JP2006038598A - Inspection method for buried pipe - Google Patents

Inspection method for buried pipe Download PDF

Info

Publication number
JP2006038598A
JP2006038598A JP2004217833A JP2004217833A JP2006038598A JP 2006038598 A JP2006038598 A JP 2006038598A JP 2004217833 A JP2004217833 A JP 2004217833A JP 2004217833 A JP2004217833 A JP 2004217833A JP 2006038598 A JP2006038598 A JP 2006038598A
Authority
JP
Japan
Prior art keywords
elastic wave
pipe
test
force
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004217833A
Other languages
Japanese (ja)
Other versions
JP4515848B2 (en
Inventor
Takushi Minaki
卓士 皆木
Hikari Iida
光 飯田
Masanori Asano
雅則 浅野
Toshiro Kamata
敏郎 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Sekisui Chemical Co Ltd
Original Assignee
Gifu University NUC
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004217833A priority Critical patent/JP4515848B2/en
Application filed by Gifu University NUC, Sekisui Chemical Co Ltd filed Critical Gifu University NUC
Priority to KR1020077001807A priority patent/KR101121283B1/en
Priority to AU2005265697A priority patent/AU2005265697B2/en
Priority to PCT/JP2005/013655 priority patent/WO2006011484A1/en
Priority to CA2575036A priority patent/CA2575036C/en
Priority to US11/658,658 priority patent/US7690258B2/en
Priority to EP05767417.8A priority patent/EP1780540A4/en
Publication of JP2006038598A publication Critical patent/JP2006038598A/en
Application granted granted Critical
Publication of JP4515848B2 publication Critical patent/JP4515848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To precisely inspect a deterioration degree in a buried pipe such as a buried pipe and a ceramic pipe constituting a sewer pipe line, an agricultural water pipe line or the like. <P>SOLUTION: A correlation between a parameter obtained from a force-deformation relation (for example, load-displacement curve) for indicating force applied from an outside onto a tested pipe and a deformation of the tested pipe generated thereby, and an impact elastic wave test data (for example, low-frequency area ratio in a spectral distribution) obtained by carrying out an impact elastic wave test for the tested pipe is found preliminarily, an impact elastic wave measured data of the inspection objective pipe is collected by carrying out the impact elastic wave test for the tested pipe, the observed impact elastic wave measured data is evaluated on the basis of the correlation between the parameter obtained from the force-deformation relation and the impact elastic wave test data, so as to grasp the deterioration degree in the inspection objective pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、埋設管の劣化状態を検査する埋設管の検査方法に関する。   The present invention relates to a buried pipe inspection method for inspecting a deterioration state of a buried pipe.

下水管路や農水管路においては、埋設管の経年に伴う腐食摩耗や破損により陥没や漏水などの事故が増加してきている。このため適切な劣化度診断とその調査結果に基づく、適切な修繕・更新が望まれている。   In sewage pipes and agricultural water pipes, accidents such as depressions and water leakage are increasing due to corrosive wear and breakage of buried pipes over time. For this reason, appropriate repair and renewal based on the appropriate deterioration degree diagnosis and the survey results are desired.

下水管路や農水管路の診断調査においては、一般に、修繕・改築工事の順番及び工事方法を決定するために、調査流域を構成する要素区域間の劣化進行度の順位付け、及び定量的な劣化レベルの進行度の把握が必要となる。   In the diagnosis survey of sewage pipelines and agricultural water pipelines, in general, in order to determine the order of repair and reconstruction work and the construction method, ranking of the degree of deterioration between the element areas constituting the survey basin, and quantitative It is necessary to grasp the progress of the deterioration level.

このため、従来では、目視やTVカメラを用いて外観調査を行い、必要となればコアを抜いて物性を調査するという方法が一般に行われている。しかし、このような手法では、目に見える劣化しか捉えることができず、管外周や内部の劣化については見逃されてしまい、劣化現象を適切に定量的に把握することが困難であった。また、定量的なデータを集めるためにはコアを大量に抜く必要があり、下水管路や農水管路の強度を損ねたり、作業に手間がかかるという欠点がある。   For this reason, conventionally, a method is generally used in which an appearance inspection is performed using visual observation or a TV camera, and a physical property is investigated by removing the core if necessary. However, with such a method, only visible deterioration can be detected, and deterioration on the outer periphery and inside of the pipe is overlooked, and it is difficult to appropriately and quantitatively grasp the deterioration phenomenon. In addition, in order to collect quantitative data, it is necessary to remove a large amount of cores, and there is a disadvantage that the strength of the sewage pipe and the agricultural water pipe is impaired and work is troublesome.

一方、コンクリート構造物で行われている検査方法の応用も考えられている。例えば、弾性波を利用したひび割れ幅及び深さを予測するシステムが提案されている(例えば、特許文献1及び特許文献2参照。)。しかし、この検査システムによれば、弾性波の伝播エネルギや、弾性波のカウント数(所定以上の振幅のカウント数)の減少を利用しているため、埋設管が埋設されている周囲状況の影響を受けやすく、検査精度が悪いという問題がある。
特開平10−142200号公報 特開平09−269215号公報
On the other hand, application of inspection methods performed on concrete structures is also considered. For example, systems for predicting crack width and depth using elastic waves have been proposed (see, for example, Patent Document 1 and Patent Document 2). However, according to this inspection system, the propagation energy of elastic waves and the decrease in the number of elastic wave counts (the number of counts with a predetermined amplitude or more) are used, so the influence of the surrounding situation where the buried pipe is buried. There is a problem that the inspection accuracy is poor.
JP-A-10-142200 JP 09-269215 A

本発明は、以上のような問題点を解消するためになされたもので、下水管路や農水管路等を構築している埋設管の劣化度合を、埋設環境に影響されずに高精度で検査することが可能な埋設管の検査方法を提供することを目的とする。   The present invention has been made to solve the above problems, and the degree of deterioration of buried pipes that construct sewage pipes, agricultural water pipes, etc. can be determined with high accuracy without being affected by the buried environment. It aims at providing the inspection method of the buried pipe which can be inspected.

