中の余熱除去系統の保管時に配管表面に生成する腐食生成物が、余熱除去系統運用時の炉水中放射性核種の再付着を促進させてしまい、除染の効果を維持できない。   In particular, an improved boiling water light water reactor without a recirculation system greatly contributes to exposure during periodic inspection work. In addition, since the residual heat removal system is composed of carbon steel piping, even if the oxide containing radioactive nuclides adhered in the past is removed by decontamination, it remains on the surface of the piping during storage of the residual heat removal system during reactor operation. The generated corrosion products promote the reattachment of radionuclides in the reactor water during the operation of the residual heat removal system, and the decontamination effect cannot be maintained.

そこで、余熱除去系統の保管時における腐食生成物の生成抑制のために、余熱除去系統配管を除染後、酸化皮膜や化成皮膜を形成させる方法や、保管水中に防錆剤を添加する方法が提案されている(例えば特許文献3参照)。   Therefore, in order to suppress the formation of corrosion products during storage of the residual heat removal system, after decontamination of the residual heat removal system piping, there is a method of forming an oxide film or chemical conversion film, and a method of adding a rust inhibitor to the stored water. It has been proposed (see, for example, Patent Document 3).

特開昭58−79196号公報 (第2〜4頁 第1図〜第3図)JP-A-58-79196 (pages 2-4, FIGS. 1 to 3) 特開昭62−95498号公報 (第3〜5頁 第1図〜第5図)JP-A-62-95498 (pages 3-5, FIGS. 1-5) 特開2002−236191号公報 (第6〜8頁 図1〜図6)JP 2002-236191 A (Pages 6-8, FIGS. 1-6) 『防食技術』,Vol28,pp.32-37(1979)“Anti-corrosion technology”, Vol 28, pp. 32-37 (1979)

しかし、上記従来技術では、余熱除去系統配管の保管に使う水の供給元については、特に考慮されておらず、通常は、サプレッションプールの水が余熱除去系統のサーベイランス運転に使用され、その水を余熱除去系統配管に保有した状態で保管されている。このサプレッションプールの水は、炭素鋼の腐食抑制に対して特に注意を払われた水質とはなっていない。   However, in the above prior art, the supply source of water used for storage of the residual heat removal system piping is not particularly considered, and normally, the water in the suppression pool is used for surveillance operation of the residual heat removal system, and the water is used. It is stored in the state retained in the residual heat removal system piping. The water in this suppression pool is not water quality with particular attention paid to the inhibition of carbon steel corrosion.

本発明の目的は、余熱除去系統を構成する炭素鋼配管の原子炉通常運転時保管中における腐食生成物の生成量を抑制できる水質の水を余熱除去系統に導入できる手段を備えた沸騰水型原子力発電プラントを提供することである。   An object of the present invention is to provide a boiling water type equipped with means for introducing water of water quality capable of suppressing the amount of corrosion products generated during storage during normal operation of a carbon steel pipe constituting the residual heat removal system into the residual heat removal system. To provide a nuclear power plant.

本発明は、上記目的を達成するために、
a.溶存酸素濃度,導電率を低くした水を準備する
b.既にBWRの他の系統で使用している溶存酸素濃度,導電率の低い水を流用する
c.サプレッションプールの水を浄化したものを使用する
など、炭素鋼の腐食を抑制できる水質の水を原子炉運転中に余熱除去系統に導入するために、その水質の水を貯めておくタンク,バルブ,ポンプからなる系統を余熱除去系統に接続する。
In order to achieve the above object, the present invention provides
a. Prepare water with low dissolved oxygen concentration and low conductivity b. Utilize water with low dissolved oxygen concentration and low conductivity already used in other BWR systems c. Tanks, valves, etc. that store the quality water to introduce residual water into the residual heat removal system during reactor operation, such as using purified water from the suppression pool. Connect the system consisting of the pump to the residual heat removal system.

すなわち、本発明は、上記目的を達成するために、保管水の脱酸素処理装置,保管水の脱塩処理装置,保管水を配水するバルブ,ポンプを備え、原子炉運転中に余熱除去系統を満水保管する際に、脱酸素処理および脱塩処理の少なくとも一方の処理を施した水を余熱除去系統に保管水として導入する沸騰水型原子力発電プラントを提案する。   That is, in order to achieve the above object, the present invention includes a storage water deoxygenation processing device, a storage water demineralization processing device, a valve for distributing storage water, and a pump, and a residual heat removal system is provided during operation of the reactor. A boiling water nuclear power plant is proposed in which water that has been subjected to at least one of deoxygenation treatment and desalting treatment is introduced into the residual heat removal system as stored water when it is stored in full water.

本発明は、また、循環水の脱酸素処理装置,循環水の脱塩処理装置,循環水を配水するバルブを備え、原子炉運転中に余熱除去系統のサーベイランス運転をする時に、循環水として脱酸素処理および脱塩処理の少なくとも一方を施した水を余熱除去系統に導入する沸騰水型原子力発電プラントを提案する。   The present invention also includes a circulating water deoxygenation processing device, a circulating water demineralization processing device, and a valve that distributes the circulating water. When the surveillance operation of the residual heat removal system is performed during the reactor operation, the dewatering treatment water is removed. A boiling water nuclear power plant is proposed in which water subjected to at least one of oxygen treatment and desalting treatment is introduced into a residual heat removal system.

本発明は、さらに、サプレッションプール水を窒素または不活性気体でバブリングする脱酸素処理装置を備えた沸騰水型原子力発電プラントを提案する。   The present invention further proposes a boiling water nuclear power plant equipped with a deoxygenation apparatus for bubbling suppression pool water with nitrogen or an inert gas.

本発明は、上記目的を達成するために、サプレッションプール水を脱塩処理する脱塩処理装置を備えた沸騰水型原子力発電プラントを提案する。   In order to achieve the above object, the present invention proposes a boiling water nuclear power plant equipped with a desalting apparatus for desalinating suppression pool water.

本発明は、また、置換水の脱酸素処理装置,置換水の脱塩処理装置の少なくとも一方と、置換水を配水するバルブ,ポンプとを備え、原子炉運転中になされる余熱除去系統のサーベイランス運転終了直後に、脱酸素処理および脱塩処理の少なくとも一方を施した水によって余熱除去系統の配管内に残留している水を置換する沸騰水型原子力発電プラントを提案する。   The present invention also includes surveillance of a residual heat removal system, which is provided with at least one of replacement water deoxygenation apparatus and replacement water demineralization apparatus, a valve and a pump for distributing replacement water, and is performed during the operation of the reactor. A boiling water nuclear power plant is proposed in which water remaining in the piping of the residual heat removal system is replaced with water subjected to at least one of deoxygenation treatment and desalting treatment immediately after the operation is completed.

本発明は、さらに、復水貯蔵タンク水を窒素または不活性気体でバブリングし溶存酸素濃度を0.5ppm以下にするガスバブリング装置を備えた沸騰水型原子力発電プラントを提案する。   The present invention further proposes a boiling water nuclear power plant equipped with a gas bubbling device for bubbling condensate storage tank water with nitrogen or an inert gas to bring the dissolved oxygen concentration to 0.5 ppm or less.

いずれの沸騰水型原子力発電プラントにおいても、沸騰水型原子力発電プラントの建設中または定期点検中に余熱除去系統配管内に高周波誘導加熱装置を導入し、前記余熱除去系統配管内面を400℃以上に加熱して酸化皮膜を形成することができる。   In any boiling water nuclear power plant, a high-frequency induction heating device is introduced into the residual heat removal system pipe during construction or periodic inspection of the boiling water nuclear power plant, and the inner surface of the residual heat removal system pipe is set to 400 ° C or higher. An oxide film can be formed by heating.

また、前記すべての処理に先立って、放射性核種を取り込んだ余熱除去系統配管の腐食皮膜を化学除染により除去してもよい。   Prior to all the above treatments, the corrosion film of the residual heat removal system pipe incorporating the radionuclide may be removed by chemical decontamination.

余熱除去系統配管は、原子炉運転中に炉水が通水される再循環系配管および炉水浄化系配管に比べて、通常、原子炉停止時にのみ炉水が通水される。BWRのプラント停止操作は、制御棒を挿入して原子燃料の核分裂反応を停止させることから始まる。この操作により、280℃から150℃までは、蒸気の発生量が多いので、主蒸気ラインから蒸気を復水器に送り、発生する蒸気の気化熱により原子炉を冷却する。   Remaining heat removal system piping normally allows reactor water to flow only when the reactor is stopped, compared to recirculation piping and reactor water purification system piping through which reactor water is passed during reactor operation. The BWR plant shutdown operation begins by inserting a control rod to stop the nuclear fuel fission reaction. As a result of this operation, a large amount of steam is generated from 280 ° C. to 150 ° C., so steam is sent from the main steam line to the condenser and the reactor is cooled by the heat of vaporization of the generated steam.

150℃以下の温度では、気化熱による冷却効率が低下するので、炉水再循環系から分岐する余熱除去系統によって炉水を冷却する。冷却された炉水は、原子炉再循環系を経由するかまたは直接原子炉に戻る。100℃以下の温度では、気化熱による冷却ができなくなるので、余熱除去系統での冷却が主体となる。   At a temperature of 150 ° C. or lower, the cooling efficiency due to the heat of vaporization decreases, so the reactor water is cooled by the residual heat removal system branched from the reactor water recirculation system. The cooled reactor water passes through the reactor recirculation system or returns directly to the reactor. At a temperature of 100 ° C. or lower, cooling by the heat of vaporization cannot be performed, so cooling in the residual heat removal system is the main.