本発明の検査方法は、埋設管の劣化状態を管内部から検査する方法であって、供試管に外部から加える力とそれによって発生する供試管の変形との関係を示す力−変形関係から得られるパラメータと、前記供試管に衝撃弾性波試験を行うことにより得られる衝撃弾性波試験データとの相関関係を予め求めておき、検査対象管に対して衝撃弾性波試験を行って、検査対象管の衝撃弾性波測定データを採取し、その実測の衝撃弾性波測定データを、前記力−変形関係から得られるパラメータと衝撃弾性波試験データとの相関関係を基に評価して、検査対象管の劣化度合を定量的に判定することを特徴としている。   The inspection method of the present invention is a method for inspecting the deterioration state of an embedded pipe from the inside of the pipe, and is obtained from a force-deformation relationship indicating a relation between an external force applied to the test pipe and a deformation of the test pipe generated thereby. And a shock elastic wave test data obtained by performing a shock elastic wave test on the test tube in advance, and performing a shock elastic wave test on the inspection target tube, Shock elastic wave measurement data is collected, and the actually measured shock elastic wave measurement data is evaluated based on the correlation between the parameters obtained from the force-deformation relationship and the shock elastic wave test data, and It is characterized by quantitatively determining the degree of deterioration.

本発明において、供試管の力−変形関係から得られるパラメータとして、荷重−変位曲線または応力−歪曲線を用いるようにしてもよい。   In the present invention, a load-displacement curve or a stress-strain curve may be used as a parameter obtained from the force-deformation relationship of the test tube.

また、力−変形関係から得られるパラメータとして、荷重−変位曲線または応力−歪曲線の傾きの角度比率を用いるようにしてもよい。   Further, as a parameter obtained from the force-deformation relationship, the angle ratio of the slope of the load-displacement curve or stress-strain curve may be used.

本発明において、前記衝撃弾性波試験データ及び実測の衝撃弾性波データとして、衝撃弾性波試験を行って管体の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルにおける一定の周波数領域に対する低周波成分の面積比を用いることが好ましい。   In the present invention, as the shock elastic wave test data and the actually measured shock elastic wave data, a shock elastic wave test is performed to measure a propagation wave of the tube, a frequency spectrum is analyzed for the propagation wave, and a constant in the frequency spectrum is analyzed. It is preferable to use the area ratio of the low frequency component to the frequency region.

本発明を以下に詳細に説明する。   The present invention is described in detail below.

まず、鉄筋コンクリート管などの管体にひび割れが発生すると剛性が低下する。その管体の剛性を評価する方法として、一般に、荷重−変位曲線(または応力−歪曲線)などの力−変形曲線を測定する方法が知られている。また、他の方法として衝撃振動試験がある。そして、本発明では、そのような力−変形曲線と衝撃弾性波試験の測定結果との間に相関があることを見出したものであり(詳細は後述する)、上記したように、力−変形曲線と衝撃弾性波試験の試験データとの相関関係を予め求めておき、検査対象管(既設の埋設管)の衝撃弾性波試験を行った際の実測の衝撃弾性波測定データを、上記力−変形曲線と衝撃弾性波試験の試験データとの相関関係を基に評価することにより、検査対象管の劣化度合を定量的に把握することを特徴としている。   First, when cracks occur in a tubular body such as a reinforced concrete pipe, the rigidity decreases. As a method for evaluating the rigidity of the tubular body, a method for measuring a force-deformation curve such as a load-displacement curve (or stress-strain curve) is generally known. Another method is an impact vibration test. And in this invention, it discovered that there existed a correlation between the measurement result of such a force-deformation curve and a shock elastic wave test (it mentions later for details), As mentioned above, force-deformation Correlation between the curve and the test data of the shock elastic wave test is obtained in advance, and the measured shock elastic wave measurement data when the shock elastic wave test of the pipe to be inspected (existing buried pipe) is performed is the force − It is characterized by quantitatively grasping the degree of deterioration of the pipe to be inspected by evaluating based on the correlation between the deformation curve and the test data of the shock elastic wave test.

ここで、本発明において、力−変形曲線と衝撃弾性波試験の試験データの相関を求める際の具体的な試験方法として、例えば、管体に線荷重を加えることにより発生する変位(または歪)を計測して荷重−変位曲線(または応力−歪曲線)を得る載荷試験と、その荷重−変位計測過程において、所定のステップごとに管体への線荷重を除荷して下記の衝撃弾性波試験を実施するという方法を採用する。   Here, in the present invention, as a specific test method for obtaining the correlation between the force-deformation curve and the test data of the shock elastic wave test, for example, displacement (or strain) generated by applying a linear load to the tube In the loading test to obtain a load-displacement curve (or stress-strain curve) and the load-displacement measurement process, the line load on the tube is unloaded at every predetermined step, and the following impact elastic wave The method of conducting the test is adopted.

−衝撃弾性波試験−
本発明において、供試管及び検査対象管に実施する衝撃弾性波試験は以下のようにして行う。
-Shock elastic wave test-
In the present invention, the shock elastic wave test performed on the test tube and the test target tube is performed as follows.

[入力方法]
入力装置としてはハンマや鋼球またはインパルスハンマなどによる打撃具が使用できるが、打撃は常に同じ力で加えることが望ましいので、例えばシュミットハンマや、バネ、ピストン等を用いて一定の力でハンマ、鋼球等を打ち出す方法、または一定の高さから鋼球等を落下させる方法が望ましい。インパルスハンマを使用した際は、入力情報の数値データを計測しておき、解析時に反映させることができるようにしておくことが望ましい。
[input method]
As the input device, a hammer, a steel ball or an impulse hammer can be used, but it is desirable to always apply the hammer with the same force. For example, a hammer with a constant force using a Schmitt hammer, spring, piston, etc. A method of launching a steel ball or the like, or a method of dropping a steel ball or the like from a certain height is desirable. When an impulse hammer is used, it is desirable to measure numerical data of input information so that it can be reflected during analysis.