余熱除去系統は、予備系統を持つ必要から、2系統以上を有する。したがって、プラントの停止操作は、停止ごとに交互に運転される。さらに、余熱除去系統熱交換器に通水する流量とこの熱交換器のバイパスライン流量とを制御し、原子炉水を冷却する速度を調整する。再循環系配管および炉水浄化系配管では、腐食による酸化皮膜の成長に伴って原子炉水中の放射性イオンが酸化皮膜中に取り込まれ、放射性核種の蓄積が生じる。   Since the residual heat removal system needs to have a spare system, it has two or more systems. Therefore, the plant stop operation is alternately performed at each stop. Further, the flow rate of water passing through the residual heat removal system heat exchanger and the bypass line flow rate of the heat exchanger are controlled to adjust the speed of cooling the reactor water. In the recirculation system piping and the reactor water purification system piping, radioactive ions in the reactor water are taken into the oxide film as the oxide film grows due to corrosion, and radionuclides accumulate.

しかし、余熱除去系統では、運用開始時の原子炉水温度が150℃以下と低く、運用開始と同時に炉水温度が低下してくるので、100℃以上の原子炉水に晒されている期間も数時間程度と短いので、上記プロセスの寄与は小さい。発明者らが余熱除去系統配管への放射性核種の蓄積機構を詳細に検討したところ、以下のように、再循環系配管や炉水浄化系配管とは異なるプロセスで放射性イオンの付着が生じていることが分かった。   However, in the residual heat removal system, the reactor water temperature at the start of operation is as low as 150 ° C or lower, and the reactor water temperature decreases at the start of operation. Since it is as short as several hours, the contribution of the above process is small. The inventors have studied in detail the accumulation mechanism of radionuclides in the residual heat removal system piping, and as shown below, adhesion of radioactive ions occurs in a process different from the recirculation system piping and the reactor water purification system piping. I understood that.

余熱除去系統に使われているような炭素鋼配管では、炉水浄化系配管で見られるように、高温水中においては、ヘマタイトとマグネタイトに加えて原子炉水中に含まれるニッケルなどのイオンを取り込んだフェライトを生成する。   In carbon steel piping used in the residual heat removal system, as seen in the reactor water purification system piping, in high-temperature water, ions such as nickel contained in the reactor water were taken in addition to hematite and magnetite. Produces ferrite.

しかし、余熱除去系統の配管が原子炉運転中に晒されているような100℃以下の低温水中では、水酸化鉄が主な腐食生成物となる。この条件で生成する水酸化鉄は、藻状の形態で表面積が大きく、水中の各種イオンを吸着する性質がある。このため、原子炉停止操作が行われ余熱除去系統の運用が始まると、炉水中の放射性イオンの吸着が起こる。炉水中の放射性イオン濃度は、原子炉停止操作直後に一旦上昇してから下がるという挙動を示す。   However, in low temperature water at 100 ° C. or lower where the piping of the residual heat removal system is exposed during the reactor operation, iron hydroxide becomes the main corrosion product. Iron hydroxide produced under these conditions has a property of adsorbing various ions in water with a large surface area in an algal form. For this reason, when the reactor shutdown operation is performed and the operation of the residual heat removal system is started, the adsorption of radioactive ions in the reactor water occurs. The concentration of radioactive ions in the reactor water shows a behavior in which it rises immediately after the reactor shutdown operation and then decreases.

余熱除去系統運用開始時は、既に温度の低下に伴って炉水放射能濃度も下がっていくので、運用開始時に水酸化鉄に吸着した放射性イオンも、ただ吸着しているだけでは、炉水放射能濃度の低下とともに放出されるので、余熱除去系統への放射性核種の蓄積による被曝は、あまり問題にはならない。   At the start of residual heat removal system operation, the reactor water radioactivity concentration has already decreased as the temperature decreases, so the radioactive ions adsorbed on the iron hydroxide at the start of operation can also be simply absorbed. Since it is released as the active concentration decreases, exposure due to the accumulation of radionuclides in the residual heat removal system is not a problem.

しかし、水酸化鉄では、約100℃以上の条件で化学式1や化学式2のような反応で脱水反応を起こし、ヘマタイトやマグネタイトを生じる。この時、脱水領域にニッケル、コバルトおよびこれらの放射性イオンが吸着していると、これらのニッケルやコバルトを含むフェライトが化学式3や化学式4のように生じて、脱離し難くなる。   However, in iron hydroxide, dehydration reaction is caused by a reaction such as Chemical Formula 1 or Chemical Formula 2 at a temperature of about 100 ° C. or higher, resulting in hematite or magnetite. At this time, if nickel, cobalt, and their radioactive ions are adsorbed in the dehydration region, ferrite containing these nickel and cobalt is generated as shown in Chemical Formula 3 and Chemical Formula 4, and it is difficult to desorb.

図9は、余熱除去系統配管への放射性イオン付着過程を模式に示す図である。余熱除去系統の炭素鋼配管上に生成した水酸化鉄に放射性コバルトイオンの吸着領域と、100℃以上の温度における脱水領域とが生じ、この二つが重なった領域でコバルトフェライトが生じ、放射性コバルトイオンの蓄積が起こる。   FIG. 9 is a diagram schematically showing the process of attaching radioactive ions to the residual heat removal system piping. The adsorption region of radioactive cobalt ions and the dehydration region at a temperature of 100 ° C. or more are generated in the iron hydroxide formed on the carbon steel pipe of the residual heat removal system, and cobalt ferrite is generated in the region where these two layers overlap, Accumulation occurs.

Figure 2006038623
Figure 2006038623

Figure 2006038623
Figure 2006038623

Figure 2006038623
Figure 2006038623

Figure 2006038623
したがって、余熱除去系統配管への放射性イオンの蓄積を防止するには、原子炉運転中に余熱除去系統配管表面で生じる水酸化鉄の発生を抑制すればよい。原子炉運転中に余熱除去系統が運用されるのは、月に1回程度の頻度で行われるサーベイランス運転の時のみで、サーベイランス運転終了後に余熱除去系統は停止され、そのままの状態で満水保管される。
Figure 2006038623
Therefore, in order to prevent accumulation of radioactive ions in the residual heat removal system piping, generation of iron hydroxide generated on the surface of the residual heat removal system piping during the operation of the reactor may be suppressed. The residual heat removal system is operated only during the surveillance operation that is performed once a month during the operation of the nuclear reactor. After the surveillance operation is completed, the residual heat removal system is stopped and stored as it is. The

サーベイランス運転には、サプレッションプールの水を用いるので、余熱除去系統は、サプレッションプールの水で満水保管される状態になる。このサプレッションプールの水の水質は、炭素鋼の腐食抑制に対して特に注意を払った水質とはなっていない。静止水中における炭素鋼の腐食抑制に対しては、溶存酸素濃度を低くすることと導電率を低くすることが有効であることが知られている。   Since the water of the suppression pool is used for the surveillance operation, the residual heat removal system is in a state of being fully stored with the water of the suppression pool. The water quality of this suppression pool is not the water quality that paid special attention to the corrosion inhibition of carbon steel. It is known that lowering the dissolved oxygen concentration and lowering the conductivity are effective for inhibiting the corrosion of carbon steel in still water.

図10は、非特許文献1に示されている室温静止水中における炭素鋼の腐食速度に及ぼす溶存酸素濃度依存性を示す図であり、図11は、非特許文献1に示されている炭素鋼の腐食速度に及ぼす導電率の影響を示す図である。   FIG. 10 is a diagram showing the dependence of dissolved oxygen concentration on the corrosion rate of carbon steel in still water at room temperature shown in Non-Patent Document 1, and FIG. 11 shows the carbon steel shown in Non-Patent Document 1. It is a figure which shows the influence of the electrical conductivity which has on the corrosion rate of.

どちらも低い方が腐食速度は、小さくなっていることが分かる。したがって、余熱除去系統配管表面で生じる水酸化鉄の発生を抑制するには、溶存酸素濃度,導電率の低い水で余熱除去系統を保管するという方法が考えられる。   It can be seen that the lower the both, the lower the corrosion rate. Therefore, in order to suppress the generation of iron hydroxide generated on the surface of the residual heat removal system piping, a method of storing the residual heat removal system with water having a low dissolved oxygen concentration and low conductivity can be considered.

図12は、発明者らが炭素鋼浸漬環境ごとの放射性コバルトイオンの蓄積量を比較した結果を示す図である。サプレッションプールの水質を模擬した水,復水浄化系の出口水の水質を模擬した水,復水補給水系の水質を模擬した水の中に炭素鋼の試験片を一定期間浸漬してから、放射性コバルトイオンを使用できる高温水ループに取り付けた。高温水ループは、原子炉停止時の余熱除去系統を模擬した温度履歴をたどるように運転し、温度が下がったところで試験片を取り出し、蓄積した放射性コバルトの量を比較した。   FIG. 12 is a diagram showing the results of comparison of the accumulated amount of radioactive cobalt ions by the inventors for each carbon steel immersion environment. Carbon steel specimens are immersed in water that simulates the quality of the water in the suppression pool, water that simulates the quality of the outlet water of the condensate purification system, and water that simulates the quality of the condensate makeup water system, and then radioactive. It was attached to a hot water loop that could use cobalt ions. The high-temperature water loop was operated so as to follow a temperature history simulating the residual heat removal system when the reactor was shut down, and when the temperature dropped, the test piece was taken out and the amount of accumulated radioactive cobalt was compared.

図12から、復水補給水系程度の溶存酸素濃度,導電率の水質では、放射性コバルトイオンの蓄積抑制効果は得られなかった。   From FIG. 12, the effect of suppressing the accumulation of radioactive cobalt ions could not be obtained with dissolved oxygen concentration and conductivity water quality comparable to the condensate makeup water system.