特に、最大ピークの強度を評価する際の入力装置としては、例えばインパルスハンマのような入力情報を数値化できる打撃具や、一定の力で打撃を行うことができる打撃具を使用するのが望ましい。   In particular, as an input device for evaluating the intensity of the maximum peak, it is desirable to use a striking tool that can digitize input information such as an impulse hammer or a striking tool that can perform striking with a constant force. .

[受信方法]
受信子としては加速度センサやAEセンサ及び振動センサ等が使用できる。受信子のセット方法としては、テープや接着剤等で固定してもよいし、手や押さえ治具等を使って圧着させてもよい。
[Reception method]
As the receiver, an acceleration sensor, an AE sensor, a vibration sensor, or the like can be used. As a method for setting the receiver, the receiver may be fixed with a tape, an adhesive, or the like, or may be crimped using a hand or a holding jig.

これらの入力装置や受信装置は、水や酸性水、塩基性水に接触することがあるためステンレスなどの耐食性に優れた材料で形成されていることが望ましい。   Since these input devices and receiving devices may come into contact with water, acidic water, or basic water, it is desirable that the input device and the receiving device be formed of a material having excellent corrosion resistance such as stainless steel.

[計測方法」
インパルスハンマなどで管体内面に弾性波を入力し、一方で管内にセットした受信子により、管体を伝播した伝播波を計測し、記録装置により波形記憶を行わせる(受信データの計測)。入射位置と受信子の位置は、検査対象管の管長の1/4以上離して設置するのが望ましい。これは、亀裂などの劣化による管全体の振動現象の変化が捉えやすいからである。また、入射位置と受信位置は相対的な位置が同じになるように設置するのが望ましい。
[Measurement method]
An elastic wave is input to the inner surface of the tube with an impulse hammer or the like. On the other hand, a propagation wave propagated through the tube is measured by a receiver set in the tube, and a waveform is stored by a recording device (measurement of received data). It is desirable that the incident position and the receiver position be separated from each other by 1/4 or more of the tube length of the inspection target tube. This is because changes in the vibration phenomenon of the entire tube due to deterioration such as cracks are easily captured. Further, it is desirable that the incident position and the receiving position are installed so that the relative positions are the same.

[低周波面積比の算出]
算出方法としては、例えば、以下の2つの方法がある。
[Calculation of low frequency area ratio]
As a calculation method, for example, there are the following two methods.

(1)計測した波形データをFFTし、周波数スペクトルを描かせる。この周波数スペクトル分布において、一定の周波数区間に対する低周波成分の面積比(低周波面積比=[低周波成分(例えば0〜5kHz)の面積]/[一定区間成分(例えば0〜10kHz)の面積]を求める。   (1) Perform FFT on the measured waveform data and draw a frequency spectrum. In this frequency spectrum distribution, the area ratio of low frequency components to a certain frequency interval (low frequency area ratio = [area of low frequency components (eg, 0 to 5 kHz)] / [area of constant interval components (eg, 0 to 10 kHz)]. Ask for.

(2)計測した入力と受信のデータについて、入力(打撃側)と出力(受信側)の関係を考慮した周波数スペクトルを描かせる。この周波数スペクトル分布において、一定の周波数区間に対する低周波成分の面積比(低周波面積比=[低周波成分(例えば0〜5kHz)の面積]/[一定区間成分(例えば0〜10kHz)の面積]を求める。この(2)の解析法を採用する場合、インパルスハンマの打撃力(入力情報)を数値化しておく必要がある。ここで、入力と出力との関係を考慮した周波数スペクトルとは、例えば、入力のフーリエスペクトルをA(f)、出力のフーリエスペクトルをB(f)、伝達関数(周波数応答関数)をH(f)とすると、H(f)=B(f)/A(f)の関係で表され、このH(f)を描かせたのがここでの周波数スペクトルの分布となる。   (2) For the measured input and received data, draw a frequency spectrum that takes into account the relationship between the input (striking side) and the output (receiving side). In this frequency spectrum distribution, the area ratio of low frequency components to a certain frequency interval (low frequency area ratio = [area of low frequency components (eg, 0 to 5 kHz)] / [area of constant interval components (eg, 0 to 10 kHz)]. When the analysis method of (2) is adopted, it is necessary to digitize the impact force (input information) of the impulse hammer, where the frequency spectrum considering the relationship between input and output is For example, if the input Fourier spectrum is A (f), the output Fourier spectrum is B (f), and the transfer function (frequency response function) is H (f), then H (f) = B (f) / A (f ), And this H (f) is drawn as the distribution of the frequency spectrum here.

そして、本発明では、以上の載荷試験で得られた荷重−変位曲線と、衝撃弾性波試験で得られた低周波面積比との相関を求めて、例えば図8に示すような[低周波面積比]−[荷重−変位曲線における傾きの角度比率]の関係を得る(詳細は後述する)。この図8に示すように、[低周波面積比]と[荷重−変位曲線における傾きの角度比率]とは比例の関係(直線関係)にあり、従って、検査対象管(埋設管)に衝撃弾性波試験を実施して上記した低周波面積比を求め、その実測の低周波面積比を、[低周波面積比]−[荷重−変位曲線における傾きの角度比率]の関係を基に評価することによって検査対象管の劣化度合(破壊状態)を定量的に把握することができる。   In the present invention, the correlation between the load-displacement curve obtained in the above loading test and the low frequency area ratio obtained in the shock elastic wave test is obtained, for example, [low frequency area as shown in FIG. Ratio]-[angle ratio of inclination in load-displacement curve] (details will be described later). As shown in FIG. 8, the [low frequency area ratio] and the [inclination angle ratio in the load-displacement curve] are in a proportional relationship (linear relationship). Conduct a wave test to obtain the above-mentioned low frequency area ratio, and evaluate the actually measured low frequency area ratio based on the relationship of [low frequency area ratio]-[inclination angle ratio in load-displacement curve]. Can quantitatively grasp the deterioration degree (destructive state) of the inspection target pipe.

なお、本発明に用いる衝撃弾性波試験の試験データとしては、低周波面積比のほか、共振周波数比、受振波形振幅値、受振波形エネルギー、ピーク周波数、周波数重心、あるいは、波形減衰時間などであってもよい。   The test data of the shock elastic wave test used in the present invention includes the low frequency area ratio, resonance frequency ratio, received waveform amplitude value, received waveform energy, peak frequency, frequency center of gravity, or waveform decay time. May be.

ここで、本発明の検査方法を適用する埋設管としては、例えば、コンクリート管、鉄筋コンクリート管、陶管、金属管、樹脂管またはFRPM管(モルタルとFRPの複合管)などが挙げられる。また、埋設管の断面形状としては、例えば円形、卵形、矩形、馬蹄形などが挙げられる。   Here, examples of the buried pipe to which the inspection method of the present invention is applied include a concrete pipe, a reinforced concrete pipe, a ceramic pipe, a metal pipe, a resin pipe, or an FRPM pipe (composite pipe of mortar and FRP). Examples of the cross-sectional shape of the buried pipe include a circular shape, an oval shape, a rectangular shape, and a horseshoe shape.

本発明の埋設管の検査方法によれば、供試管に外部から加える力とそれによって発生する供試管の変形との関係を示す力−変形関係から得られるパラメータと、前記供試管に衝撃弾性波試験を行うことにより得られる衝撃弾性波試験データとの相関関係を予め求めておき、検査対象管(埋設管)に対して衝撃弾性波試験を行って、検査対象管の衝撃弾性波測定データを採取し、その実測の衝撃弾性波測定データを、前記前記力−変形関係から得られるパラメータと衝撃弾性波試験データとの相関関係を基に評価して検査対象管の劣化状態を検査するので、検査対称管が埋設されている周囲状況に影響されずに、劣化度合を高精度で定量的に判定することが可能となり、これによって改築・修繕の方法・優先順位を決定することができる。   According to the buried pipe inspection method of the present invention, a parameter obtained from a force-deformation relationship indicating a relation between an external force applied to the test tube and a deformation of the test tube generated thereby, and a shock elastic wave is applied to the test tube. The correlation with the shock elastic wave test data obtained by performing the test is obtained in advance, the shock elastic wave test is performed on the inspection target pipe (buried pipe), and the shock elastic wave measurement data of the inspection target pipe is obtained. Since the impact elastic wave measurement data collected and evaluated is evaluated based on the correlation between the parameter obtained from the force-deformation relationship and the shock elastic wave test data, the deterioration state of the inspection target pipe is inspected. The degree of deterioration can be determined quantitatively with high accuracy without being affected by the surrounding situation where the inspection symmetric pipe is buried, and thereby the method and priority of reconstruction and repair can be determined.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<実施例1>
まず、この例に用いる供試管と各試験方法について説明する。
<Example 1>
First, the test tube and each test method used in this example will be described.

−供試管−
JIS A 5372のB型1種の規格に基づいた、呼び径250mm(管長:2m)のコンクリート製ヒューム管(日本ヒューム管製の製品)を用いた。
−Test tube−
A concrete fume pipe (product made by Nippon Fume Pipe Co., Ltd.) having a nominal diameter of 250 mm (pipe length: 2 m) based on JIS A 5372 B type 1 type standard was used.

−線荷重による載荷試験(外圧試験)−
図1(a)及び(b)に示すように、供試管Pの軸方向に沿って伸びる形状の線荷重1を供試管Pに対して上方から載荷した。また、図2に示すように、供試管Pの内部に高感度変位計2を鉛直方向に沿って配置して、供試管Pに線荷重1を加えたときの供試管Pの変位を計測して荷重−変位曲線を得た。
-Loading test by external load (external pressure test)-
As shown in FIGS. 1A and 1B, a line load 1 having a shape extending along the axial direction of the test tube P was loaded onto the test tube P from above. In addition, as shown in FIG. 2, a high-sensitivity displacement meter 2 is arranged inside the test tube P along the vertical direction, and the displacement of the test tube P when a line load 1 is applied to the test tube P is measured. Thus, a load-displacement curve was obtained.

ここで、線荷重1の載荷は連続的に行うのではなく、所定のステップごとに線荷重1の除荷(図1(b)参照)を行って線荷重1の載荷を間欠的に実施した。具体的には、線荷重1の載荷を開始した後、ひび割れが発生するまでの弾性領域において1度除荷を行なって下記の衝撃弾性波試験を実施した後に再載荷を行い、次に、ひび割れが発生した時点で除荷を行って衝撃弾性波試験を実施した後に再載荷を行った。そして、ひび割れが発生した以後は、高感度変位計2によって計測される変位が、[変位=2.4mm」、[変位=4.3mm」、[変位=6.3」、[変位=9.4」、[変位=12.6」、[変位=20.3」となった時点で、それぞれ、線荷重1の除荷を行なって下記の衝撃弾性波試験を実施した後に再載荷を行った。   Here, the loading of the line load 1 is not performed continuously, but the loading of the line load 1 is performed intermittently by unloading the line load 1 (see FIG. 1B) at every predetermined step. . Specifically, after loading of line load 1 is started, unloading is performed once in the elastic region until cracking occurs, the impact acoustic wave test described below is performed, reloading is performed, and then cracking is performed. Unloading was performed at the time of occurrence, and after the impact elastic wave test was carried out, reloading was performed. And after a crack generate | occur | produces, the displacement measured with the high sensitivity displacement meter 2 is [displacement = 2.4mm], [displacement = 4.3mm], [displacement = 6.3], [displacement = 9. 4 ”,“ displacement = 12.6 ”, and“ displacement = 20.3 ”, respectively, the line load 1 was unloaded and the following impact elastic wave test was performed, and then reloaded. .