これに対して、復水浄化系の出口水程度の溶存酸素濃度,導電率の水質の水では、ほぼ半減させる程度の放射性コバルトイオンの蓄積抑制効果が得られることが分かった。   On the other hand, it was found that the concentration of radioactive cobalt ions, which is about half the amount, can be obtained with water having a dissolved oxygen concentration and conductivity that are about the outlet water of the condensate purification system.

本発明の沸騰水型原子力発電プラントにおいては、原子炉運転中の余熱除去系統の保管水として、溶存酸素濃度.導電率の少なくとも一方を低くした水を使用するので、保管中に余熱除去系統の炭素鋼配管に生ずる水酸化鉄の生成量を減らして、原子炉停止操作により放射能を含んだ炉水が余熱除去系統に流れ込んできた時に、放射能の余熱除去系統配管への付着を抑制できる。   In the boiling water nuclear power plant of the present invention, the dissolved oxygen concentration is used as storage water for the residual heat removal system during operation of the reactor. Since water with low conductivity is used, the amount of iron hydroxide generated in the carbon steel piping of the residual heat removal system during storage is reduced, and the reactor water containing radioactivity is retained by the reactor shutdown operation. When it flows into the removal system, it is possible to suppress the adhesion of the radioactivity to the residual heat removal system piping.

再循環系または炉水浄化系から余熱除去系統への分岐点および余熱除去系統から再循環系または炉水浄化系に戻る合流点のそれぞれ余熱除去系統側に、溶存酸素濃度,導電率の少なくとも一方を低くした水を注入する置換水注入口を設け、この注入口には置換水を蓄えておくタンク、ポンプ、バルブが配管によって接続されている。   At least one of dissolved oxygen concentration and conductivity on the side of the residual heat removal system at the junction point from the recirculation system or reactor water purification system to the residual heat removal system and the junction point from the residual heat removal system to the recirculation system or reactor water purification system A replacement water injection port is provided for injecting water with reduced water, and a tank, a pump, and a valve for storing replacement water are connected to the injection port by piping.

余熱除去系統の途中、例えば熱交換器の上流付近に置換対象水を廃棄物処理系に導出する分岐を設け、分岐点には排水の導電率,溶存酸素濃度を測定する検出器を備えてある。   In the middle of the residual heat removal system, for example, near the upstream of the heat exchanger, a branch for leading the water to be replaced to the waste treatment system is provided, and a detector for measuring drainage conductivity and dissolved oxygen concentration is provided at the branch point. .

図1は、本発明による沸騰水型原子力発電プラントの実施例1の系統構成を示す図である。   FIG. 1 is a diagram showing a system configuration of Embodiment 1 of a boiling water nuclear power plant according to the present invention.

原子炉の通常運転中において、原子炉圧力容器1内の冷却水は、再循環ポンプ2によって再循環系統3を循環させられている。原子炉圧力容器1内で発生した蒸気は、主蒸気系4によってタービン5まで導かれ、タービン5で仕事をした後、復水器6によって水に戻される。   During normal operation of the reactor, the cooling water in the reactor pressure vessel 1 is circulated through the recirculation system 3 by the recirculation pump 2. The steam generated in the reactor pressure vessel 1 is guided to the turbine 5 by the main steam system 4, and after working in the turbine 5, is returned to water by the condenser 6.

復水は、復水中に含まれる不純物を除去するために、復水ポンプ7によって全量が復水浄化装置8に通水されて浄化され、給水として使用される。給水は、給水ポンプ9によって低圧給水加熱器10および高圧給水加熱器11を通され、給水系12を通して原子炉圧力容器1内に供給される。   In order to remove impurities contained in the condensate, the entire amount of the condensate is purified by being passed through the condensate purification device 8 by the condensate pump 7 and used as water supply. The feed water is passed through the low-pressure feed water heater 10 and the high-pressure feed water heater 11 by the feed water pump 9 and supplied into the reactor pressure vessel 1 through the feed water system 12.

復水浄化装置8によって浄化された給水の一部は、制御棒駆動水ポンプ15および制御棒駆動水浄化装置16を通して制御棒駆動系に供給され、炉心に制御棒を挿入するために使われる。   A part of the feed water purified by the condensate purification device 8 is supplied to the control rod drive system through the control rod drive water pump 15 and the control rod drive water purification device 16 and used to insert the control rod into the reactor core.

停止時における炉心の温度は、初めは、炉水の蒸発熱によって下がってくる。炉水の温度が150℃程度となると、冷却効率が低下するので、余熱除去系統17が使用される。余熱除去系統入口バルブ18,余熱除去系統熱交換器入口バルブ19,余熱除去系統熱交換器出口バルブ20,原子炉格納容器外余熱除去系統戻りバルブ21,原子炉格納容器内余熱除去系統戻りバルブ22を開いて、余熱除去系統ポンプ23を起動し、余熱除去系統熱交換器24に炉水を供給して更に冷却し、原子炉を停止する。   The temperature of the core at the time of shutdown is initially lowered by the heat of evaporation of the reactor water. When the temperature of the reactor water reaches about 150 ° C., the cooling efficiency decreases, so the residual heat removal system 17 is used. Residual heat removal system inlet valve 18, residual heat removal system heat exchanger inlet valve 19, residual heat removal system heat exchanger outlet valve 20, residual heat removal system return valve 21 outside the reactor containment vessel, residual heat removal system return valve 22 inside the reactor containment vessel Is opened, the residual heat removal system pump 23 is started, the reactor water is supplied to the residual heat removal system heat exchanger 24 and further cooled, and the reactor is stopped.

その際、余熱除去系統熱交換器バイパスバルブ25および余熱除去系統熱交換器入口バルブ19の開閉量を調整して余熱除去系統熱交換器24への炉水の流入量を調整し、炉水温度の降下率を調整する。一方、原子炉通常運転中の余熱除去系統は、停止状態にある。   At that time, the opening / closing amounts of the residual heat removal system heat exchanger bypass valve 25 and the residual heat removal system heat exchanger inlet valve 19 are adjusted to adjust the inflow amount of the reactor water to the residual heat removal system heat exchanger 24, and the reactor water temperature Adjust the descent rate. On the other hand, the residual heat removal system during normal operation of the reactor is in a stopped state.

月に1回程度の頻度で、原子炉格納容器26内のサプレッションプール27の水を使って、サーベイランス運転をしている。サーベイランス運転とは、サプレッションプール出口バルブ28とサプレッションプール戻りバルブ29とを開けて、余熱除去系統ポンプ23を使い、サプレッションプール27を通る閉ループを構成し、プール内の水を循環させる運転である。   Surveillance operation is performed using the water in the suppression pool 27 in the reactor containment vessel 26 at a frequency of about once a month. Surveillance operation is an operation in which the suppression pool outlet valve 28 and the suppression pool return valve 29 are opened, a residual heat removal system pump 23 is used to form a closed loop that passes through the suppression pool 27, and the water in the pool is circulated.

サーベイランス運転終了後、余熱除去系統は、そのままの状態で保管され、余熱除去系統の配管内には、サプレッションプール27の水が満水保管された状態となる。この水を低溶存酸素濃度,低導電率の置換水に置き換える。置換水は、置換水貯蔵タンク30に予め準備する。   After the surveillance operation, the residual heat removal system is stored as it is, and the water of the suppression pool 27 is fully stored in the piping of the residual heat removal system. This water is replaced with replacement water with low dissolved oxygen concentration and low conductivity. Replacement water is prepared in the replacement water storage tank 30 in advance.

置換水貯蔵タンク30内の水は、窒素ガスバブリング装置31により溶存酸素濃度を低減させ、置換水循環ポンプ32により置換水の脱塩処理装置33に通水し、不純物を取り除き、導電率を低下させておく。置換水の水質は、例えば導電率を0.3μS/cm以下とし,溶存酸素濃度を0.5ppm以下とする。   The water in the replacement water storage tank 30 is reduced in dissolved oxygen concentration by the nitrogen gas bubbling device 31 and is passed through the replacement water desalination processing device 33 by the replacement water circulation pump 32 to remove impurities and lower the conductivity. Keep it. The water quality of the replacement water is, for example, a conductivity of 0.3 μS / cm or less and a dissolved oxygen concentration of 0.5 ppm or less.

サーベイランス運転終了後、余熱除去系統入口バルブ18と原子炉格納容器外余熱除去系統戻りバルブ21と原子炉格納容器内余熱除去系統戻りバルブ22とを閉じたままにしておき、サプレッションプール出口バルブ28とサプレッションプール戻りバルブ29と余熱除去系統熱交換器バイパスバルブ25とを閉じ、余熱除去系統熱交換器入口バルブ19と余熱除去系統熱交換器出口バルブ20と廃棄物処理系バルブ34と置換水送水バルブ35とを開き、置換水送水ポンプ36により配管内に残留している水を置換水貯蔵タンク30内の置換水に置き換える。   After the surveillance operation, the residual heat removal system inlet valve 18, the residual heat removal system return valve 21 outside the reactor containment vessel, and the residual heat removal system return valve 22 inside the reactor containment vessel are kept closed, and the suppression pool outlet valve 28, The suppression pool return valve 29 and the residual heat removal system heat exchanger bypass valve 25 are closed, the residual heat removal system heat exchanger inlet valve 19, the residual heat removal system heat exchanger outlet valve 20, the waste treatment system valve 34, and the replacement water supply valve. 35 and the replacement water feed pump 36 replaces the water remaining in the pipe with the replacement water in the replacement water storage tank 30.