−衝撃弾性波試験−
この実施例において衝撃弾性波試験は以下のようにして行った。
-Shock elastic wave test-
In this example, the shock elastic wave test was performed as follows.

[入射及び受信位置]
入射装置と受信装置を図3に示す位置に配置して弾性波の入射及び伝播波の受信を行った。
[Incoming and receiving position]
The incident device and the receiving device are arranged at the positions shown in FIG. 3 to receive the elastic wave and receive the propagation wave.

[使用機器]
入射装置:インパルスハンマ
受信子:振動センサGH−313A(キーエンス製)の雄ねじ部に、直径10mm、高さ15mmの円柱物をねじ込んで使用した。なお、受信子は手で押しつけてセットした。
[Used equipment]
Incident device: Impulse hammer Receiver: Vibration sensor GH-313A (manufactured by Keyence) was used by screwing a cylindrical object having a diameter of 10 mm and a height of 15 mm. The receiver was set by pressing it by hand.

受信用アンプ:キーエンス製GA−245
データロガー(記録装置):キーエンス製NR−2000
[周波数面積の算出]
上記入射装置(インパルスハンマ)の打撃力から入力フーリエスペクトルA(f)を求めるとともに、上記した受信子で受信・記録した伝播波の波形データから出力フーリエスペクトルB(f)を求め、それら入力フーリエスペクトルA(f)と出力フーリエスペクトルB(f)を用いて、入力と出力との間の伝達関数(周波数応答関数)H(f)(H(f)=B(f)/A(f))を求めて、入力と出力との関係を考慮した周波数スペクトルを各計測点ごとに描いた。それら周波数スペクトル分布を図4(a)〜(c)及び図5(a)〜(f)に示す。
Receiver amplifier: Keyence GA-245
Data logger (recording device): NR-2000 manufactured by Keyence
[Calculation of frequency area]
The input Fourier spectrum A (f) is obtained from the impact force of the incident device (impulse hammer), and the output Fourier spectrum B (f) is obtained from the waveform data of the propagation wave received and recorded by the receiver, and the input Fourier spectrum is obtained. Using the spectrum A (f) and the output Fourier spectrum B (f), the transfer function (frequency response function) H (f) (H (f) = B (f) / A (f) between the input and the output ) And a frequency spectrum taking into account the relationship between input and output was drawn for each measurement point. These frequency spectrum distributions are shown in FIGS. 4 (a) to 4 (c) and FIGS. 5 (a) to 5 (f).

次に、各計測点で得られた周波数スペクトル分布の0〜5kHzまでの周波数領域と、0〜10kHzまでの周波数領域とを求め、それらを用いて、下記の式にて低周波面積比を算出した。その算出した低周波面積比と、載荷試験の各計測点での計測結果との関係を下記の表1及び図6に示す。   Next, the frequency region from 0 to 5 kHz and the frequency region from 0 to 10 kHz of the frequency spectrum distribution obtained at each measurement point are obtained, and the low frequency area ratio is calculated by the following formula using them. did. The relationship between the calculated low frequency area ratio and the measurement results at each measurement point of the loading test is shown in Table 1 below and FIG.

低周波面積比=[低周波成分(0〜5kHz)の面積]/[一定区間成分(0〜10kHz)の面積]   Low frequency area ratio = [area of low frequency component (0 to 5 kHz)] / [area of constant interval component (0 to 10 kHz)]

−周波数面積と荷重−変位曲線との相関について−
まず、衝撃弾性波試験で得られた周波数スペクトルのファクタとしては、前記したように低周波面積比(=[低周波成分(0〜5kHz)の面積]/[一定区間成分(0〜10kHz)の面積]を用いる。
-Correlation between frequency area and load-displacement curve-
First, as described above, as a factor of the frequency spectrum obtained in the shock elastic wave test, the low frequency area ratio (= [area of low frequency component (0 to 5 kHz)] / [constant interval component (0 to 10 kHz)) Area] is used.

また、荷重−変位曲線において用いるファクタは、荷重−変位曲線における各計測点での傾きの角度(見かけ上の剛性)とするが、この例では、荷重−変位曲線における各計測点での傾きの角度比率を用いる。   The factor used in the load-displacement curve is the angle of inclination (apparent stiffness) at each measurement point in the load-displacement curve. In this example, the slope at each measurement point in the load-displacement curve is Use angle ratio.

ここで、荷重−変位曲線における各計測点での傾きの角度比率は、[計測点における傾きの角度]/[ひび割れ発生点における傾きの角度]と規定する。また、計測点における傾きの角度とは、図7に示す荷重−変位曲線において、各計測点に引いた直線の傾きの角度を指す。   Here, the inclination angle ratio at each measurement point in the load-displacement curve is defined as [inclination angle at the measurement point] / [inclination angle at the crack generation point]. The inclination angle at the measurement point refers to the inclination angle of a straight line drawn at each measurement point in the load-displacement curve shown in FIG.

そして、以上のようにして求めた周波数スペクトル分布の低周波面積比を横軸とし、荷重−変位曲線における各計測点での傾きの角度比率を縦軸として各計測点での結果をプロットしたところ、図8に示すように、周波数面積比と荷重−変位曲線における各計測点での傾きの角度比率とは比例関係(直線関係)にあることが判明した。なお、図1のグラフの傾きは、y=−3.89x+2.19である。ただし、x:周波数面積比、y:荷重−変位曲線における各計測点での傾きの角度比率である。   Then, the results at each measurement point are plotted with the low frequency area ratio of the frequency spectrum distribution obtained as described above as the horizontal axis and the angle ratio of the inclination at each measurement point in the load-displacement curve as the vertical axis. As shown in FIG. 8, it was found that the frequency area ratio and the angle ratio of the inclination at each measurement point in the load-displacement curve are in a proportional relationship (linear relationship). The slope of the graph in FIG. 1 is y = −3.89x + 2.19. Here, x: frequency area ratio, y: angle ratio of inclination at each measurement point in the load-displacement curve.