次に、余熱除去系統熱交換器入口バルブ19と余熱除去系統熱交換器出口バルブ20とを閉じて、余熱除去系統熱交換器バイパスバルブ25を開き、バイパスラインに残っている残留水を置換水で押し流す。   Next, the residual heat removal system heat exchanger inlet valve 19 and the residual heat removal system heat exchanger outlet valve 20 are closed, the residual heat removal system heat exchanger bypass valve 25 is opened, and residual water remaining in the bypass line is replaced with replacement water. Rinse with.

続いて、余熱除去系統熱交換器バイパスバルブ25を閉じて、原子炉格納容器外余熱除去系統戻りバルブ21を開き、原子炉格納容器外余熱除去系統戻りバルブ21から廃棄物処理系バルブ34までの余熱除去系統配管内に残っている残留水を置換水で押し流す。   Subsequently, the residual heat removal system heat exchanger bypass valve 25 is closed and the residual heat removal system return valve 21 outside the reactor containment vessel is opened, and the remaining heat removal system return valve 21 outside the reactor containment vessel to the waste treatment system valve 34 is opened. Residual water remaining in the residual heat removal system piping is washed away with replacement water.

これらの操作により、溶存酸素や不純物を含み余熱除去系統配管に残留していた残留水は、溶存酸素や不純物を低減させた清浄な置換水に置き換えることができる。   By these operations, the residual water containing dissolved oxygen and impurities and remaining in the residual heat removal system piping can be replaced with clean replacement water in which dissolved oxygen and impurities are reduced.

図2は、本発明による沸騰水型原子力発電プラントの実施例2の系統構成を示す図である。   FIG. 2 is a diagram showing a system configuration of Embodiment 2 of the boiling water nuclear power plant according to the present invention.

実施例2では、実施例1に加えて導電率計37と溶存酸素濃度計38を廃棄物処理系の入口に備えてある。この導電率計37と溶存酸素濃度計38によって測定されたそれぞれのデータは、信号処理ケーブル40によって情報処理制御装置39に集められる。   In the second embodiment, in addition to the first embodiment, a conductivity meter 37 and a dissolved oxygen concentration meter 38 are provided at the entrance of the waste treatment system. Each data measured by the conductivity meter 37 and the dissolved oxygen concentration meter 38 is collected in the information processing control device 39 by the signal processing cable 40.

情報処理制御装置39では、バルブ制御信号処理ケーブル41を介して余熱除去系統熱交換器入口バルブ19、余熱除去系統熱交換器出口バルブ20、原子炉格納容器外余熱除去系統戻りバルブ21、余熱除去系統熱交換器バイパスバルブ25、廃棄物処理系バルブ34および置換水送水バルブ35の開閉と置換水送水ポンプ36の起動停止を制御する。   In the information processing control device 39, the residual heat removal system heat exchanger inlet valve 19, the residual heat removal system heat exchanger outlet valve 20, the residual heat removal system return valve 21 outside the reactor containment vessel, the residual heat removal via the valve control signal processing cable 41. The system heat exchanger bypass valve 25, the waste treatment system valve 34 and the replacement water feed valve 35 are controlled to be opened and closed and the replacement water feed pump 36 is started and stopped.

サーベイランス運転終了後、サプレッションプール出口バルブ28とサプレッションプール戻りバルブ29を閉じた後、情報処理制御装置39を使って余熱除去系統配管内の残留水を置換水で置換する制御運転を開始する。   After the surveillance operation is completed, after the suppression pool outlet valve 28 and the suppression pool return valve 29 are closed, the control operation of replacing the residual water in the residual heat removal system piping with the replacement water using the information processing control device 39 is started.

まず、原子炉格納容器外余熱除去系統戻りバルブ21、余熱除去系統熱交換器バイパスバルブ25を閉じて、余熱除去系統熱交換器入口バルブ19、余熱除去系統熱交換器出口バルブ20、廃棄物処理系バルブ34および置換水送水バルブ35を開き、置換水送水ポンプ36を起動するように制御する。   First, the residual heat removal system outside return valve 21 and the residual heat removal system heat exchanger bypass valve 25 are closed, the residual heat removal system heat exchanger inlet valve 19, the residual heat removal system heat exchanger outlet valve 20, and the waste treatment. The system valve 34 and the replacement water supply valve 35 are opened, and the replacement water supply pump 36 is controlled to start.

これにより該当する余熱除去系統配管内の残留水が置換水に置き換えられると、導電率計37と溶存酸素濃度計38の値が置換水と同等のレベルまで低下する。このような値としては、例えば導電率を0.3μS/cm、溶存酸素濃度を0.5ppmとする。   As a result, when the residual water in the corresponding residual heat removal system pipe is replaced with the replacement water, the values of the conductivity meter 37 and the dissolved oxygen concentration meter 38 are reduced to the same level as the replacement water. As such values, for example, the conductivity is 0.3 μS / cm, and the dissolved oxygen concentration is 0.5 ppm.

これを検知した情報処理制御装置39では、次に余熱除去系統熱交換器入口バルブ19と余熱除去系統熱交換器出口バルブ20を閉じて、余熱除去系統熱交換器バイパスバルブ25を開いて、バイパスラインに残っている残留水を置換水で押し流すように各バルブを制御する。   In the information processing control device 39 that detects this, the residual heat removal system heat exchanger inlet valve 19 and the residual heat removal system heat exchanger outlet valve 20 are then closed, the residual heat removal system heat exchanger bypass valve 25 is opened, and the bypass is bypassed. Each valve is controlled so that residual water remaining in the line is washed away with replacement water.

バイパスラインの残留水が押し流されてくると、導電率計37と溶存酸素濃度計38の値が一旦上昇した後、残留水が完全に押し流されると置換水と同等のレベルまで低下する。   When the residual water in the bypass line is swept away, the values of the conductivity meter 37 and the dissolved oxygen concentration meter 38 once rise, and then when the residual water is completely swept away, it drops to the same level as the replacement water.

これを検知した情報処理制御装置39では、次に、余熱除去系統熱交換器バイパスバルブ25を閉じて、原子炉格納容器外余熱除去系統戻りバルブ21を開け、原子炉格納容器外余熱除去系統戻りバルブ21から廃棄物処理系バルブ34までの余熱除去系統配管内に残っている残留水を置換水で押し流す。   In the information processing control device 39 that has detected this, next, the residual heat removal system heat exchanger bypass valve 25 is closed, the residual heat removal system outside the reactor containment vessel is opened, and the residual heat removal system outside the reactor containment vessel is returned. Residual water remaining in the residual heat removal system piping from the valve 21 to the waste treatment system valve 34 is washed away with replacement water.

このときも余熱除去系統配管内の残留水が押し流されてくると、導電率計37と溶存酸素濃度計38の値が一旦上昇した後、残留水が完全に押し流されると、置換水と同等のレベルまで低下する。   At this time, if the residual water in the residual heat removal system pipe is washed away, the values of the conductivity meter 37 and the dissolved oxygen concentration meter 38 once rise, and then the residual water is completely washed away, it is equivalent to the replacement water. Decrease to level.

このような制御により、余熱除去系統配管内の残留水は、自動的に低導電率,低溶存酸素濃度の置換水に置き換えられる。   By such control, the residual water in the residual heat removal system piping is automatically replaced with replacement water having low conductivity and low dissolved oxygen concentration.

図3は、本発明による沸騰水型原子力発電プラントの実施例3の系統構成を示す図である。   FIG. 3 is a diagram showing a system configuration of Embodiment 3 of the boiling water nuclear power plant according to the present invention.

実施例3では、実施例1の置換水の代わりに、復水浄化装置8の出口水を置換水として使う。復水浄化装置8の出口水は、復水器6で真空脱気されて低い溶存酸素濃度となった復水が、復水浄化装置8により浄化されて低導電率となっているので、本発明の余熱除去系統配管置換水として使用できる。   In the third embodiment, the outlet water of the condensate purification device 8 is used as the replacement water instead of the replacement water of the first embodiment. Since the outlet water of the condensate purification device 8 is degassed by the condenser 6 and becomes a low dissolved oxygen concentration, the condensate is purified by the condensate purification device 8 and has low conductivity. It can be used as the residual heat removal system piping replacement water of the invention.

実施例3では、復水浄化装置8の出口から配管を分岐させ、復水器6で脱気され復水浄化装置8で浄化された復水を置換水として、置換水送水ポンプ36および置換水送水バルブ35を介して余熱除去系統に供給する。   In the third embodiment, the piping is branched from the outlet of the condensate purification device 8, and the replacement water feed pump 36 and the replacement water are replaced with the condensate degassed by the condenser 6 and purified by the condensate purification device 8. The residual heat removal system is supplied through the water supply valve 35.

実施例4では、実施例3で用いた復水浄化装置8の出口水の代わりに、復水補給系水(P)を使う。復水補給系水(P)の溶存酸素濃度,導電率は、0.5ppm以下,0.3μS/cm以下であり、本発明の余熱除去系統配管の置換水として使用できる。   In the fourth embodiment, condensate replenishment system water (P) is used instead of the outlet water of the condensate purification apparatus 8 used in the third embodiment. The dissolved oxygen concentration and conductivity of the condensate replenishment system water (P) are 0.5 ppm or less and 0.3 μS / cm or less, and can be used as replacement water for the residual heat removal system piping of the present invention.

実施例5では、余熱除去系統のサーベイランス運転の際にサプレッションプール27の水を使うのではなく、図1に示す置換水貯蔵タンク30の水を使う。   In the fifth embodiment, the water in the suppression pool 27 is not used in the surveillance operation of the residual heat removal system, but the water in the replacement water storage tank 30 shown in FIG. 1 is used.