また、ひび割れが発生した時点での周波数面積比=0.31を100%とし、最大荷重における周波数面積比=0.41を0%として、管体の劣化進行状態を残存強度率で表すと、A=−1000x+410となる。ただし、x:周波数面積比、A:残存強度率(%))である。   Further, when the frequency area ratio = 0.31 at the time of occurrence of cracking is 100%, the frequency area ratio at the maximum load = 0.41 is 0%, and the deterioration progress state of the tubular body is expressed by the residual strength rate, A = −1000x + 410. Where x: frequency area ratio, A: residual intensity ratio (%)).

以上のことから、衝撃弾性波試験で得られた低周波面積比と管体の状態(残存強度率)とを関係づけることができる。従って、検査対象管(埋設管)について、衝撃弾性波試験を実施することにより得られた周波数スペクトル分布から低周波面積比を求め、その実測の低周波面積比(x)を、上記した残存強度推定関数(A=−1000x+410)を用いて、残存強度率(%)に換算することによって、検査対象管の劣化度合を数値で把握することが可能になる。これによって、改築・修繕の方法・優先順位を決定することができる。   From the above, the low frequency area ratio obtained by the shock elastic wave test and the state (residual strength ratio) of the tubular body can be related. Therefore, for the pipe to be inspected (buried pipe), the low frequency area ratio is obtained from the frequency spectrum distribution obtained by carrying out the shock elastic wave test, and the actually measured low frequency area ratio (x) is used as the residual strength described above. By converting the residual strength rate (%) using the estimation function (A = −1000 × + 410), it is possible to grasp the degree of deterioration of the inspection target pipe by a numerical value. As a result, it is possible to determine the method / priority of renovation / repair.

−劣化度合の判定処理−
劣化度合の判定処理の具体的な例を、図9に示すフローチャートを参照しながら説明する。なお、この例では、上記した図8、表1及び残存強度推定関数(A=−1000x+410)を用いて判定を行う。
-Judgment process of the degree of deterioration-
A specific example of the deterioration degree determination process will be described with reference to the flowchart shown in FIG. In this example, the determination is performed using FIG. 8, Table 1 and the remaining strength estimation function (A = −1000x + 410).

ステップS1:上記した衝撃弾性波試験の計測方法により、検査対象管の伝播波を計測する。なお、計測条件等は、前記した供試管Pの場合と同じとする。   Step S1: The propagation wave of the inspection target tube is measured by the measurement method of the shock elastic wave test described above. Note that the measurement conditions and the like are the same as those of the test tube P described above.

ステップS2:計測した波形データをFFTし、周波数スペクトル分布を算出する。なお、周波数スペクトル分布の算出方法は、前記した供試管Pの場合と同じとする。   Step S2: FFT is performed on the measured waveform data to calculate a frequency spectrum distribution. Note that the frequency spectrum distribution calculation method is the same as that for the test tube P described above.

ステップS3:ステップ2で算出した周波数スペクトル分布から、周波数スペクトル分布の0〜5kHzまでの周波数領域と、0〜10kHzまでの周波数領域とを求め、それらを用いて、低周波面積比(=[低周波成分(0〜5kHz)の面積]/[一定区間成分(0〜10kHz)の面積]を算出する。   Step S3: A frequency region from 0 to 5 kHz and a frequency region from 0 to 10 kHz of the frequency spectrum distribution are obtained from the frequency spectrum distribution calculated in Step 2, and a low frequency area ratio (= [low Frequency area (0 to 5 kHz)] / [area of constant interval component (0 to 10 kHz)] is calculated.

ステップS4:ステップS3で算出した低周波面積比が0.31以下(≦0.31)であるか否かを判断し、低周波面積比が0.31以下である場合、健全(残存強度率=100%)と判定する(ステップS7)。一方、低周波面積比が0.31を超えている場合はステップS5に進む。   Step S4: It is determined whether or not the low frequency area ratio calculated in Step S3 is 0.31 or less (≦ 0.31). If the low frequency area ratio is 0.31 or less, sound (residual intensity ratio) = 100%) (step S7). On the other hand, if the low frequency area ratio exceeds 0.31, the process proceeds to step S5.

ステップS5:低周波面積比が、0.31<[低周波面積比]≦0.41である場合、クラックが発生しているものと判定し(ステップS8)、残存強度推定関数(A=−1000x+410)を用いて、残存強度率A(%)を算出する(ステップS9,S10)。一方、低周波面積比が0.41を超えている場合(0.41<[低周波面積比])、破壊(残存強度=0%)と判定する(ステップS6)。   Step S5: If the low frequency area ratio is 0.31 <[low frequency area ratio] ≦ 0.41, it is determined that a crack has occurred (step S8), and the residual strength estimation function (A = −) 1000 × + 410) to calculate the residual strength rate A (%) (steps S9 and S10). On the other hand, when the low-frequency area ratio exceeds 0.41 (0.41 <[low-frequency area ratio]), it is determined as destruction (residual strength = 0%) (step S6).

以上のように、この例では、検査対象管(埋設管)の状態を百分率の数値で判定することができるので、検査対象管の劣化度合を正確に把握することが可能になる。これにより、例えば、検査対象管にクラックが発生している場合、そのクラックによる強度劣化の進行状態を数値(%)で把握することが可能となるので、改築・修繕の方法・優先順位を決定する際の判定基準が明確になる。   As described above, in this example, the state of the inspection target pipe (buried pipe) can be determined by a percentage value, so that the degree of deterioration of the inspection target pipe can be accurately grasped. As a result, for example, when a crack has occurred in the pipe to be inspected, it is possible to grasp the progress of strength deterioration due to the crack with a numerical value (%). Judgment criteria when doing this are clear.