サプレッションプール出口バルブ28を閉じて、サプレッションプール戻りバルブ29を開き、更に置換水送水バルブ35を開けて置換水を余熱除去系統に供給できる状態にしておく。   The suppression pool outlet valve 28 is closed, the suppression pool return valve 29 is opened, and the replacement water supply valve 35 is further opened so that the replacement water can be supplied to the residual heat removal system.

次に、余熱除去系統ポンプ23と置換水送水ポンプ36を起動して置換水を用いたサーベイランス運転をする。余熱除去系統に供給された置換水は、余熱除去系統配管内の残留水をサプレッションプール27に押し流してサプレッションプール27に到達する。これにより余熱除去系統配管内は、低導電率,低溶存酸素濃度の置換水に置き換えられる。   Next, the surplus heat removal system pump 23 and the replacement water feed pump 36 are activated to perform a surveillance operation using the replacement water. The replacement water supplied to the residual heat removal system reaches the suppression pool 27 by causing residual water in the residual heat removal system piping to flow into the suppression pool 27. As a result, the residual heat removal system piping is replaced with replacement water having low conductivity and low dissolved oxygen concentration.

実施例6では、サーベイランス運転の際にサプレッションプール27の水を使うのではなく、図3に示すような系統構成として復水浄化装置8の出口水を使う。 サプレッションプール出口バルブ28を閉じて、サプレッションプール戻りバルブ29を開き、更に置換水送水バルブ35を開けて復水浄化装置8の出口水を余熱除去系統に供給できる状態にしておく。   In the sixth embodiment, the water in the suppression pool 27 is not used in the surveillance operation, but the outlet water of the condensate purification apparatus 8 is used as a system configuration as shown in FIG. The suppression pool outlet valve 28 is closed, the suppression pool return valve 29 is opened, and the replacement water feed valve 35 is further opened so that the outlet water of the condensate purification apparatus 8 can be supplied to the residual heat removal system.

次に、余熱除去系統ポンプ23と置換水送水ポンプ36を起動して復水浄化装置8の出口水を用いたサーベイランス運転をする。余熱除去系統に供給された復水浄化系の出口水は、余熱除去系統配管内の残留水をサプレッションプール27に押し流してサプレッションプール27に到達する。これにより余熱除去系統配管内は、低導電率,低溶存酸素濃度の復水浄化装置8の出口水に置き換えられる。   Next, surveillance operation using the outlet water of the condensate purification apparatus 8 is performed by activating the residual heat removal system pump 23 and the replacement water feed pump 36. The outlet water of the condensate purification system supplied to the residual heat removal system reaches the suppression pool 27 by causing residual water in the residual heat removal system piping to flow into the suppression pool 27. As a result, the inside of the residual heat removal system pipe is replaced with the outlet water of the condensate purification device 8 having a low conductivity and a low dissolved oxygen concentration.

図4は、サプレッションプール水の脱酸素,脱塩処理方法を示す図である。実施例7では、サプレッションプール水を脱酸素,脱塩処理しておき、このサプレッションプール水をサーベイランス運転に使用する。   FIG. 4 is a diagram showing a deoxygenation and desalination treatment method for suppression pool water. In Example 7, the suppression pool water is deoxygenated and desalted, and this suppression pool water is used for surveillance operation.

サプレッションプール27には、窒素ガスバブリング装置31が接続されており、サプレッションプール水の溶存酸素濃度を0.5ppm以下になるようにしている。サプレッションプール27には、サプレッションプール水浄化ポンプ42とサプレッションプール水の脱塩処理装置43が取り付けられており、サプレッションプール水の導電率を0.3μS/cm以下になるようにしている。   A nitrogen gas bubbling device 31 is connected to the suppression pool 27 so that the dissolved oxygen concentration of the suppression pool water is 0.5 ppm or less. A suppression pool water purification pump 42 and a suppression pool water desalting apparatus 43 are attached to the suppression pool 27 so that the conductivity of the suppression pool water is 0.3 μS / cm or less.

このように脱酸素、脱塩処理したサプレッションプール水を用いて余熱除去系統のサーベイランス運転をすると、余熱除去系統配管内の残留水を脱酸素,脱塩処理されたサプレッションプール水に置き換えることができる。   When surveillance operation of the residual heat removal system is performed using the suppression pool water deoxygenated and desalted in this way, residual water in the residual heat removal system piping can be replaced with deoxygenated and desalted suppression pool water. .

図5は、本発明による沸騰水型原子力発電プラントの実施例8の系統構成を示す図である。   FIG. 5 is a diagram showing a system configuration of Example 8 of the boiling water nuclear power plant according to the present invention.

実施例8では、窒素ガスバブリング装置31を用いて、復水貯蔵タンク13内の復水貯蔵タンク水を脱酸素処理しておき、これを余熱除去系統配管の置換水として使う。   In Example 8, the nitrogen gas bubbling device 31 is used to deoxygenate the condensate storage tank water in the condensate storage tank 13, and this is used as replacement water for the residual heat removal system piping.

復水貯蔵タンク13には、余熱除去系統に繋がる配管が敷設されており、置換水送水バルブ35および置換水送水ポンプ36により、脱酸素処理された復水貯蔵タンク水を置換水として余熱除去系統に送水できる。   The condensate storage tank 13 is laid with piping connected to the residual heat removal system, and the residual heat removal system uses the condensate storage tank water deoxidized by the replacement water supply valve 35 and the replacement water supply pump 36 as replacement water. You can send water.

このようにしておくと、サーベイランス運転終了後、実施例1と同様にバルブおよびポンプを操作をすると、余熱除去系統に残っている残留水を脱酸素処理された復水貯蔵タンク水に置き換えることができる。   In this way, after the surveillance operation is completed, if the valve and the pump are operated in the same manner as in Example 1, the residual water remaining in the residual heat removal system can be replaced with deoxygenated condensate storage tank water. it can.

実施例9では、サーベイランス運転の際にサプレッションプール27の水を使うのではなく、図5に示すような系統構成として脱酸素処理された復水貯蔵タンク水を使う。   In the ninth embodiment, the water in the suppression pool 27 is not used at the time of surveillance operation, but condensate storage tank water that has been deoxygenated as a system configuration as shown in FIG. 5 is used.

サプレッションプール出口バルブ28を閉じて、サプレッションプール戻りバルブ29を開き、更に置換水送水バルブ35を開けて脱酸素処理された復水貯蔵タンク水を余熱除去系統に供給できる状態にしておく。   The suppression pool outlet valve 28 is closed, the suppression pool return valve 29 is opened, and the replacement water feed valve 35 is further opened so that the deoxygenated condensate storage tank water can be supplied to the residual heat removal system.

次に、余熱除去系統ポンプ23と置換水送水ポンプ36を起動して脱酸素処理された復水貯蔵タンク水を用いたサーベイランス運転をする。   Next, surveillance operation is performed using the condensate storage tank water that has been deoxygenated by activating the residual heat removal system pump 23 and the replacement water feed pump 36.

余熱除去系統に供給された脱酸素処理された復水貯蔵タンク水は、余熱除去系統配管内の残留水をサプレッションプール27に押し流してサプレッションプール27に到達する。これにより余熱除去系統配管内は、低導電率,低溶存酸素濃度の復水貯蔵タンク水に置き換えられる。   The deoxygenated condensate storage tank water supplied to the residual heat removal system reaches the suppression pool 27 by causing residual water in the residual heat removal system piping to flow into the suppression pool 27. As a result, the residual heat removal system piping is replaced with condensate storage tank water having low conductivity and low dissolved oxygen concentration.

図6は、本発明による沸騰水型原子力発電プラントの実施例10の系統構成を示す図である。   FIG. 6 is a diagram showing a system configuration of Example 10 of the boiling water nuclear power plant according to the present invention.

実施例10では、サーベイランス運転終了後、余熱除去系統配管内の残留水を炉水浄化系の出口水により置換する。炉水浄化系から配管系統を分岐させ、余熱除去系統に接続し、炉水浄化装置47の出口水を余熱除去系統に導入できるようにしておく。   In Example 10, after the surveillance operation is completed, the residual water in the residual heat removal system piping is replaced with the outlet water of the reactor water purification system. The piping system is branched from the reactor water purification system and connected to the residual heat removal system so that the outlet water of the reactor water purification device 47 can be introduced into the residual heat removal system.

炉水浄化系は、再循環ポンプ2の入口部分から分岐されており、ここから取り出された炉水は、炉水浄化系ポンプ44により炉水浄化系再生熱交換器45,炉水浄化系非再生熱交換器46に送り込まれ、温度を下げられた後、炉水浄化装置47においてて不純物を除去される。   The reactor water purification system is branched from the inlet portion of the recirculation pump 2, and the reactor water taken out from the reactor water purification system is recirculated by the reactor water purification system pump 44, the reactor water purification system regenerative heat exchanger 45, and the reactor water purification system non-reactor. After being sent to the regenerative heat exchanger 46 and the temperature being lowered, impurities are removed in the reactor water purification device 47.