なお、以上の実施例では、供試管に高感度変位計を配置して荷重−変位曲線を描いているが、これに限られることなく、供試管にストレインゲージを貼り付けて応力−歪曲線を描くようにしてもよいし、他の外圧試験にて供試管の力−変形曲線を描くようにしてもよい。   In the above example, a high-sensitivity displacement meter is placed on the test tube to draw a load-displacement curve. However, the present invention is not limited to this, and a stress-strain curve is obtained by attaching a strain gauge to the test tube. You may make it draw, and you may make it draw the force-deformation curve of a test tube in another external pressure test.

また、以上の実施例では、衝撃弾性波試験の試験データとして、周波数面積比を採用しているが、これに限られることなく、共振周波数、受振波形振幅値、受振波形エネルギー、ピーク周波数、周波数重心、あるいは、波形減衰時間などの試験データを採用してもよい。   Further, in the above embodiment, the frequency area ratio is adopted as the test data of the shock elastic wave test. However, the present invention is not limited to this, and the resonance frequency, the received waveform amplitude value, the received waveform energy, the peak frequency, and the frequency are used. Test data such as the center of gravity or waveform decay time may be employed.

本発明の検査方法は、下水管路や農水管路などの埋設管において、修繕・改築工事の順番及び工事方法を決定するに際して、調査流域を構成する要素区域間の劣化進行度を正確に把握するのに有効に利用できる。   The inspection method of the present invention accurately grasps the degree of deterioration between the elemental areas constituting the survey basin when determining the order and method of repair and renovation work in buried pipes such as sewer pipes and agricultural water pipes. It can be used effectively to do.

本発明で実施する載荷試験方法の説明図である。It is explanatory drawing of the loading test method implemented by this invention. 供試管への高感度変位計の配置を示す図である。It is a figure which shows arrangement | positioning of the highly sensitive displacement meter to a test tube. 衝撃弾性波試験を行う際の管体への計測機器の配置を示す図である。It is a figure which shows arrangement | positioning of the measurement apparatus to the pipe body at the time of performing a shock elastic wave test. 載荷計測過程において各計測点で計測した伝播波の波形データに基づく周波数スペクトル分布を示す図である。It is a figure which shows frequency spectrum distribution based on the waveform data of the propagation wave measured at each measurement point in the loading measurement process. 同じく周波数スペクトル分布を示す図である。It is a figure which similarly shows frequency spectrum distribution. 載荷試験の各計測点での計測結果と低周波面積比との関係を示すグラフである。It is a graph which shows the relationship between the measurement result in each measurement point of a loading test, and a low frequency area ratio. 荷重−変位曲線を示す図である。It is a figure which shows a load-displacement curve. 低周波面積比と荷重−変位曲線における各計測点での傾きの角度比率との関係を示すグラフである。It is a graph which shows the relationship between the low frequency area ratio and the angle ratio of the inclination in each measurement point in a load-displacement curve. 劣化度合の判定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the determination process of a deterioration degree.

符号の説明Explanation of symbols

P 供試管
1 線荷重
2 高感度変位計
P Test tube 1 Line load 2 High sensitivity displacement meter

Claims (4)

埋設管の劣化状態を管内部から検査する方法であって、供試管に外部から加える力とそれによって発生する供試管の変形との関係を示す力−変形関係から得られるパラメータと、前記供試管に衝撃弾性波試験を行うことにより得られる衝撃弾性波試験データとの相関関係を求めておき、検査対象管に対して衝撃弾性波試験を行って、検査対象管の衝撃弾性波測定データを採取し、その実測の衝撃弾性波測定データを、前記力−変形関係から得られるパラメータと衝撃弾性波試験データとの相関関係を基に評価して、検査対象管の劣化度合を定量的に判定することを特徴とする埋設管の検査方法。   A method for inspecting a deterioration state of a buried pipe from the inside of the pipe, the parameter obtained from a force-deformation relation indicating a relation between an external force applied to the test pipe and a deformation of the test pipe generated thereby, and the test pipe Obtain a correlation with shock elastic wave test data obtained by performing a shock elastic wave test on the tube, collect the shock elastic wave measurement data of the inspection target tube by performing a shock elastic wave test on the inspection target tube The measured impact elastic wave measurement data is evaluated based on the correlation between the parameter obtained from the force-deformation relationship and the impact elastic wave test data, and the degree of deterioration of the inspection target tube is quantitatively determined. A method for inspecting buried pipes. 前記供試管の力−変形関係として、荷重−変位曲線または応力−歪曲線を用いることを特徴とする請求項1記載の埋設管の検査方法。   2. The buried pipe inspection method according to claim 1, wherein a load-displacement curve or a stress-strain curve is used as the force-deformation relationship of the test tube. 力−変形関係から得られるパラメータとして、荷重−変位曲線または応力−歪曲線の傾きの角度比率を用いることを特徴とする請求項1記載の埋設管の検査方法。   The buried pipe inspection method according to claim 1, wherein an angle ratio of a slope of a load-displacement curve or a stress-strain curve is used as a parameter obtained from a force-deformation relationship. 前記衝撃弾性波試験データ及び実測の衝撃弾性波データとして、衝撃弾性波試験を行って管体の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルにおける一定の周波数領域に対する低周波成分の面積比を用いることを特徴とする請求項1記載の埋設管の検査方法。   As the shock elastic wave test data and the measured shock elastic wave data, a shock elastic wave test is performed to measure the propagation wave of the tubular body, the frequency spectrum is analyzed for the propagation wave, and a certain frequency region in the frequency spectrum is analyzed. 2. The buried pipe inspection method according to claim 1, wherein an area ratio of low frequency components is used.
JP2004217833A 2004-07-26 2004-07-26 Inspection method for buried pipes Active JP4515848B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004217833A JP4515848B2 (en) 2004-07-26 2004-07-26 Inspection method for buried pipes
AU2005265697A AU2005265697B2 (en) 2004-07-26 2005-07-26 Buried pipe examining method
PCT/JP2005/013655 WO2006011484A1 (en) 2004-07-26 2005-07-26 Buried pipe examining method
CA2575036A CA2575036C (en) 2004-07-26 2005-07-26 Buried pipe examining method
KR1020077001807A KR101121283B1 (en) 2004-07-26 2005-07-26 Buried pipe examining method
US11/658,658 US7690258B2 (en) 2004-07-26 2005-07-26 Buried pipe examining method
EP05767417.8A EP1780540A4 (en) 2004-07-26 2005-07-26 Buried pipe examining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217833A JP4515848B2 (en) 2004-07-26 2004-07-26 Inspection method for buried pipes

Publications (2)

Publication Number Publication Date
JP2006038598A true JP2006038598A (en) 2006-02-09
JP4515848B2 JP4515848B2 (en) 2010-08-04

Family

ID=35903750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217833A Active JP4515848B2 (en) 2004-07-26 2004-07-26 Inspection method for buried pipes

Country Status (1)

Country Link
JP (1) JP4515848B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Method of inspecting buried pipe
US7690258B2 (en) 2004-07-26 2010-04-06 Sekisui Chemical Co., Ltd. Buried pipe examining method
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe
JP2014089106A (en) * 2012-10-30 2014-05-15 Railway Technical Research Institute Method for evaluating stability of rock lump on rock slope by tapping sound measurement
KR20180072203A (en) * 2016-12-21 2018-06-29 (주)코어센스 Method for determining cracked eggs using energy distribution in frequency range
WO2018235195A1 (en) * 2017-06-21 2018-12-27 株式会社東芝 Structure evaluation system and structure evaluation method
WO2019117053A1 (en) 2017-12-15 2019-06-20 日本電気株式会社 Analyzing device, diagnostic method, and program recording medium
JP2019174119A (en) * 2018-03-26 2019-10-10 株式会社Ihi検査計測 Strength inspection method and strength evaluation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183893B2 (en) * 1996-04-18 2001-07-09 ロック マシアス Method and apparatus for determining the strength of a vertically anchored column
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183893B2 (en) * 1996-04-18 2001-07-09 ロック マシアス Method and apparatus for determining the strength of a vertically anchored column
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010008974, 舟橋孝仁 他, "コンクリート下水管路の劣化診断における衝撃弾性波法の適用", コンクリート工学年次論文集, 20030701, Vol.25 No.1, pp.1625−1630 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690258B2 (en) 2004-07-26 2010-04-06 Sekisui Chemical Co., Ltd. Buried pipe examining method
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Method of inspecting buried pipe
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe
JP2014089106A (en) * 2012-10-30 2014-05-15 Railway Technical Research Institute Method for evaluating stability of rock lump on rock slope by tapping sound measurement
KR20180072203A (en) * 2016-12-21 2018-06-29 (주)코어센스 Method for determining cracked eggs using energy distribution in frequency range
KR101892719B1 (en) * 2016-12-21 2018-08-28 (주)코어센스 Method for determining cracked eggs using energy distribution in frequency range
WO2018235195A1 (en) * 2017-06-21 2018-12-27 株式会社東芝 Structure evaluation system and structure evaluation method
JPWO2018235195A1 (en) * 2017-06-21 2019-06-27 株式会社東芝 Structure evaluation system, structure evaluation method and shock applying device
WO2019117053A1 (en) 2017-12-15 2019-06-20 日本電気株式会社 Analyzing device, diagnostic method, and program recording medium
EP3726193A4 (en) * 2017-12-15 2021-01-20 NEC Corporation Analyzing device, diagnostic method, and program recording medium
JP2019174119A (en) * 2018-03-26 2019-10-10 株式会社Ihi検査計測 Strength inspection method and strength evaluation device

Also Published As

Publication number Publication date
JP4515848B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
KR101121283B1 (en) Buried pipe examining method
AU2003236074B2 (en) Method and equipment for inspecting reinforced concrete pipe
KR102417558B1 (en) Detection and Monitoring of Changes in Metal Structures Using Multimode Acoustic Signals
JP4162967B2 (en) Inspection method for reinforced concrete pipes
Fletcher et al. Detection of axial cracks in pipes using focused guided waves
JP4515848B2 (en) Inspection method for buried pipes
Heinlein et al. Blind trial validation of a guided wave structural health monitoring system for pipework
JP4603599B2 (en) Inspection equipment for reinforced concrete pipes
JP5735369B2 (en) Inspection method and rehabilitation method for buried pipe
JP3198840U (en) Prop road boundary inspection system
JP4756150B2 (en) Inspection method for buried pipes
JP2008249665A (en) Filling degree inspection device and method
JP4598433B2 (en) Inspection method for buried pipes
JP7249145B2 (en) Conduit health diagnostic method
KR101920691B1 (en) Deteriorated concrete pipe diagnosis method
JP2006038597A (en) Inspection method for buried pipe
JP2008026162A (en) Inspection method for inspecting deterioration state of embedded pipe
JP4608257B2 (en) Inspection method for buried pipes
JP4413089B2 (en) Inspection method for buried pipes
JP4413082B2 (en) Inspection method for buried pipes
JP6709713B2 (en) Method for inspecting floating and peeling of concrete structure and method for repairing concrete structure
Tse et al. Guided-waves technique for inspecting the health of wall-covered building risers
Ficquet et al. Structural health monitoring on a girth welded pipe with residual stress measurements
Parayitham Penetration power of ultrasonic guided waves for piping and well casing integrity analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Ref document number: 4515848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350