不純物が除去された炉水浄化装置47の出口水は、炉水浄化系再生熱交換器45を通って予熱された後、給水に合流する。炉水浄化装置47では、イオン成分も除去されるので、炉水浄化装置47の出口水の導電率は、0.3μS/cmよりも低い状態にあり、プラント運転中の炉水の溶存酸素濃度は、NWC条件でも200ppb程度なので、溶存酸素濃度も0.5ppm以下であり、余熱除去系統配管の保管水に好適な条件となっている。   The outlet water of the reactor water purification device 47 from which impurities have been removed is preheated through the reactor water purification system regenerative heat exchanger 45 and then merged with the feed water. In the reactor water purification device 47, since ion components are also removed, the conductivity of the outlet water of the reactor water purification device 47 is lower than 0.3 μS / cm, and the dissolved oxygen concentration in the reactor water during plant operation is low. Since the NWC condition is about 200 ppb, the dissolved oxygen concentration is 0.5 ppm or less, which is suitable for the storage water of the residual heat removal system piping.

また、炉水浄化系は、プラント稼働中は常に運転状態であるので、配管系統を図6のように構成すれば、サーベイランス運転終了時に流用できる。   In addition, since the reactor water purification system is always in operation while the plant is operating, if the piping system is configured as shown in FIG. 6, it can be used at the end of the surveillance operation.

サーベイランス運転終了後、余熱除去系統入口バルブ18と原子炉格納容器外余熱除去系統戻りバルブ21と原子炉格納容器内余熱除去系統戻りバルブ22とを閉じたままにしておき、サプレッションプール出口バルブ28とサプレッションプール戻りバルブ29と余熱除去系統熱交換器バイパスバルブ25とを閉じて、余熱除去系統熱交換器入口バルブ19と余熱除去系統熱交換器出口バルブ20と廃棄物処理系バルブ34と置換水送水バルブ35とを開き、置換水送水ポンプ36により配管内に残留している水を炉水浄化装置47の出口水で置き換える。   After the surveillance operation, the residual heat removal system inlet valve 18, the residual heat removal system return valve 21 outside the reactor containment vessel, and the residual heat removal system return valve 22 inside the reactor containment vessel are kept closed, and the suppression pool outlet valve 28, The suppression pool return valve 29 and the residual heat removal system heat exchanger bypass valve 25 are closed, the residual heat removal system heat exchanger inlet valve 19, the residual heat removal system heat exchanger outlet valve 20, the waste treatment system valve 34, and the replacement water supply water. The valve 35 is opened, and the water remaining in the pipe is replaced with the outlet water of the reactor water purification device 47 by the replacement water feed pump 36.

次に、余熱除去系統熱交換器入口バルブ19と余熱除去系統熱交換器出口バルブ20とを閉じて、余熱除去系統熱交換器バイパスバルブ25を開き、バイパスラインに残っている残留水を炉水浄化装置47の出口水で押し流す。   Next, the residual heat removal system heat exchanger inlet valve 19 and the residual heat removal system heat exchanger outlet valve 20 are closed, the residual heat removal system heat exchanger bypass valve 25 is opened, and the residual water remaining in the bypass line is supplied to the reactor water. Rinse with the outlet water of the purification device 47.

続いて、余熱除去系統熱交換器バイパスバルブ25を閉じ、原子炉格納容器外余熱除去系統戻りバルブ21を開け、原子炉格納容器外余熱除去系統戻りバルブ21から廃棄物処理系バルブ34までの余熱除去系統配管内に残っている残留水を炉水浄化装置47の出口水で押し流す。   Subsequently, the residual heat removal system heat exchanger bypass valve 25 is closed, the residual heat removal system outside the reactor containment vessel is opened, and the residual heat from the residual heat removal system outside the reactor containment vessel 21 to the waste processing system valve 34 is opened. Residual water remaining in the removal system piping is washed away with the outlet water of the reactor water purification device 47.

これらの操作により、溶存酸素や不純物を含み余熱除去系統配管に残留していた残留水は、溶存酸素や不純物を低減させた清浄な炉水浄化装置47の出口水に置き換えることができる。炉水浄化系から給水への還流水を余熱除去系統の置換水に使用すると、給水流量が低下してしまうので、復水貯蔵タンク13から復水供給ポンプ14を使って不足分を補給する。   By these operations, the residual water containing dissolved oxygen and impurities and remaining in the residual heat removal system piping can be replaced with clean outlet water of the reactor water purification apparatus 47 in which dissolved oxygen and impurities are reduced. If the reflux water from the reactor water purification system to the feed water is used as the replacement water of the residual heat removal system, the feed water flow rate is reduced, and therefore the shortage is replenished from the condensate storage tank 13 using the condensate supply pump 14.

実施例11では、サーベイランス運転の際にサプレッションプール27の水を使うのではなく、図6に示すように炉水浄化系から配管を分岐させて、炉水浄化装置47の出口水を使う。   In the eleventh embodiment, the water in the suppression pool 27 is not used in the surveillance operation, but a pipe is branched from the reactor water purification system as shown in FIG.

サプレッションプール出口バルブ28を閉じて、サプレッションプール戻りバルブ29を開き、置換水送水バルブ35を開け、炉水浄化装置47の出口水を余熱除去系統に供給できる状態にしておく。   The suppression pool outlet valve 28 is closed, the suppression pool return valve 29 is opened, the replacement water feed valve 35 is opened, and the outlet water of the reactor water purification device 47 is ready to be supplied to the residual heat removal system.

次に、余熱除去系統ポンプ23と置換水送水ポンプ36とを起動し、炉水浄化装置47の出口水を用いてサーベイランス運転をする。   Next, the residual heat removal system pump 23 and the replacement water feed pump 36 are activated, and a surveillance operation is performed using the outlet water of the reactor water purification device 47.

余熱除去系統に供給された炉水浄化系の出口水は、余熱除去系統配管内の残留水をサプレッションプール27に押し流し、サプレッションプール27に到達する。これにより余熱除去系統配管内は、低導電率で低溶存酸素濃度の炉水浄化装置47の出口水に置き換えられる。   The outlet water of the reactor water purification system supplied to the residual heat removal system pushes residual water in the residual heat removal system piping into the suppression pool 27 and reaches the suppression pool 27. As a result, the residual heat removal system piping is replaced with the outlet water of the reactor water purification device 47 having a low conductivity and a low dissolved oxygen concentration.

炉水浄化系から給水への還流水を余熱除去系統のサーベイランス運転に使用すると給水流量が低下するので、復水貯蔵タンク13から復水供給ポンプ14を使って不足分を補給する。   When the reflux water from the reactor water purification system to the feed water is used for surveillance operation of the residual heat removal system, the flow rate of the feed water is reduced, and the condensate supply tank 14 is used to replenish the shortage.

図7は、表面を耐水研磨紙で研磨した炭素鋼の試験片およびこれに高周波誘導加熱器を用いて表面に酸化皮膜を形成させた試験片を作成し、サプレッションプール水の水質を模擬した水中に2種類の試験片を保管した後、図6の実験と同様の放射性コバルト付着試験をし、放射性コバルト付着量を比較した結果を示す図である。   FIG. 7 shows an underwater simulating the quality of suppression pool water by preparing a test piece of carbon steel whose surface was polished with water-resistant abrasive paper and a test piece having an oxide film formed on the surface using a high frequency induction heater. FIG. 7 is a view showing a result of comparing the amount of radioactive cobalt deposited after storing two types of test pieces and performing a radioactive cobalt adhesion test similar to the experiment of FIG. 6.

高周波誘導加熱によって炭素鋼試験片表面に形成されたマグネタイトを主成分とする酸化皮膜によって、保管時の腐食による水酸化鉄の生成が抑制され、高温水通水時のコバルト付着が抑制されている。   Magnetite-based oxide film formed on the surface of a carbon steel specimen by high-frequency induction heating suppresses the formation of iron hydroxide due to corrosion during storage, and suppresses cobalt adhesion during high-temperature water flow. .

図8は、この原理を実機の余熱除去系統配管に適用した実施例12の処理方法を示す図である。   FIG. 8 is a diagram showing a processing method of Example 12 in which this principle is applied to an actual residual heat removal system piping.

定期点検作業時、余熱除去系統のバルブなどの点検作業による開口部から配管内部に高周波誘導加熱用渦巻きコイル48を挿入し、回転させながら掃引し、高周波誘導加熱による酸化皮膜を配管内面に形成させる。   During periodic inspection work, the spiral coil 48 for high-frequency induction heating is inserted into the pipe from the opening through inspection work such as valves of the residual heat removal system, and swept while rotating to form an oxide film by high-frequency induction heating on the inner surface of the pipe. .

定期点検が終了しプラントが運転されると、余熱除去系統配管には、サプレッションプール水が流入して満水保管の状態となる。このときサプレッションプール水の水質が悪くても、この余熱除去系統配管には、高周波誘導加熱によるマグネタイトを主成分とする酸化皮膜が形成されているので、新たな腐食皮膜の生成が起こりにくくなっている。   When the periodic inspection is completed and the plant is operated, the suppression pool water flows into the residual heat removal system piping and is in a state of full storage. At this time, even if the quality of the suppression pool water is poor, an oxide film mainly composed of magnetite by high-frequency induction heating is formed in this residual heat removal system piping, so that it is difficult for a new corrosion film to be generated. Yes.

したがって、次回のプラント停止時に、放射能を含む高温水が余熱除去系統に流入してきても、放射性コバルトを取り込む腐食皮膜の生成が抑制されているので、放射性コバルトの付着は抑制される。   Therefore, even when high temperature water containing radioactivity flows into the residual heat removal system at the time of the next plant shutdown, the formation of a corrosion film that takes in radioactive cobalt is suppressed, so that the adhesion of radioactive cobalt is suppressed.

実施例13は、放射性核種を取り込んだ余熱除去系統配管の腐食皮膜を化学除染により除去した後、実施例1〜実施例12のいずれかの放射性コバルト付着抑制方法を適用する。既設のBWRでは、余熱除去系統配管の接水部に形成された腐食皮膜中に放射性核種が既に取り込まれている。この放射性核種を除去してから実施例1〜実施例12のいずれかの放射性コバルト付着抑制方法を適用すると、余熱除去系統配管に既に存在していた放射性核種からの定期点検作業被曝への寄与が無くなる。その結果、実施例1〜実施例12により得られる放射性コバルト付着抑制効果が、作業被曝低減効果としてそのまま現れるようになる。   In Example 13, after removing the corrosion film of the residual heat removal system pipe that has taken in the radionuclide by chemical decontamination, the radiocobalt adhesion suppressing method according to any one of Examples 1 to 12 is applied. In the existing BWR, the radionuclide is already taken in the corrosion coating formed in the water contact portion of the residual heat removal system piping. When this radionuclide is removed and the radiocobalt adhesion suppression method according to any of Examples 1 to 12 is applied, contribution to periodic inspection work exposure from the radionuclide already present in the residual heat removal system piping is achieved. Disappear. As a result, the radioactive cobalt adhesion suppression effect obtained in Examples 1 to 12 appears as it is as a work exposure reduction effect.

上記各実施例によれば、原子炉運転中の余熱除去系統の保管水として溶存酸素濃度,導電率の少なくとも一方を低くした水を使用したので、保管中の腐食が抑制され、余熱除去系統の炭素鋼配管に生ずる水酸化鉄の生成量を減らし、原子炉停止操作によって放射能を含んだ炉水が余熱除去系統に流れ込んできた時に、配管表面に残留している水酸化鉄に吸着・付着される放射能の量を抑制し、定期点検作業時の被曝を低減できる。   According to each of the above embodiments, since water having a low dissolved oxygen concentration and / or conductivity is used as storage water for the residual heat removal system during reactor operation, corrosion during storage is suppressed, and the residual heat removal system Reduces the amount of iron hydroxide produced in carbon steel piping, and adsorbs and adheres to the iron hydroxide remaining on the piping surface when reactor water containing radioactivity flows into the residual heat removal system by shutting down the reactor The amount of radioactivity generated can be suppressed, and the exposure during regular inspection work can be reduced.

本発明による沸騰水型原子力発電プラントの実施例1の系統構成を示す図である。It is a figure which shows the system | strain structure of Example 1 of the boiling water nuclear power plant by this invention. 本発明による沸騰水型原子力発電プラントの実施例2の系統構成を示す図である。It is a figure which shows the system | strain structure of Example 2 of the boiling water nuclear power plant by this invention. 本発明による沸騰水型原子力発電プラントの実施例3の系統構成を示す図である。It is a figure which shows the system | strain structure of Example 3 of the boiling water nuclear power plant by this invention. 本発明による沸騰水型原子力発電プラントの実施例3におけるサプレッションプール水の脱酸素,脱塩処理方法を示す図である。It is a figure which shows the deoxygenation and desalination processing method of the suppression pool water in Example 3 of the boiling water nuclear power plant by this invention. 本発明による沸騰水型原子力発電プラントの実施例8の系統構成を示す図である。It is a figure which shows the system | strain structure of Example 8 of the boiling water nuclear power plant by this invention. 本発明による沸騰水型原子力発電プラントの実施例10の系統構成を示す図である。It is a figure which shows the system | strain structure of Example 10 of the boiling water nuclear power plant by this invention. 発明者らによる実験におけるコバルト58付着量に及ぼす表面処理依存性を示す図である。It is a figure which shows the surface treatment dependence which acts on the cobalt 58 adhesion amount in experiment by inventors. 高周波誘導加熱を実機の余熱除去系統配管に適用した実施例12の処理方法を示す図である。It is a figure which shows the processing method of Example 12 which applied the high frequency induction heating to the residual heat removal system piping of an actual machine. 余熱除去系統配管への放射性イオン付着過程を模式に示す図である。It is a figure which shows typically the radioactive ion attachment process to the residual heat removal system piping. 室温静止水中における炭素鋼の腐食速度に及ぼす溶存酸素濃度依存性を示す図である。It is a figure which shows the dissolved oxygen concentration dependence which acts on the corrosion rate of the carbon steel in room temperature still water. 炭素鋼の腐食速度に及ぼす導電率の影響を示す図である。It is a figure which shows the influence of the electrical conductivity which acts on the corrosion rate of carbon steel. 発明者らが炭素鋼浸漬環境ごとの放射性コバルト58イオンの蓄積量を比較した結果を示す図である。It is a figure which shows the result of inventors comparing the accumulation amount of radioactive cobalt 58 ion for every carbon steel immersion environment.

符号の説明Explanation of symbols

1 原子炉圧力容器
2 再循環ポンプ
3 再循環系統
4 主蒸気系
5 タービン
6 復水器
7 復水ポンプ
8 復水浄化装置
9 給水ポンプ
10 低圧給水加熱器
11 高圧給水加熱器
12 給水系
13 復水貯蔵タンク
14 復水供給ポンプ
15 制御棒駆動水ポンプ
16 制御棒駆動水浄化装置
17 余熱除去系統
18 余熱除去系統入口バルブ
19 余熱除去系統熱交換器入口バルブ
20 余熱除去系統熱交換器出口バルブ
21 原子炉格納容器外余熱除去系統戻りバルブ
22 原子炉格納容器内余熱除去系統戻りバルブ
23 余熱除去系統ポンプ
24 余熱除去系統熱交換器
25 余熱除去系統熱交換器バイパスバルブ
26 原子炉格納容器
27 サプレッションプール
28 サプレッションプール出口バルブ
29 サプレッションプール戻りバルブ
30 置換水貯蔵タンク
31 窒素ガスバブリング装置
32 置換水循環ポンプ
33 置換水の脱塩処理装置
34 廃棄物処理系バルブ
35 置換水送水バルブ
36 置換水送水ポンプ
37 導電率計
38 溶存酸素濃度計
39 情報処理制御装置
40 信号処理ケーブル
41 バルブ制御信号処理ケーブル
42 サプレッションプール水浄化ポンプ
43 サプレッションプール水の脱塩処理装置
44 炉水浄化系ポンプ
45 炉水浄化系再生熱交換器
46 炉水浄化系非再生熱交換器
47 炉水浄化装置
48 高周波誘導加熱用渦巻きコイル
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Recirculation pump 3 Recirculation system 4 Main steam system 5 Turbine 6 Condenser 7 Condensate pump 8 Condensate purification device 9 Feed water pump 10 Low pressure feed water heater 11 High pressure feed water heater 12 Feed water system 13 Water storage tank 14 Condensate supply pump 15 Control rod drive water pump 16 Control rod drive water purification device 17 Residual heat removal system 18 Residual heat removal system inlet valve 19 Residual heat removal system heat exchanger inlet valve 20 Residual heat removal system heat exchanger outlet valve 21 Residual heat removal system return valve outside reactor containment 22 Remaining heat removal system return valve inside reactor containment 23 Residual heat removal system pump 24 Residual heat removal system heat exchanger 25 Residual heat removal system heat exchanger bypass valve 26 Reactor containment vessel 27 Suppression pool 28 Suppression pool outlet valve 29 Suppression pool return valve 30 Replacement water storage tank 31 Nitrogen gas bubbling device 32 Replacement water circulation pump 33 Replacement water desalination device 34 Waste treatment system valve 35 Replacement water feed valve 36 Replacement water feed pump 37 Conductivity meter 38 Dissolved oxygen concentration meter 39 Information processing control device 40 Signal Processing cable 41 Valve control signal processing cable 42 Suppression pool water purification pump 43 Suppression pool water demineralizer 44 Reactor water purification system pump 45 Reactor water purification system regenerative heat exchanger 46 Reactor water purification system non-regenerative heat exchanger 47 Furnace Water purification device 48 High frequency induction heating spiral coil

Claims (20)

保管水の脱酸素処理装置,保管水の脱塩処理装置,保管水を配水するバルブ,ポンプを備え、
原子炉運転中に余熱除去系統を満水保管する際に、脱酸素処理および脱塩処理の少なくとも一方の処理を施した水を余熱除去系統に保管水として導入する
ことを特徴とする沸騰水型原子力発電プラント。
Equipped with storage water deoxygenation equipment, storage water demineralization equipment, valves for distributing storage water, pumps,
Boiling water nuclear power characterized by introducing water that has undergone at least one of deoxygenation treatment and desalination treatment into the residual heat removal system as stored water when the residual heat removal system is stored in full water during the operation of the reactor Power plant.
請求項1に記載の沸騰水型原子力発電プラントにおいて、
余熱除去系統に導入する保管水として復水浄化系の出口水,復水補給水系水の少なくとも一方からの水を余熱除去系統の保管水として使用する
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 1,
A boiling water nuclear power plant characterized in that water from at least one of condensate purification system outlet water and condensate makeup water is used as storage water to be introduced into the residual heat removal system as storage water for the residual heat removal system.
請求項1に記載の沸騰水型原子力発電プラントにおいて、
溶存酸素濃度0.5ppm以下,導電率0.3μS/cm以下の水を余熱除去系統の保管水として使用する
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 1,
A boiling water nuclear power plant characterized by using water with a dissolved oxygen concentration of 0.5 ppm or less and conductivity of 0.3 μS / cm or less as storage water for the residual heat removal system.
循環水の脱酸素処理装置,循環水の脱塩処理装置,循環水を配水するバルブを備え、
原子炉運転中に余熱除去系統のサーベイランス運転をする時に、循環水として脱酸素処理および脱塩処理の少なくとも一方を施した水を余熱除去系統に導入する
ことを特徴とする沸騰水型原子力発電プラント。
It is equipped with a deoxygenator for circulating water, a desalinator for circulating water, and a valve for distributing the circulating water.
A boiling water nuclear power plant characterized by introducing water subjected to at least one of deoxygenation treatment and desalting treatment as circulating water to the residual heat removal system when performing surveillance operation of the residual heat removal system during the operation of the nuclear reactor. .
請求項4に記載の沸騰水型原子力発電プラントにおいて、
余熱除去系統に導入する循環水として復水浄化系の出口水,復水補給水系水の少なくとも一方からの水を余熱除去系統の循環水として使用する
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 4,
A boiling water nuclear power plant characterized in that water from at least one of condensate purification system outlet water and condensate makeup water is used as circulating water to be introduced into the residual heat removal system as circulation water in the residual heat removal system.
請求項4に記載の沸騰水型原子力発電プラントにおいて、
溶存酸素濃度0.5ppm以下,導電率0.3μS/cm以下の水を余熱除去系統の循環水として使用する
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 4,
A boiling water nuclear power plant characterized by using water with a dissolved oxygen concentration of 0.5 ppm or less and conductivity of 0.3 μS / cm or less as circulating water for the residual heat removal system.
請求項4に記載の沸騰水型原子力発電プラントにおいて、
余熱除去系統のサーベイランス運転終了前に、循環水として脱酸素処理および脱塩処理の少なくとも一方を施した水を余熱除去系統に導入し、余熱除去系統の少なくとも一部が該当する循環水で満たされた後、サーベイランス運転を終了させる
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 4,
Before the surveillance operation of the residual heat removal system is completed, water that has been subjected to at least one of deoxygenation treatment and desalting treatment as circulating water is introduced into the residual heat removal system, and at least a part of the residual heat removal system is filled with the corresponding circulating water. After that, the boiling water nuclear power plant is characterized by terminating the surveillance operation.
サプレッションプール水を窒素または不活性気体でバブリングする脱酸素処理装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
A boiling water nuclear power plant comprising a deoxygenation treatment device for bubbling suppression pool water with nitrogen or an inert gas.
請求項8に記載の沸騰水型原子力発電プラントにおいて、
不活性気体のバブリングによりサプレッションプール水の溶存酸素濃度を0.5ppm以下に制御する手段を備えた
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to claim 8,
A boiling water nuclear power plant comprising means for controlling the dissolved oxygen concentration of suppression pool water to 0.5 ppm or less by bubbling of an inert gas.
サプレッションプール水を脱塩処理する脱塩処理装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
A boiling water nuclear power plant comprising a desalination apparatus for desalinating suppression pool water.
請求項10に記載の沸騰水型原子力発電プラントにおいて、
サプレッションプール水の導電率を0.3μS/cm以下にする脱塩処理装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to claim 10,
A boiling water nuclear power plant comprising a desalination treatment device for suppressing the conductivity of suppression pool water to 0.3 μS / cm or less.
置換水の脱酸素処理装置,置換水の脱塩処理装置の少なくとも一方と、置換水を配水するバルブ,ポンプとを備え、
原子炉運転中になされる余熱除去系統のサーベイランス運転終了直後に、脱酸素処理および脱塩処理の少なくとも一方を施した水によって余熱除去系統の配管内に残留している水を置換する
ことを特徴とする沸騰水型原子力発電プラント。
Comprising at least one of replacement water deoxygenation apparatus and replacement water demineralization apparatus, a valve and a pump for distributing replacement water,
Immediately after the end of surveillance operation of the residual heat removal system performed during the reactor operation, water remaining in the piping of the residual heat removal system is replaced with water subjected to at least one of deoxygenation treatment and desalination treatment. Boiling water nuclear power plant.
請求項12に記載の沸騰水型原子力発電プラントにおいて、
置換対象水を放射性廃棄物処理系に排出する配管およびバルブを備えた
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to claim 12,
A boiling water nuclear power plant comprising a pipe and a valve for discharging water to be replaced into a radioactive waste treatment system.
請求項12または請求項13に記載の沸騰水型原子力発電プラントにおいて、
余熱除去系統から廃棄物処理系に繋がる配管系に導電率計または溶存酸素計の少なくとも一方を設置する
ことを特徴とする沸騰水型原子力発電プラント。
In the boiling water nuclear power plant according to claim 12 or 13,
A boiling water nuclear power plant characterized in that at least one of a conductivity meter and a dissolved oxygen meter is installed in a piping system connected from a residual heat removal system to a waste treatment system.
請求項12ないし14のいずれか一項に記載の沸騰水型原子力発電プラントにおいて、
導電率計または溶存酸素計のデータを収集するデータ収集装置と、収集されたデータに基づき置換対象水から置換水への置換終了を判定する情報処理制御装置と、置換終了の判定に基づきポンプおよびバルブを操作させる制御装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to any one of claims 12 to 14,
A data collection device for collecting conductivity meter or dissolved oxygen meter data, an information processing control device for determining the end of replacement from the water to be replaced to the replacement water based on the collected data, a pump and A boiling water nuclear power plant comprising a control device for operating a valve.
請求項15に記載の沸騰水型原子力発電プラントにおいて、
導電率が0.3μS/cm以下,溶存酸素濃度が0.5ppm以下の条件の少なくとも一方が達成された時に置換終了と判定する情報処理制御装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to claim 15,
Boiling water nuclear power generation characterized in that it has an information processing control device that judges that replacement is completed when at least one of the conditions of electric conductivity of 0.3 μS / cm or less and dissolved oxygen concentration of 0.5 ppm or less is achieved. plant.
請求項12ないし15のいずれか一項に記載の沸騰水型原子力発電プラントにおいて、
前記置換水として復水浄化系の出口水および復水補給水系水の少なくとも一方の水を用いる
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to any one of claims 12 to 15,
A boiling water nuclear power plant characterized in that at least one of condensate purification system outlet water and condensate makeup water system water is used as the replacement water.
復水貯蔵タンク水を窒素または不活性気体でバブリングし溶存酸素濃度を0.5ppm以下にするガスバブリング装置を備えた
ことを特徴とする沸騰水型原子力発電プラント。
A boiling water nuclear power plant comprising a gas bubbling device for bubbling condensate storage tank water with nitrogen or an inert gas so that a dissolved oxygen concentration is 0.5 ppm or less.
請求項1ないし18のいずれか一項に記載の沸騰水型原子力発電プラントにおいて、
沸騰水型原子力発電プラントの建設中または定期点検中に余熱除去系統配管内に高周波誘導加熱装置を導入し、前記余熱除去系統配管内面を400℃以上に加熱して酸化皮膜を形成する
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to any one of claims 1 to 18,
A high-frequency induction heating device is introduced into the residual heat removal system pipe during construction or periodic inspection of the boiling water nuclear power plant, and the oxide film is formed by heating the inner surface of the residual heat removal system pipe to 400 ° C or higher. Boiling water nuclear power plant.
請求項1ないし18のいずれか一項に記載の沸騰水型原子力発電プラントにおいて、
前記すべての処理に先立って、放射性核種を取り込んだ余熱除去系統配管の腐食皮膜を化学除染により除去する
ことを特徴とする沸騰水型原子力発電プラント。
The boiling water nuclear power plant according to any one of claims 1 to 18,
Prior to all the treatments, the boiling water nuclear power plant is characterized by removing the corrosion film of the residual heat removal system pipe incorporating the radionuclide by chemical decontamination.
JP2004218660A 2004-07-27 2004-07-27 Boiling water nuclear power plant Expired - Fee Related JP4352249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218660A JP4352249B2 (en) 2004-07-27 2004-07-27 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218660A JP4352249B2 (en) 2004-07-27 2004-07-27 Boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2006038623A true JP2006038623A (en) 2006-02-09
JP4352249B2 JP4352249B2 (en) 2009-10-28

Family

ID=35903773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218660A Expired - Fee Related JP4352249B2 (en) 2004-07-27 2004-07-27 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP4352249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466486A (en) * 2020-12-03 2021-03-09 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466486A (en) * 2020-12-03 2021-03-09 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system
CN112466486B (en) * 2020-12-03 2022-09-06 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system

Also Published As

Publication number Publication date
JP4352249B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
TW493180B (en) Method of chemical decontamination
JPS60183595A (en) Method of operating boiling-water type nuclear power plant
JP4352249B2 (en) Boiling water nuclear power plant
JPH068914B2 (en) Radioactive material adhesion control method for boiling water nuclear power plants
JP3936845B2 (en) How to store residual heat removal system piping during nuclear power plant operation
Betova et al. Start-up and shut-down water chemistries in pressurized water reactors
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP2011149764A (en) Method for reducing dose of nuclear power plant component member
JP2006038811A (en) Operation method of nuclear power plant
JP4982465B2 (en) Radioactivity decontamination method and radioactivity decontamination apparatus
JP2010266131A (en) Steam generator scale adhesion suppressing method
JP3156113B2 (en) Water quality control method and device
JP2016003940A (en) Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JPS61245093A (en) Feedwater system of nuclear power generating plant
JPS6053897A (en) Method of inhibiting eluation of cobalt of feedwater heater tube
JP4349956B2 (en) Operation method of residual heat removal system
US20220102019A1 (en) Chemical decontamination method
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
JP2009229389A (en) Method for suppressing stress corrosion cracking of nuclear power plant
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JP6077260B2 (en) Method and system for injecting zinc into BWR plant cooling water
Lips Water Chemistry in Pressurized Water Reactors–A Gösgen-Specific Overview
JP6640758B2 (en) Drug injection device and drug injection method in nuclear power plant
JP2014130160A (en) Method of reducing doses in nuclear power plant constituting members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees