JP2006038532A - Matter discriminating method and apparatus therefor - Google Patents

Matter discriminating method and apparatus therefor Download PDF

Info

Publication number
JP2006038532A
JP2006038532A JP2004216120A JP2004216120A JP2006038532A JP 2006038532 A JP2006038532 A JP 2006038532A JP 2004216120 A JP2004216120 A JP 2004216120A JP 2004216120 A JP2004216120 A JP 2004216120A JP 2006038532 A JP2006038532 A JP 2006038532A
Authority
JP
Japan
Prior art keywords
image
shell
inspection object
ray fluoroscopic
fluoroscopic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216120A
Other languages
Japanese (ja)
Other versions
JP2006038532A5 (en
JP4596129B2 (en
Inventor
Teruyuki Shima
輝行 島
Junji Yamagami
淳二 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004216120A priority Critical patent/JP4596129B2/en
Publication of JP2006038532A publication Critical patent/JP2006038532A/en
Publication of JP2006038532A5 publication Critical patent/JP2006038532A5/ja
Application granted granted Critical
Publication of JP4596129B2 publication Critical patent/JP4596129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a matter discriminating method capable of precisely calculating the feature quantity (feature data) of a cannonball from the X-ray perspective image of the cannonball to precisely discriminate the type of the cannonball. <P>SOLUTION: After the image component of the part of the component easy to damage the cannonball is removed from the X-ray perspective image, a threshold value for detecting the profile or structure of the cannonball according to the brightness histogram of the X-ray perspective image is determined and the feature quantity of the cannonball is detected from the image component extracted from the X-ray perspective image on the basis of the threshold value to determine the type of the cannonball. Especially, the feature quantity of the cannonball is detected based on the thick-walled bottom part of the cannonball. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば地中等に放置されていた砲弾の種別を、そのX線透視画像から識別するに好適な物体識別方法および装置に関する。   The present invention relates to an object identification method and apparatus suitable for identifying, for example, the type of shells left in the ground or the like from the X-ray fluoroscopic image.

長期間に亘って地中等に放置されていた砲弾を回収して廃棄処理する場合、その砲弾の種別を識別することが重要である。このような物体の識別は、専ら、X線装置を用いて検査対象物である砲弾のX線透視画像を得、その外形形状や内部構造の特徴を調べることにより行われる(例えば特許文献1を参照)。具体的には砲弾の外形寸法、その内部構造物の有無や大きさ等の特徴量を求め、これらの特徴量に従って砲弾の種別が判定される。
特開2003−90700号公報
When collecting and disposing of ammunition that has been left in the ground for a long time, it is important to identify the type of ammunition. Such identification of an object is performed exclusively by obtaining an X-ray fluoroscopic image of a shell as an inspection object using an X-ray apparatus, and examining features of its outer shape and internal structure (for example, see Patent Document 1). reference). Specifically, feature quantities such as the outer dimensions of the shell and the presence / absence and size of the internal structure are obtained, and the type of the shell is determined according to these feature quantities.
JP 2003-90700 A

しかしながら検査対象物である砲弾が長期間に亘って地中等に放置されていた場合、腐食や付着物の影響によってその外形や内部構造が変形している虞がある。これ故、検査対象物(砲弾)のX線透視画像を得ても、そのX線透視画像から砲弾の種別を判定するに必要な特徴点の情報、例えば最大砲弾径や伝火薬筒の長さ、更には炸薬筒の有無等を正確に抽出することが困難なことが多々ある。例えば検査対象物である砲弾が薬莢、弾頭栓、尾翼等の付属物を含んでいると、X線透視画像に写り込んだ上記付属物からその弾底部等を誤検出する虞があり、砲弾自体の特徴量を正確に検出することが困難となる。また腐食や付着物の影響を受けて砲弾筒部の厚みが変化しているような場合、最大砲弾径等の特徴的な寸法・構造、更にはその内部構造物の特徴量を正確に求めることが困難となる。   However, when a shell as an inspection object is left in the ground for a long period of time, there is a possibility that its outer shape or internal structure is deformed due to the influence of corrosion or deposits. Therefore, even if an X-ray fluoroscopic image of the inspection object (cannonball) is obtained, information on characteristic points necessary for determining the type of the shell from the X-ray fluoroscopic image, such as the maximum bullet diameter and the length of the transfer cartridge In addition, it is often difficult to accurately extract the presence or absence of the glaze cylinder. For example, if a cannonball that is the object to be inspected contains attachments such as cartridge case, warhead plug, tail wing, etc., there is a risk that the bottom of the bullet etc. may be erroneously detected from the above-mentioned attachments reflected in the fluoroscopic image. It is difficult to accurately detect the feature amount. In addition, when the thickness of the shell tube is changing due to the influence of corrosion or deposits, the characteristic dimensions and structure such as the maximum shell diameter and the features of the internal structure must be obtained accurately. It becomes difficult.

本発明はこのような事情を考慮してなされたもので、その目的は、例えば長期間に亘って地中等に放置されていたことに起因して腐食や変形を生じた砲弾であっても、そのX線透視画像から各種の砲弾に固有な特徴量(特徴情報)を精度良く求めることができ、その特徴情報に従って砲弾の種別を精度良く識別することのできる物体識別方法および装置を提供することにある。   The present invention has been made in consideration of such circumstances, and the purpose thereof is, for example, a shell that has been corroded or deformed due to being left in the ground for a long period of time. To provide an object identification method and apparatus capable of accurately obtaining characteristic quantities (feature information) unique to various shells from the X-ray fluoroscopic images, and accurately identifying the type of the shell based on the feature information. It is in.

上述した目的を達成するべく本発明に係る物体識別方法は請求項1に記載するように
<a> 外形および内部構造物に特徴を有する検査対象物のX線透視画像を得、このX線透視画像から求められる上記検査対象物の特徴量から該検査対象物の種別を判定するに際して(前提条件)、
<b> 前記検査対象物における損壊し易い部品部分の画像成分を前記X線透視画像から除去した後、
<c> 前記X線透視画像の輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を決定し、
<d> この閾値に基づいて前記X線透視画像から抽出された画像成分から前記検査対象物の特徴量を検出して該検査対象物の種別を判定する
ことを特徴としている。
In order to achieve the above object, an object identification method according to the present invention is described in claim 1.
<a> When obtaining an X-ray fluoroscopic image of an inspection object having features in the outer shape and the internal structure, and determining the type of the inspection object from the characteristic amount of the inspection object determined from the X-ray fluoroscopic image ( Prerequisites),
<b> After removing the image component of the easily damaged part portion in the inspection object from the fluoroscopic image,
<c> determining a threshold for detecting a characteristic portion of the inspection object according to a luminance histogram of the fluoroscopic image;
<d> A feature amount of the inspection object is determined by detecting a feature amount of the inspection object from an image component extracted from the fluoroscopic image based on the threshold value.

好ましくは請求項2に記載するように前記検査対象物が、地中等に長期間に亘って放置されていた砲弾である場合には、この砲弾における薬莢、弾頭栓、および尾翼等の部品に相当する画像部分を前記X線透視画像から除去した後、前記X線透視画像から前記砲弾の画像領域の抽出に用いる為の閾値を、前記X線透視画像の輝度ヒストグラムがピークとなる輝度レベルに基づいて設定する。そしてこの閾値に従って前記X線透視画像から抽出した画像領域において前記砲弾の特徴部分を検出することで、その前記特徴量を、例えば最大砲弾径、炸薬筒の有無、伝火薬筒の長さ等として求めることを特徴としている。   Preferably, when the object to be inspected is a shell that has been left in the ground for a long period of time as described in claim 2, it corresponds to a part of the shell, such as a cartridge case, a warhead plug, and a tail wing. A threshold for use in extracting the image area of the shell from the X-ray fluoroscopic image is removed based on the luminance level at which the luminance histogram of the X-ray fluoroscopic image peaks. To set. And by detecting the characteristic part of the shell in the image region extracted from the X-ray fluoroscopic image according to this threshold, the feature amount is set as, for example, the maximum shell diameter, the presence / absence of a glaze cylinder, the length of the transfer cylinder, etc. It is characterized by seeking.

特に請求項3に記載するように前記伝火薬筒の長さ等については、前記X線透視画像から検出される特徴点の1つである砲弾の弾底部を基準とし、この基準点から各特徴点までの距離をそれぞれ高精度に計測した上で、これらの計測値からその特徴量を逆算する等して求めることを特徴としている。つまり砲弾の弾底部のように腐食・変形し難い部位を計測の基準点として設定し、この基準点からの各特徴点の位置関係をそれぞれ正確に計測することで前記伝火薬筒の長さ等を正確に求めることを特徴としている。   In particular, as described in claim 3, the length or the like of the charge transfer cylinder is based on the bottom of the shell, which is one of the characteristic points detected from the X-ray fluoroscopic image. It is characterized in that each distance to a point is measured with high accuracy, and the feature value is calculated from these measured values by reverse calculation. In other words, a portion that is difficult to corrode and deform, such as the bottom of a shell, is set as a reference point for measurement, and the positional relationship of each feature point from this reference point is accurately measured to determine the length of the transfer cartridge, etc. It is characterized by obtaining accurately.

また本発明に係る物体識別装置は請求項4に記載するように
<A> 外形および内部構造物に特徴を有する検査対象物のX線透視画像を得るX線透視装置と、上記X線透視画像を画像処理して前記検査対象物の種別を判定する画像処理装置とを備えたものであって(前提条件)、
前記画像処理装置は、
<B> 前記検査対象物における損壊し易い部品部分の画像成分を前記X線透視画像から除去する第1の画像処理手段と、
<C> 前記X線透視画像の輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を決定し、この閾値に基づいて前記X線透視画像中における前記検査対象物の特徴部分を抽出する第2の画像処理手段と、
<D> この第2の画像処理手段にて抽出した上記特徴部分における特徴量を求め、その特徴量に従って前記検査対象物の種別を判定する判定手段と
を具備したことを特徴としている。
An object identification device according to the present invention is as described in claim 4.
<A> An X-ray fluoroscopic apparatus that obtains an X-ray fluoroscopic image of an inspection object characterized by an outer shape and an internal structure, and an image processing apparatus that performs image processing on the X-ray fluoroscopic image and determines the type of the inspection object (Prerequisite)
The image processing apparatus includes:
<B> a first image processing means for removing an image component of a component part that is easily damaged in the inspection object from the X-ray fluoroscopic image;
<C> A threshold value for detecting a feature portion of the inspection object is determined according to a luminance histogram of the X-ray fluoroscopic image, and the characteristic portion of the inspection object in the X-ray fluoroscopic image is extracted based on the threshold value Second image processing means for
<D> It is characterized by comprising a determination means for obtaining a feature amount in the feature portion extracted by the second image processing means and determining the type of the inspection object according to the feature amount.

好ましくは請求項5に記載するように前記検査対象物が地中等に放置されていた砲弾である場合には、前記第1の画像処理手段においては、前記砲弾における薬莢、弾頭栓、尾翼等の付属部品の前記X線透視画像中における画像領域を検出して当該画像領域を画像処理対象から除外する。また前記第2の画像処理手段においては、前記X線透視画像の輝度ヒストグラムがピークとなる輝度レベルを前記砲弾の外筒部を特定するレベルであると看做し、この輝度レベルを砲弾領域を規定する閾値として前記X線透視画像中における前記砲弾の特徴部分を抽出して特徴量の検出に供するように構成される。   Preferably, when the object to be inspected is a cannonball that has been left in the ground or the like as described in claim 5, the first image processing means includes a cartridge case, a warhead plug, a tail wing, etc. An image region in the X-ray fluoroscopic image of the accessory part is detected, and the image region is excluded from the image processing target. Further, in the second image processing means, the luminance level at which the luminance histogram of the X-ray fluoroscopic image reaches a peak is regarded as a level for specifying the outer cylinder portion of the shell, and this luminance level is used for the shell region. The characteristic portion of the shell is extracted from the X-ray fluoroscopic image as a prescribed threshold value and is used for detection of the characteristic amount.

更には請求項6に記載するように前記判定手段においては、前記第2の画像処理手段にて求められた前記検査対象物の複数の特徴部分における特徴量を、前記検査対象物の予め変形し難いことが明らかな部位を基準として計測される上記特徴部分までの計測値からそれぞれ求めるように構成される。
尚、前記検査対象物の予め変形し難いことが明らかな部位は、例えば請求項7に記載するように長期間に亘って地中等に放置されていた砲弾であっても、腐食や変形が殆ど生じることのない所定の厚みを有する弾底部として設定される。
Further, according to a sixth aspect of the present invention, in the determination means, the feature quantities in the plurality of feature portions of the inspection object obtained by the second image processing means are deformed in advance of the inspection object. It is configured so as to be obtained respectively from the measured values up to the above-described characteristic part measured with reference to a part that is clearly difficult.
It should be noted that the portion of the inspection object that is clearly difficult to be deformed in advance is hardly corroded or deformed even if it is a shell that has been left in the ground for a long period of time as described in claim 7, for example. It is set as a bullet bottom having a predetermined thickness that does not occur.

本発明に係る物体識別方法および装置によれば、検査対象物における損壊し易い部品部分、具体的には砲弾における薬莢、弾頭栓、尾翼等の付属部品の画像成分を前記X線透視画像から除去した後、更に前記X線透視画像の輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を決定し、この閾値に基づいて前記X線透視画像から前記検査対象物の特徴量を検出するための画像領域を切り出すので、検査対象物(砲弾)の腐食や付着物に起因する変形に拘わることなく、その種別の判定に必要な特徴量を精度良く検出することが可能となる。   According to the object identification method and apparatus according to the present invention, parts of an inspection object that are easily damaged, specifically, image components of accessory parts such as cartridge shells, warhead plugs, and tail wings are removed from the fluoroscopic image. After that, a threshold value for detecting a characteristic part of the inspection object is determined according to a luminance histogram of the X-ray fluoroscopic image, and a feature amount of the inspection object is detected from the X-ray fluoroscopic image based on the threshold value Therefore, it is possible to accurately detect the feature amount necessary for the determination of the type, regardless of the corrosion caused by the inspection object (cannonball) or the deformation caused by the adhered matter.

特に砲弾における薬莢、弾頭栓、尾翼等の付属部品の画像成分をX線透視画像から除去するので、種別の判定に必要な特徴量を含む砲弾領域を正しく検出することができる。更には輝度ヒストグラムに基づいて決定された閾値に従って前記X線透視画像から砲弾領域を抽出するので、砲弾の外表面等における腐食や付着物による外形変形の影響を受けることなしに砲弾領域の画像だけを正確に抽出することが可能となる。この結果、最大砲弾径等の特徴量を高精度に計測することが可能となり、またその内部構造等を精度良く認識することが可能となるので、これらの特徴情報に基づいて検査対象物(砲弾)の種別を高精度に識別することが可能となる。   In particular, since image components of accessory parts such as shells, warhead plugs, and tail wings are removed from the X-ray fluoroscopic image, it is possible to correctly detect a bullet region including a feature amount necessary for determining the type. Furthermore, since the shell region is extracted from the fluoroscopic image according to the threshold value determined based on the luminance histogram, only the shell region image is not affected by the outer surface of the shell, etc. Can be extracted accurately. As a result, feature quantities such as the maximum bullet diameter can be measured with high accuracy, and the internal structure and the like can be accurately recognized. ) Type can be identified with high accuracy.

更には砲弾の特徴量を検出するに際して、砲弾の弾底部のように腐食・変形し難い部位を基準とし、この基準位置からの各特徴点の位置関係をそれぞれ計測して、例えば砲弾内部の伝火薬筒の長さ等を逆算するので、その特徴量を精度良く求めることが可能となる。ちなみに従来のように砲弾頭を基準とした場合、砲弾頭の位置自体が弾頭栓の有無やその変形等に起因して変化する虞がある。従って上述したように砲弾の弾底部を基準として砲弾各部の特徴量を計測れば、その基準自体を安定に定めることができるので、特徴量に対する計測精度を十分に高めることができ、これによって種別判定の信頼性を容易に高めることが可能となる。   Furthermore, when detecting the characteristic amount of a shell, the position of each feature point from the reference position is measured based on a portion that is difficult to be corroded or deformed, such as the bottom of a shell, for example, the propagation inside the shell. Since the length of the gunpowder cylinder and the like are calculated backward, the feature amount can be obtained with high accuracy. By the way, when the bullet head is used as a reference as in the prior art, the position of the bullet head itself may change due to the presence or absence of a bullet plug, deformation thereof, or the like. Accordingly, as described above, if the feature values of each part of the shell are measured with reference to the bottom of the shell, the reference itself can be determined stably, so that the measurement accuracy for the feature value can be sufficiently increased. It is possible to easily increase the reliability of determination.

従って本発明によれば検査対象物(砲弾)の変形の影響を受けることなく、そのX線透視画像から求められる特徴量に従って上記検査対象物(砲弾)の種別を精度良く識別(判定)することができる等の実用上多大なる効果が奏せられる。   Therefore, according to the present invention, it is possible to accurately identify (determine) the type of the inspection object (cannonball) according to the characteristic amount obtained from the X-ray fluoroscopic image without being affected by the deformation of the inspection object (cannonball). In practice, a great effect can be obtained.

以下、図面を参照して本発明の一実施形態に係る物体識別方法および装置について、地中等から掘り出された各種砲弾の識別検査を例に説明する。
図1は砲弾(検査対象物S)のX線透視画像を得、このX線透視画像を画像処理して上記砲弾の種別を識別する物体識別装置の要部概略構成図である。この物体識別装置は、概略的にはX線透視装置10と、砲弾(検査対象物)Sを移送して上記X線透視装置10による透視検査に供するコンベア機構20と、前記X線透視装置10を用いて得られる砲弾(検査対象物)SのX線透視画像を入力して前記砲弾(検査対象物)Sの種別を判定する画像処理装置30とを備える。
Hereinafter, an object identification method and apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking as an example identification identification of various shells dug from the ground or the like.
FIG. 1 is a schematic configuration diagram of a main part of an object identification device that obtains an X-ray fluoroscopic image of a shell (inspection object S) and performs image processing on the X-ray fluoroscopic image to identify the type of the shell. This object identification apparatus is schematically composed of an X-ray fluoroscopic device 10, a conveyor mechanism 20 that transports a shell (inspection object) S and performs a fluoroscopic inspection by the X-ray fluoroscopic device 10, and the X-ray fluoroscopic device 10. And an image processing device 30 that inputs a fluoroscopic image of a shell (inspection object) S obtained by using and determines the type of the shell (inspection object) S.

コンベア機構20は、インバータ21により回転駆動されるモータ22を動力源として搬送駆動されるベルトコンベア23からなり、砲弾(検査対象物)Sはこのベルトコンベア23上に載置されて前記X線透視装置10による透視検査に供される。特に概略円柱形状をなして転がり易い砲弾(検査対象物)Sは、例えば架台24上に載置され、その転がりが防止された状態で前記コンベア機構20による搬送に供される。尚、コンベア機構20による砲弾(検査対象物)Sの搬送は、例えば砲弾(検査対象物)Sの軸方向を前記コンベア機構20の搬送方向に揃えた状態で行われる。   The conveyor mechanism 20 includes a belt conveyor 23 that is transported and driven by a motor 22 that is rotationally driven by an inverter 21, and a shell (inspection object) S is placed on the belt conveyor 23 so as to perform the X-ray fluoroscopy. The device 10 is used for fluoroscopic inspection. In particular, a cannonball (inspection object) S that has a substantially cylindrical shape and is easy to roll is placed on, for example, the gantry 24 and is conveyed by the conveyor mechanism 20 in a state in which the rolling is prevented. The cannonball (inspection object) S is conveyed by the conveyor mechanism 20 in a state where the axial direction of the cannonball (inspection object) S is aligned with the conveyance direction of the conveyor mechanism 20, for example.

一方、前記X線透視装置10は、前記コンベア機構20の側部に設けられて、X線制御装置11により駆動されて前記コンベア機構20による搬送路を略直角に横切るX線を発生するX線発生装置12と、前記コンベア機構20を挟んで前記X線発生装置12に対峙して設けられて前記砲弾(検査対象物)Sを透過したX線を検出するラインセンサ13とを備える。このラインセンサ13は、図2に示すようにベルトコンベア23上の砲弾(検査対象物)Sを輪切りにした状態で、その断面におけるX線透過量を線状に検出する役割を担う。   On the other hand, the X-ray fluoroscopic device 10 is provided at a side portion of the conveyor mechanism 20 and is driven by the X-ray control device 11 to generate X-rays that cross the conveyance path by the conveyor mechanism 20 at a substantially right angle. A generator 12 and a line sensor 13 that is provided to face the X-ray generator 12 across the conveyor mechanism 20 and detects X-rays transmitted through the shell (inspection object) S are provided. As shown in FIG. 2, the line sensor 13 plays a role of detecting the amount of X-ray transmission in the cross section in a linear form in a state where the shell (inspection object) S on the belt conveyor 23 is cut into a circle.

このようにしてラインセンサ13にて線状に検出されるX線透過量の情報を前記ベルトコンベア23による砲弾(検査対象物)Sの搬送(移送)に同期して該砲弾(検査対象物)Sの軸方向に異なる各部位毎に順次得、これらの各部位でのX線透過量の情報を前記ベルトコンベア23の搬送方向(砲弾Sの軸方向)に繋ぎ合わせることで前記砲弾(検査対象物)Sの全体に亘る1枚(1フレーム)のX線透過画像が求められる。   In this way, information on the amount of X-ray transmission detected linearly by the line sensor 13 is synchronized with the transfer (transfer) of the shell (inspection object) S by the belt conveyor 23, and the shell (inspection object). Obtained sequentially for each part different in the axial direction of S, and by connecting the information of the X-ray transmission amount in each of these parts to the transport direction of the belt conveyor 23 (axial direction of the bullet S), 1) One (1 frame) X-ray transmission image over the entire S is obtained.

一方、例えばマイクロコンピュータを主体として構成される画像処理装置30は、上述したラインセンサ13を介して検出される前記砲弾(検査対象物)Sの全体に亘るX線透過画像を取り込んで画像処理に供するフレームグラバ31を備える。そして画像処理装置30は、上記砲弾SのX線透過画像に対して後述する画像処理を施すことで、前記砲弾Sの外形やその内部構造に対する特徴情報を得、更にその特徴量を求めることで検査対象物である砲弾Sの種別を識別している。   On the other hand, the image processing apparatus 30 mainly composed of, for example, a microcomputer captures an X-ray transmission image over the entire shell (inspection object) S detected through the line sensor 13 and performs image processing. A frame grabber 31 is provided. Then, the image processing device 30 obtains feature information on the outer shape of the shell S and its internal structure by performing image processing to be described later on the X-ray transmission image of the shell S, and further obtains the feature amount. The type of the shell S that is the inspection object is identified.

尚、図中32は前記画像処理装置30に組み込まれて前述したX線透過画像の表示や、その画像処理結果の表示等に用いられるディスプレイである。また図中33は、画像処理の為の各種制御パラメータの入力等に用いられるキーボードであり、更に図中34は前記ディスプレイ32に表示された各種情報に対するポインティングデバイスとしてのマウスである。   In the figure, reference numeral 32 denotes a display incorporated in the image processing apparatus 30 and used for displaying the above-described X-ray transmission image, displaying the image processing result, and the like. In the figure, 33 is a keyboard used for inputting various control parameters for image processing, and 34 is a mouse as a pointing device for various information displayed on the display 32.

ここで前記画像処理装置30における前記砲弾(検査対象物)SのX線透過画像に対する画像処理について説明すると、この画像処理は基本的には図3に示す手順に従って実行される。
即ち、前記X線透視装置10を用いて求められた砲弾(検査対象物)SのX線透過画像が求められると(ステップS1)、画像処理装置30においては、先ず上記X線透過画像に対する濃度変換処理を実行する(ステップS2)。この濃度変換処理は、X線透過画像中の主として砲弾を透過した領域の輝度レベルが低くなった部分(暗い部分)における輝度差を引き延ばすことで(拡大して)、砲弾における特徴部が明確に表れるようにする処理からなる。即ち、X線透視画像における砲弾部分の画像は、砲弾の弾殻が厚いが故に低輝度レベルの画像成分に偏ることが多い。そこで低輝度レベルでのコントラストを高くして砲弾における特徴部の特徴を明確に表すべく、例えば図4に示すようなセンサ出力に対する表示明度の関係に従ってX線透視画像を濃度変換処理し、砲弾を透過した部位におけるX線透過画像の明暗差を大きくし、逆に砲弾を透過することのない高輝度レベルの背景部分のコントラストを圧縮する。この結果、例えば図5(a)(b)に示すように砲弾部分の特徴を幅広く階調表現した画像を得る。
Here, image processing for an X-ray transmission image of the shell (inspection object) S in the image processing apparatus 30 will be described. This image processing is basically executed according to the procedure shown in FIG.
That is, when an X-ray transmission image of the shell (inspection object) S obtained using the X-ray fluoroscopic apparatus 10 is obtained (step S1), the image processing apparatus 30 first sets the density for the X-ray transmission image. Conversion processing is executed (step S2). In this density conversion process, the characteristic portion of the shell is clearly clarified by extending (enlarging) the brightness difference in the portion (dark portion) where the brightness level of the region that mainly transmits the shell in the X-ray transmission image is low. It consists of processing to make it appear. That is, the image of the shell portion in the X-ray fluoroscopic image is often biased to an image component of a low luminance level because the shell shell of the shell is thick. Therefore, in order to increase the contrast at the low luminance level and clearly express the characteristics of the features of the shell, the X-ray fluoroscopic image is subjected to density conversion processing according to the relationship of the display brightness to the sensor output as shown in FIG. The contrast of the X-ray transmission image in the transmitted portion is increased, and the contrast of the background portion of the high luminance level that does not transmit the shell is compressed. As a result, for example, as shown in FIG. 5A and FIG.

しかる後、前記X線透過画像中から砲弾の特徴を明確に表現する砲弾領域だけを抽出する(ステップS3)。この処理は砲弾以外のノイズ要素、具体的には砲弾における薬莢、弾頭栓、尾翼等の付属部品の画像成分を、例えばその画像領域の連続性や輝度レベルの違い等を利用して検出し、これらの情報を画像処理対象から除外する処理からなる。即ち、図5(a)(b)に示したように砲弾のX線透過画像には、その砲弾部に付属する薬莢、弾頭栓、尾翼等の画像成分が含まれることが多々ある。しかもこれらの付属部品は腐食等に起因して砲弾部に比較して大きく変形していることが多く、砲弾の種別を特定する特徴に関与していないことが多い。   After that, only the shell region that clearly expresses the features of the shell from the X-ray transmission image is extracted (step S3). This process detects noise elements other than cannonballs, specifically, image components of accessory parts such as shell cartridges, warhead plugs, and tail wings using, for example, the continuity of the image area and the difference in brightness level, This process includes processing for excluding these pieces of information from image processing targets. That is, as shown in FIGS. 5A and 5B, an X-ray transmission image of a shell often includes image components such as a cartridge case, a warhead plug, and a tail wing attached to the shell portion. Moreover, these accessory parts are often greatly deformed compared to the shell part due to corrosion or the like, and are often not involved in the characteristics that specify the type of the shell.

そこで、例えば前記X線透過画像に対してメディアンフィルタ処理を施して1画素幅のノイズ成分を除去する。更には上記X線透過画像を2値化処理した後、その2値化画像を所定回数に亘って収縮・膨張処理を施して線状部分を除去し、また孤立した微小な画像領域を検査対象から除去する。即ち、図5(b)に示すようなX線透過画像を所定の閾値にて2値化した場合、例えば図6(a)に示すようにその2値化画像を得ることができる。このような2値化画像に対して収縮処理を施せば、図6(b)に示すように所定幅以下の細線部分が画像領域の収縮によって消滅し、この収縮画像を膨張処理すれば図6(c)に示すように或る大きさを有する画像領域だけが残されることになる。その上で、所定面積以上の画像領域を砲弾部分として判定し、この砲弾領域から孤立している画像領域を上記砲弾に付属している部品部分であると判定すれば、図6(d)に示すようにその付属品部分を除去した砲弾部分の画像だけを抽出することが可能となる。   Therefore, for example, a median filter process is performed on the X-ray transmission image to remove a noise component of 1 pixel width. Further, after binarizing the above-mentioned X-ray transmission image, the binarized image is subjected to contraction / expansion processing a predetermined number of times to remove linear portions, and an isolated minute image region is to be inspected. Remove from. That is, when an X-ray transmission image as shown in FIG. 5B is binarized with a predetermined threshold value, for example, as shown in FIG. 6A, the binarized image can be obtained. If shrinkage processing is performed on such a binarized image, a thin line portion having a predetermined width or less disappears due to shrinkage of the image area as shown in FIG. 6B, and if this shrinkage image is subjected to expansion processing, FIG. As shown in (c), only an image area having a certain size is left. Then, if an image area having a predetermined area or more is determined as a shell part, and an image area isolated from the shell area is determined to be a part part attached to the shell, FIG. As shown, it is possible to extract only the image of the shell part from which the accessory part has been removed.

このようにして形状変形している可能性の高い砲弾の付属部品(薬莢、弾頭栓、尾翼等)の画像成分を除去し、砲弾部分の画像領域だけを抽出したならば、その砲弾領域に関する特徴情報、具体的にはその面積や輝度平均値、輝度分散値等を保存する。その上で砲弾の中心軸を求め(決定し)、この中心軸が水平になるように画像を回転させて、その後の特徴量検出の為の画像処理の容易化を図る(ステップS4)。この画像の回転処理については、例えば上記砲弾領域のモーメントを計算し、一次モーメントからその重心位置を求める。次いで上記重心位置と砲弾領域の二次モーメントとから重心を通る主軸(砲弾の中心軸)の傾きを求め、この傾きに従って砲弾の中心軸が水平となるように画像を回転処理するようにすれば良い。   In this way, if the image components of the attached parts (shell cartridge, warhead plug, tail wing, etc.) that are likely to be deformed are removed and only the image area of the shell part is extracted, the characteristics related to the shell area Information, specifically its area, average brightness value, brightness variance value, etc. are stored. Then, the central axis of the shell is obtained (determined), the image is rotated so that the central axis is horizontal, and image processing for subsequent feature amount detection is facilitated (step S4). As for this image rotation process, for example, the moment of the above-mentioned shell area is calculated, and the position of the center of gravity is obtained from the primary moment. Next, if the inclination of the main axis (center axis of the shell) passing through the center of gravity is obtained from the position of the center of gravity and the secondary moment of the shell area, the image is rotated so that the center axis of the shell is horizontal according to this inclination. good.

以上のようにしてX線透過画像に対する前処理を終了したならば、次に上記砲弾の画像からその外形に関する特徴量、具体的には砲弾の長さ、弾頭部および弾底部の幅、最大砲弾径をそれぞれ計測し、更には弾頭栓の有無を判定する(ステップS5)。次いで前記X線透過画像から砲弾の内部構造を調べ、特に砲弾内部の伝火薬筒を検出して該伝火薬筒に関する特徴量、具体的には伝火薬筒の位置、伝火薬筒の長さとその幅、砲弾の中心軸に対する芯ずれ量等をそれぞれ計測する(ステップS6)。   When the pre-processing for the X-ray transmission image is completed as described above, the feature amount relating to the outer shape, specifically, the length of the bullet, the width of the bullet head and the bottom, the maximum bullet Each diameter is measured, and further, the presence or absence of a warhead plug is determined (step S5). Next, the internal structure of the cannonball is examined from the X-ray transmission image, in particular, the charge transfer cylinder inside the cannonball is detected, and the characteristic amount relating to the transfer charge cylinder, specifically the position of the transfer charge cylinder, the length of the transfer charge cylinder, and its The width, the amount of misalignment with respect to the center axis of the shell, and the like are measured (step S6).

しかる後、前記X線透過画像から砲弾の内部に炸薬筒が存在するか否かを調べ、炸薬筒が存在する場合には、その位置、長さ、幅、砲弾の中心軸に対する芯ずれ量等の炸薬筒に関する特徴量をそれぞれ計測する(ステップS7)。そして上述したようにして砲弾の幾つかの特徴部分に関する特徴量をそれぞれ求めたならば、これらの特徴量を総合判定し、予めデータベース(図示せず)に蓄積されている各種砲弾の特徴と照合する等して検査対象としている砲弾の種別を判定する(ステップS8)。   Thereafter, it is examined from the X-ray transmission image whether or not a glaze cylinder is present inside the shell, and when there is a glaze cylinder, its position, length, width, misalignment amount with respect to the central axis of the shell, etc. Each of the feature quantities related to the glaze cylinder is measured (step S7). Then, if the characteristic quantities related to some characteristic parts of the shell are obtained as described above, these characteristic quantities are comprehensively determined, and collated with the characteristics of various shells previously stored in a database (not shown). By doing so, the type of shell to be inspected is determined (step S8).

即ち、検査対象とする砲弾は、その種別に応じた異なる特徴を有している。例えば図7(a)〜(h)に代表的な砲弾の特徴を示すように、いわゆる75mm弾、90mm弾、105mm弾、150mm弾によってその弾殻1がなす外形形状と大きさ(弾径、長さ)が異なると共に、その内部構造物である伝火薬筒2の長さが異なる。また砲弾の種別によって炸薬筒3を備えたもの(いわゆる赤弾)と、備えていないもの(いわゆる黄弾)とがある。その他にも、いわゆる青白弾等と称される砲弾もあるが、ここでは省略する。従って前述したX線透過画像から上述したステップS6,〜S8によりそれぞれ求められる砲弾の特徴を調べれば、その特徴量から検査に供した砲弾の種別を識別することが可能となる。   That is, the shell to be inspected has different characteristics depending on its type. For example, as shown in FIG. 7 (a) to (h), typical shell characteristics, the outer shape and size (bullet diameter, bullet), the so-called 75 mm bullet, 90 mm bullet, 105 mm bullet, and 150 mm bullet are formed by the shell 1. The length) is different, and the length of the charge transfer cylinder 2 which is the internal structure is different. Depending on the type of shell, there are those equipped with the glaze cylinder 3 (so-called red bullets) and those not equipped (so-called yellow bullets). There are other shells called so-called blue and white bullets, but they are omitted here. Therefore, if the characteristics of the shell obtained in the above-described steps S6 to S8 are examined from the above-described X-ray transmission image, it becomes possible to identify the type of the shell used for the inspection from the feature amount.

しかしながら検査対象とする砲弾は、前述したように長期間に亘って地中等に放置されていたものであり、腐食や付着物(泥や錆)によって形状変形していることが多い。そしてこの形状変形に起因してX線透過画像における弾殻の厚みが変化し、その最大砲弾径が誤って計測される虞がある。しかも砲弾の弾殻1とその内部構造物である炸薬筒3の区別がつき難くなることもある。更にはアダプタが装着される弾頭部の変形に起因して、その内部構造物である伝火薬筒2の長さが誤って計測される虞もある。   However, the shells to be inspected have been left in the ground for a long period of time as described above, and are often deformed due to corrosion or deposits (mud or rust). Then, due to this shape deformation, the thickness of the shell in the X-ray transmission image changes, and there is a possibility that the maximum bullet diameter is erroneously measured. In addition, it may be difficult to distinguish between the shell 1 of the shell and the glaze cylinder 3 which is an internal structure thereof. Further, due to the deformation of the warhead to which the adapter is mounted, there is a possibility that the length of the charge transfer cylinder 2 which is the internal structure is erroneously measured.

具体的には
(a) 泥や錆等の付着物の影響により最大砲弾径が実際の砲弾径よりも大きく計測される
(b) 付着物の影響により付着物と弾殻1との境目を炸薬筒3との境目であると誤判定し、炸薬筒3の有無が誤って判定される
(c) 薬莢を砲弾の一部として誤検出し、砲弾外形の抽出が失敗する
(d) 弾頭栓の有無を誤判定し、弾頭部の位置検出に失敗して砲弾の長さや伝火薬筒2の長さが誤計測される
等の不具合が生じ易い。
In particular
(a) The maximum bullet diameter is measured larger than the actual bullet diameter due to the influence of deposits such as mud and rust.
(b) The boundary between the deposit and the shell 1 is erroneously determined to be the boundary between the glaze cylinder 3 due to the influence of the deposit and the presence / absence of the glaze cylinder 3 is erroneously determined.
(c) The shell shell is mistakenly detected as part of the shell, and the shell outline extraction fails.
(d) The presence or absence of a warhead plug is misjudged, and failure to detect the position of the warhead tends to cause inconveniences such as erroneous measurement of the length of the shell or the length of the transfer cartridge 2.

そこで本発明においては前述した如くしてX線透過画像から砲弾の特徴量を検出するに際して前記X線透視画像の輝度ヒストグラムを求め、この輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を設定するようにしている。具体的にはX線透視画像の輝度ヒストグラムがピークとなる輝度レベルが、主として砲弾の弾殻(外形部)1を表していることに着目し、輝度ヒストグラムにおいてピークとなる輝度レベルに基づいて閾値を動的に設定し、この閾値を用いて前記X線透過画像から砲弾領域を抽出するようにしている。   Therefore, in the present invention, as described above, when detecting the characteristic amount of the shell from the X-ray transmission image, a luminance histogram of the X-ray fluoroscopic image is obtained, and the characteristic portion of the inspection object is detected according to the luminance histogram. A threshold is set. Specifically, focusing on the fact that the brightness level at which the brightness histogram of the X-ray fluoroscopic image reaches a peak mainly represents the shell (outer part) 1 of the shell, the threshold value is based on the brightness level at the peak in the brightness histogram. Is dynamically set, and a shell region is extracted from the X-ray transmission image using this threshold value.

即ち、砲弾の外形を正確に認識してその最大砲弾径を計測する場合には、X線透過画像から砲弾(弾殻)表面への付着物を確実に除去し、砲弾領域だけを抽出し得る閾値を最適設定することが重要である。そこで砲弾のX線透過画像における輝度レベルのヒストグラムを求めてみたところ、砲弾における弾殻1の厚みによってピークをとる輝度レベルが変化し、またこのピークをとる輝度レベルを境として、低輝度レベル側に砲弾の画像成分が集中して存在することを見出した。   That is, when accurately recognizing the outer shape of a shell and measuring the maximum shell diameter, it is possible to reliably remove deposits on the surface of the shell (bullet shell) from the X-ray transmission image and extract only the shell region. It is important to optimally set the threshold. Therefore, when the histogram of the brightness level in the X-ray transmission image of the shell is obtained, the brightness level that takes a peak changes depending on the thickness of the shell 1 of the shell, and the brightness level on the low brightness level side with this brightness level as a boundary. It was found that the image components of the shells are concentrated.

具体的には図8に炸薬筒を有する75mm弾(黄弾)の輝度ヒストグラムの例Aと、炸薬筒を有する90mm弾(黄弾)の輝度ヒストグラムの例Bとをそれぞれ示すように、砲弾領域を形成する画像成分の輝度レベルは、或る輝度レベルをピークとした低輝度レベル側に分布する。そして上記ピークをとる輝度レベルが砲弾の外殻(弾殻)の厚みによって変化することから、当該輝度レベルは、専ら上記砲弾の外殻(弾殻)部分の輝度を表していると認められる。また上記ピークをとる輝度レベルを超える高輝度の画像成分の出現頻度は急激に低下し、これらの高輝度レベルの画像成分は、専ら砲弾の内部空間を透過した成分や、砲弾の周囲の背景部分の画像成分を示していると認められる。   Specifically, as shown in FIG. 8, an example A of a luminance histogram of a 75 mm bullet (yellow bullet) having a glaze cylinder and an example B of a luminance histogram of a 90 mm bullet (yellow bullet) having a glaze cylinder are shown in FIG. The luminance levels of the image components forming the image are distributed on the low luminance level side having a certain luminance level as a peak. Since the luminance level that takes the peak varies depending on the thickness of the outer shell (bullet shell) of the shell, it can be recognized that the luminance level exclusively represents the luminance of the outer shell (bullet shell) portion of the shell. In addition, the appearance frequency of high-luminance image components exceeding the peak luminance level rapidly decreases, and these high-luminance level image components include components that have been transmitted exclusively through the internal space of the shell, and the background portion around the shell. It is recognized that the image component is shown.

そこで本発明においては上述したヒストグラムがピークをとる輝度レベルを基準として砲弾領域を抽出する為の閾値を動的に設定し、この閾値が砲弾の弾殻とその背景との境界を形成していると看做して前記X線透過画像から砲弾領域を抽出するようにしている。この結果、砲弾の弾殻部分での輝度レベルとその周囲に付着した泥や錆等の付着物との輝度レベルとの微妙な差を弁別可能な閾値を最適設定することが可能となり、砲弾に付着した泥や錆等の画像成分を除去し、弾殻に囲まれた砲弾領域だけを精度良く切り出すことが可能となる。従って砲弾の最大砲弾径やその砲弾長等の特徴量を精度良く計測することが可能となる。   Therefore, in the present invention, a threshold value for extracting a shell region is dynamically set on the basis of the luminance level at which the histogram described above takes a peak, and this threshold value forms a boundary between the shell shell of the shell and its background. Thus, a bullet region is extracted from the X-ray transmission image. As a result, it is possible to optimally set a threshold value that can discriminate a subtle difference between the brightness level of the shell shell portion and the brightness level of dirt or rust adhering to the surrounding shell. Image components such as adhering mud and rust can be removed, and only the shell region surrounded by the shell can be accurately cut out. Therefore, it is possible to accurately measure the characteristic amount such as the maximum bullet diameter of the shell and the length of the shell.

ここで前述したステップS5,S6,S7にそれぞれ示す外形検出処理、伝火薬筒検出処理、および炸薬筒検出処理について今少し詳しく説明する。
外形検出処理(ステップS5)は、基本的には砲弾の長さ、弾頭部および弾底部の幅、最大弾頭径、および弾頭栓の有無等の特徴量を計測(検出)する処理からなり、例えば図9に示す処理手順に従って実行される。具体的には砲弾の中心軸に沿ってその幅と位置とを検出し(ステップS11)、図10に砲弾の概略的な外形形状を示すように、砲弾幅が最大となる位置とその最大幅とを求めることで弾頭径を計測する(ステップS12)。次いで上記中心軸に沿って砲弾尾部側に向けてその幅を順次調べ、例えば砲弾の重心から所定距離以上離れて、且つ或る幅以上の弾径をなす部分までの位置を求め、その最終位置を弾底部として検出する(ステップS13)。同様に中心軸に沿って砲弾頭部側に向けてその幅を順次調べ、例えば砲弾の重心から所定距離以上離れて、且つ或る幅以上の弾径をなす部分までの位置を求め、その最終位置を弾頭部として検出する(ステップS14)。
Here, the outer shape detection process, the transfer cylinder detection process, and the glaze cylinder detection process shown in steps S5, S6, and S7 described above will be described in a little more detail.
The outer shape detection process (step S5) basically includes a process for measuring (detecting) characteristic quantities such as the length of the bullet, the width of the warhead and the bottom, the maximum warhead diameter, and the presence or absence of the warhead plug. It is executed according to the processing procedure shown in FIG. Specifically, its width and position are detected along the central axis of the shell (step S11), and the position where the shell width is maximum and its maximum width as shown in FIG. To determine the warhead diameter (step S12). Next, the width is sequentially examined along the central axis toward the shell tail part, and for example, the position to a part that is more than a predetermined distance away from the center of gravity of the shell and has a certain diameter or more is obtained, and the final position Is detected as a bullet bottom (step S13). Similarly, the width is sequentially examined along the central axis toward the shell head side, and for example, the position to a part that is more than a predetermined distance away from the center of gravity of the shell and forms a bullet diameter of a certain width or more is obtained. The position is detected as a warhead (step S14).

しかる後、上述した如く求めた弾頭部での幅を基準として、その幅が弾頭部の幅よりも狭くなった領域がどの程度の長さまで続くかを探索する。そしてその長さが、所定長αよりも長い場合には、その画像部位が上記弾頭部に装着された弾頭栓を示していると判定する(ステップS15)。そして弾頭栓が検出された場合には、この弾頭栓を除いた位置を弾頭部であると、弾頭部の位置を修正する。その上で前記弾頭部から弾底部までの距離を砲弾の長さとして求める。尚、弾殻螺歪みがある場合には、上述した如く求められる砲弾の幅の中心位置を結ぶ線は曲線となる。従ってこの曲線と前述した中心軸とのずれ量を検出し(ステップS16)、このずれ量を弾殻の歪みとして求めることも有用である。   Thereafter, on the basis of the width at the warhead obtained as described above, a search is made for how long the region where the width is narrower than the width of the warhead continues. If the length is longer than the predetermined length α, it is determined that the image portion indicates the warhead plug mounted on the warhead (step S15). When the warhead plug is detected, the position of the warhead is corrected if the position excluding the warhead plug is the warhead. Then, the distance from the warhead to the bottom is obtained as the length of the shell. When there is bullet shell distortion, the line connecting the center positions of the shell widths obtained as described above is a curve. Therefore, it is also useful to detect the amount of deviation between this curve and the above-mentioned central axis (step S16), and to obtain this amount of deviation as the distortion of the shell.

一方、前述した伝火薬筒の検出処理(ステップS6)は、例えば図11に示す処理手順に従って実行される。即ち、前述したように抽出される砲弾の画像領域において、先ず伝火薬筒の底部検出を行う。この伝火薬筒の底部検出は、X線透過画像に対して横方向のエッジ強調処理を施し、伝火薬筒の底部を含む画像上の縦線成分を強調する(ステップS21)。しかる後、砲弾の中心軸の近傍を探索して弾頭部に近い縦線検出位置を検出し、図12に示す砲弾の弾殻と伝火薬筒との概略的な関係に従って上記検出位置を伝火薬筒の底部として検出する(ステップS22)。尚、縦線を検出することができなかった場合には、伝火薬筒の検出処理を失敗したとする。   On the other hand, the above-described detection process (step S6) of the charge transfer cylinder is executed according to the processing procedure shown in FIG. 11, for example. That is, in the image area of the shell extracted as described above, first, the bottom of the charge transfer cylinder is detected. In the bottom detection of the charge transfer cylinder, a lateral edge enhancement process is performed on the X-ray transmission image to emphasize the vertical line component on the image including the bottom of the transfer charge transfer cylinder (step S21). Thereafter, the vicinity of the center axis of the shell is searched to detect a vertical line detection position close to the warhead, and the detection position is determined according to the approximate relationship between the shell of the shell and the transfer cartridge shown in FIG. It is detected as the bottom of the cylinder (step S22). In addition, when a vertical line cannot be detected, it is assumed that the process for detecting the charge transfer cylinder has failed.

次いで伝火薬筒の底部の位置、その底部位置から弾頭部までの距離、底部位置から弾底部までの距離等を当該伝火薬筒の底部に関する特徴量としてそれぞれ計測する(ステップS23)。特に砲弾における弾底部は一般に肉厚であり、砲弾が長期間に亘って地中に放置されていたとしてもその変形が極めて少ないと考えられるので、弾底部を基準として伝火薬筒の特徴量を求めることが好ましい。換言すれば砲弾の弾頭部については、弾頭栓の有無等や変形によってその特徴量自体の信頼性が、上述した弾底部に比較して低くなることがあるので、弾底部を基準とした方が伝火薬筒の特徴量を高精度に求めることができると言える。   Next, the position of the bottom portion of the charge transfer cylinder, the distance from the bottom position to the warhead, the distance from the bottom position to the bottom of the bullet, and the like are measured as the feature quantities related to the bottom of the transfer charge cylinder (step S23). In particular, the bottom of a shell is generally thick, and even if the shell is left in the ground for a long period of time, its deformation is considered to be extremely small. It is preferable to obtain. In other words, for the bullet head of a shell, the reliability of the feature amount itself may be lower than that of the above-mentioned bullet bottom due to the presence or absence of warhead plugs or deformation, so it is better to use the bullet bottom as a reference. It can be said that the characteristic amount of the charge transfer cylinder can be obtained with high accuracy.

しかる後、伝火薬筒の側面を検出するべく、上記特徴量に従って伝火薬筒底部と弾頭部とを囲む領域近傍にマスク領域を設定し(ステップS24)、伝火薬筒の側面上部および側面下部の特徴量の検出処理に供する。そしてこの伝火薬筒の側面上部および側面下部の特徴量の検出については、先ず前述したX線透過画像に対して縦方向のエッジ強調処理を施し、伝火薬筒の側部を含む画像上の横線成分を強調する(ステップS25)。次いでこの横線成分の強調処理を施した画像を用いて、前述した伝火薬筒底部位置における横線成分を探索し(ステップS26)、その横線成分検出位置を伝火薬筒の側面として検出する。そして伝火薬筒の側面画検出されたならば、その側面部における特徴量を、例えば中心軸からの距離や、そのずれ量等として検出する(ステップS27)。   After that, in order to detect the side of the charge transfer cylinder, a mask area is set in the vicinity of the area surrounding the bottom of the transfer charge cylinder and the warhead in accordance with the feature amount (step S24). It is used for feature amount detection processing. For detection of the feature amount of the upper and lower side surfaces of the charge transfer cylinder, first, the X-ray transmission image described above is first subjected to vertical edge enhancement processing, and the horizontal line on the image including the side of the transfer charge cylinder The component is emphasized (step S25). Next, the horizontal line component at the bottom position of the charge transfer cylinder is searched using the image subjected to the enhancement process of the horizontal line component (step S26), and the horizontal line component detection position is detected as the side face of the transfer charge cylinder. If the side view of the charge transfer cylinder is detected, the feature amount at the side portion is detected as, for example, the distance from the central axis, the shift amount, or the like (step S27).

これに対して前述した炸薬筒の検出処理(ステップS7)は、例えば図13に示す処理手順に従って実行される。この炸薬筒の検出処理は、前述した伝火薬筒と異なって炸薬筒の底部が砲弾の底部近傍に存在し、砲弾底部との識別が困難であることから、炸薬筒の側面部の検出処理から行われる。具体的には、一般的には炸薬筒は弾殻の内壁面に沿って存在することから、先ず砲弾の外形領域を収縮させたマスク領域を炸薬筒の存在領域として設定する(ステップS31)。その上で前述したX線透過画像に対するエッジ強調処理を施した後、砲弾の重心位置を基準としてその上方を探索し、図14に示す砲弾の弾殻と炸薬筒筒の位置関係に従って炸薬筒の側面上部を検出する(ステップS32)。同様にして砲弾の重心位置を基準としてその下方を探索し、炸薬筒の側面下部を検出する。尚、所定の範囲内において炸薬筒の側面を検出することができなかった場合には、その検出処理に失敗したとする。そして炸薬筒の側面が検出されたならば、これらの側面上部と下部との距離を炸薬筒の幅として、更には中心軸からのずれをその特徴量として検出する(ステップS33)。   On the other hand, the above-described glaze cylinder detection process (step S7) is executed according to the processing procedure shown in FIG. 13, for example. Unlike the above-described transfer cylinder, the glaze cylinder detection process has a bottom part of the glaze cylinder in the vicinity of the bottom of the shell, making it difficult to distinguish it from the shell bottom. Done. Specifically, since the glaze cylinder generally exists along the inner wall surface of the shell, first, a mask area in which the outer area of the cannonball is contracted is set as the presence area of the glaze cylinder (step S31). Then, after performing the edge enhancement processing on the X-ray transmission image described above, the upper part is searched with respect to the position of the center of gravity of the shell, and according to the positional relationship between the shell of the shell and the glaze cylinder shown in FIG. The upper side is detected (step S32). Similarly, the lower part of the side surface of the glaze cylinder is detected by searching below the center of gravity of the shell. If the side surface of the glaze cylinder cannot be detected within the predetermined range, it is assumed that the detection process has failed. If the side surface of the glaze cylinder is detected, the distance between the upper part and the lower part of the side surface is detected as the width of the glaze cylinder, and further the deviation from the central axis is detected as the feature amount (step S33).

しかる後、炸薬筒の底部は、上述した如く検出された側面上部の端部と、側面下部の端部とを結ぶ位置に存在すると考えられるので、これらの端部を内包する矩形領域を炸薬筒底部が存在するマスク領域として設定する(ステップS34)。そしてこのマスク領域における画像の縦線成分をエッジ強調処理して炸薬筒の底部を検出し、その特徴量を求める(ステップS35)。この炸薬筒の底部の特徴量についても、例えば弾頭部からの距離や弾底部からの距離等として求めるようにすれば良い。   After that, since the bottom of the glaze cylinder is considered to exist at a position connecting the end of the upper side of the side surface and the end of the lower side of the side detected as described above, a rectangular region including these ends is defined as the glaze cylinder. It is set as a mask area where the bottom exists (step S34). Then, the vertical line component of the image in the mask region is edge-enhanced to detect the bottom of the glaze cylinder, and the feature amount is obtained (step S35). What is necessary is just to obtain | require the feature-value of the bottom part of this glaze cylinder, for example as a distance from a bullet head, a distance from a bullet bottom part, etc., for example.

かくして上述した如くして求めた砲弾の外形に関する特徴量、その内部の伝火薬筒に関する特徴量、更には炸薬筒に関する特徴量に基づいて砲弾の種別を識別する本装置によれば、予め薬莢や弾頭栓等の砲弾の付属部品についての画像成分を除去した状態において、その輝度ヒストグラムに応じて設定した閾値の下で砲弾領域の画像だけを抽出して特徴量の検出処理に供するので、砲弾の変形や付着物の影響を効果的に排除して、その特徴量を信頼性良く検出することができる。従って砲弾の種別判定に対する信頼性を、実用的に十分なレベルまで高めることが可能となる。   Thus, according to the present apparatus for identifying the type of shell based on the feature amount related to the outer shape of the shell obtained as described above, the feature amount related to the internal charge transfer cylinder, and further the feature amount related to the glaze cylinder, In the state where the image components of the ammunition parts such as warhead plugs are removed, only the image of the ammunition area is extracted under the threshold value set according to the luminance histogram and used for the feature amount detection process. The feature amount can be detected with high reliability by effectively eliminating the influence of deformation and deposits. Therefore, it is possible to increase the reliability of the shell type determination to a practically sufficient level.

更には各部の特徴量を検出するに際して、肉厚であるが故に腐食や変形の影響を受け難い砲弾底部を基準として複数の特徴部位の位置関係・寸法等を求めるので、その特徴量自体の計測信頼性を十分に高めることができる。従ってこの点でも、砲弾の種別判定に対する信頼性を十分に高めることができる。特に砲弾の弾頭部には弾頭栓が装着されたり、弾頭栓自体が大きく変形していることも多いので、上述したように砲弾底部を基準として砲弾の特徴量を計測した方が、誤差要因の入り込みを少なくすることができ、簡易にその計測信頼性を高めることが可能となる等の利点がある。   Furthermore, when detecting the feature values of each part, the positional relationship and dimensions of multiple feature parts are obtained with reference to the shell bottom that is not easily affected by corrosion or deformation because it is thick. Reliability can be sufficiently increased. Therefore, also in this respect, the reliability of the shell type determination can be sufficiently increased. In particular, bullet heads are often equipped with warhead plugs, or warhead plugs themselves are greatly deformed.As described above, it is better to measure the features of shells with reference to the bottom of the shell. There are advantages such that the intrusion can be reduced and the measurement reliability can be easily increased.

尚、本発明は上述した実施形態に限定されるものではない。例えばX線透過画像の輝度レベルのヒストグラムに基づいて設定する閾値については、ピークとなる輝度レベルの近傍において、そのヒストグラム値が急激に低下する輝度レベル等として定めることも可能である。また砲弾の頭部における弾頭栓装着用の凹部を特徴量の検出対象から除外することで、その弾頭部の位置を正確に検出することも可能である。更には特徴量の検出処理手順等については、検出対象やその検出仕様等に応じて種々変更可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the threshold value set based on the brightness level histogram of the X-ray transmission image can be determined as a brightness level where the histogram value rapidly decreases in the vicinity of the peak brightness level. Further, by removing the concave part for mounting the bullet plug from the head of the shell from the feature quantity detection target, it is also possible to accurately detect the position of the bullet head. Furthermore, the feature amount detection processing procedure and the like can be variously changed according to the detection target, its detection specification, and the like. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係る物体識別装置の概略構成図。1 is a schematic configuration diagram of an object identification device according to an embodiment of the present invention. X線透視装置による検出対象物(砲弾)のX線透視検査の形態を示す図。The figure which shows the form of the X-ray fluoroscopic inspection of the detection target object (cannonball) by a X-ray fluoroscopic apparatus. 本発明に係る物体識別の処理手順の一例を示す図。The figure which shows an example of the process sequence of the object identification which concerns on this invention. X線透視画像に対する濃度変換処理の特性例を示す図。The figure which shows the example of a characteristic of the density conversion process with respect to a fluoroscopic image. 砲弾のX線透視画像の例を示す図。The figure which shows the example of the X-ray fluoroscopic image of a cannonball. X線透視画像からの薬莢等の付属部品の除去処理の概念を示す図。The figure which shows the concept of the removal process of attachment parts, such as a medicine casing, from a X-ray fluoroscopic image. 代表的な砲弾の特徴を示す図。The figure which shows the characteristic of a typical shell. 砲弾のX線透視画像における輝度ヒストグラムの例を示す図。The figure which shows the example of the brightness | luminance histogram in the X-ray fluoroscopic image of a cannonball. 外形検出処理の概略的な処理手順を示す図。The figure which shows the rough process sequence of an external shape detection process. 砲弾の外形とその特徴を模式的に示す図。The figure which shows typically the external shape and its characteristic of a shell. 伝火薬筒の検出処理の概略的な処理手順を示す図。The figure which shows the rough process sequence of the detection process of a charge transfer cylinder. 砲弾における伝火薬筒の構造とその特徴を示す図。The figure which shows the structure and its characteristic of a charge transfer cylinder in a shell. 炸薬筒の検出処理の概略的な処理手順を示す図。The figure which shows the rough process sequence of the detection process of a glaze cylinder. 砲弾における炸薬筒の構造とその特徴を示す図。The figure which shows the structure of the glaze cylinder in a shell, and its characteristic.

符号の説明Explanation of symbols

S 検査対象物(砲弾)
1 弾殻
2 伝火薬筒
3 炸薬筒
10 X線透視装置
12 X線発生装置
13 ラインセンサ
20 コンベア機構
30 画像処理装置
S Inspection object (cannonball)
DESCRIPTION OF SYMBOLS 1 Bullet shell 2 Fire transfer cylinder 3 Glaze cylinder 10 X-ray fluoroscope 12 X-ray generator 13 Line sensor 20 Conveyor mechanism 30 Image processing apparatus

Claims (7)

外形および内部構造物に特徴を有する検査対象物のX線透視画像を得、このX線透視画像から求められる上記検査対象物の特徴量から該検査対象物の種別を判定するに際し、
前記検査対象物における損壊し易い部品部分の画像成分を前記X線透視画像から除去した後、前記X線透視画像の輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を決定し、この閾値に基づいて前記X線透視画像から抽出された画像成分から前記検査対象物の特徴量を検出して該検査対象物の種別を判定することを特徴とする物体識別方法。
When obtaining an X-ray fluoroscopic image of an inspection object having features in the outer shape and the internal structure, and determining the type of the inspection object from the characteristic amount of the inspection object obtained from the X-ray fluoroscopic image,
After removing the image component of the easily damaged part portion in the inspection object from the X-ray fluoroscopic image, determine a threshold value for detecting the characteristic part of the inspection object according to the luminance histogram of the X-ray fluoroscopic image; An object identification method comprising: detecting a feature amount of the inspection object from an image component extracted from the X-ray fluoroscopic image based on the threshold value, and determining a type of the inspection object.
前記検査対象物は、地中等に放置されていた砲弾であって、前記X線透視画像から除去する画像成分は、上記砲弾における薬莢、弾頭栓、および尾翼等の部品に相当する画像部分であり、
前記閾値は、前記X線透視画像の輝度ヒストグラムがピークとなる輝度レベルに基づいて設定されて前記X線透視画像からの前記砲弾の画像領域の抽出に用いられ、
前記特徴量は、前記砲弾の画像領域に示される最大砲弾径、炸薬筒の有無、伝火薬筒の長さ等として求められるものである請求項1に記載の物体識別方法。
The inspection object is a cannonball that has been left in the ground, and the image components to be removed from the X-ray fluoroscopic image are image portions corresponding to parts such as a cartridge case, a warhead plug, and a tail wing in the cannonball. ,
The threshold is set based on a luminance level at which the luminance histogram of the X-ray fluoroscopic image reaches a peak, and is used for extracting the image area of the shell from the X-ray fluoroscopic image,
The object identifying method according to claim 1, wherein the feature amount is obtained as a maximum bullet diameter, a presence / absence of a glaze cylinder, a length of a transfer cylinder, and the like shown in an image area of the bullet.
前記伝火薬筒の長さ等は、前記砲弾の弾底部を基準として計測される特徴点までの距離から求められるものである請求項2に記載の物体識別方法。   The object identification method according to claim 2, wherein the length or the like of the transfer cartridge is obtained from a distance to a feature point measured with reference to a bottom of the shell. 外形および内部構造物に特徴を有する検査対象物のX線透視画像を得るX線透視装置と、上記X線透視画像を画像処理して前記検査対象物の種別を判定する画像処理装置とを備えてなり、
前記画像処理装置は、前記検査対象物における損壊し易い部品部分の画像成分を前記X線透視画像から除去する第1の画像処理手段と、
前記X線透視画像の輝度ヒストグラムに従って前記検査対象物の特徴部分を検出する為の閾値を決定し、この閾値に基づいて前記X線透視画像中における前記検査対象物の特徴部分を抽出する第2の画像処理手段と、
抽出した上記特徴部分の特徴量を求め、その特徴量に従って前記検査対象物の種別を判定する判定手段と
を具備したことを特徴とする物体識別装置。
An X-ray fluoroscopic apparatus that obtains an X-ray fluoroscopic image of an inspection object having features in an outer shape and an internal structure, and an image processing apparatus that performs image processing on the X-ray fluoroscopic image and determines the type of the inspection object. And
The image processing apparatus includes: a first image processing unit that removes an image component of a component part that is easily damaged in the inspection object from the fluoroscopic image;
A threshold value for detecting a characteristic part of the inspection object is determined according to a luminance histogram of the fluoroscopic image, and a characteristic part of the inspection object in the X-ray fluoroscopic image is extracted based on the threshold value. Image processing means,
An object identification apparatus comprising: a determining unit that obtains a feature amount of the extracted feature portion and determines a type of the inspection object according to the feature amount.
前記検査対象物は、地中等に放置されていた砲弾であって、
前記第1の画像処理手段は、前記砲弾における薬莢、弾頭栓、尾翼等の前記X線透視画像中における画像領域を検出して当該画像領域を画像処理対象から除外し、前記第2の画像処理手段は、前記X線透視画像の輝度ヒストグラムに基づいて設定される閾値を用いて前記X線透視画像中における前記砲弾の特徴部分を抽出して特徴量の検出に供するものである請求項4に記載の物体識別装置。
The inspection object is a shell that has been left in the ground,
The first image processing means detects an image area in the fluoroscopic image such as a cartridge case, a warhead plug, a tail wing, etc. in the shell, excludes the image area from an image processing target, and performs the second image processing. The means for extracting the characteristic portion of the shell in the X-ray fluoroscopic image using a threshold value set based on a luminance histogram of the X-ray fluoroscopic image and providing the characteristic amount to the detection. The object identification device described.
前記判定手段は、前記第2の画像処理手段にて求められた前記検査対象物の複数の特徴部分における特徴量を、前記検査対象物の予め変形し難いことが明らかな部位を基準として計測される上記特徴部分までの計測値からそれぞれ求めるものである請求項4に記載の物体識別装置。   The determination unit is configured to measure the feature amounts in the plurality of feature portions of the inspection target obtained by the second image processing unit with reference to a portion of the inspection target that is clearly difficult to deform in advance. The object identification device according to claim 4, wherein the object identification device is obtained from each measured value up to the characteristic portion. 前記検査対象物の予め変形し難いことが明らかな部位は、地中等に放置されていた砲弾の弾底部である請求項6に記載の物体識別装置。   The object identifying device according to claim 6, wherein the part of the inspection object that is clearly difficult to be deformed in advance is a bullet bottom of a shell that is left in the ground.
JP2004216120A 2004-07-23 2004-07-23 Object identification method and apparatus Expired - Fee Related JP4596129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216120A JP4596129B2 (en) 2004-07-23 2004-07-23 Object identification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216120A JP4596129B2 (en) 2004-07-23 2004-07-23 Object identification method and apparatus

Publications (3)

Publication Number Publication Date
JP2006038532A true JP2006038532A (en) 2006-02-09
JP2006038532A5 JP2006038532A5 (en) 2007-05-10
JP4596129B2 JP4596129B2 (en) 2010-12-08

Family

ID=35903690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216120A Expired - Fee Related JP4596129B2 (en) 2004-07-23 2004-07-23 Object identification method and apparatus

Country Status (1)

Country Link
JP (1) JP4596129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597775B2 (en) 2008-06-03 2013-12-03 Sk Innovation Co., Ltd. Microporous polyolefin multi layer film
JP2016176753A (en) * 2015-03-19 2016-10-06 日本電気株式会社 Identification device, identification method, and traceability system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182233A (en) * 1989-12-12 1991-08-08 Toshiba Corp X-ray image display device
JPH07265298A (en) * 1994-03-31 1995-10-17 Aisin Seiki Co Ltd X-ray ct image processing system and method therefor
JPH11194102A (en) * 1998-01-06 1999-07-21 Hitachi Eng & Service Co Ltd Method and apparatus for discrimination of substance at inside of vessel and burning method for low-radioactivity waste
JP2000163562A (en) * 1998-11-30 2000-06-16 Canon Inc Feature amount extraction device and method and computer readable storage medium
JP2001066100A (en) * 1999-08-31 2001-03-16 Toshiba Corp Method and device for eliminating chemical
JP2002048500A (en) * 2000-08-03 2002-02-15 Kawasaki Heavy Ind Ltd Shell-disassembling method
JP2003090700A (en) * 2001-09-18 2003-03-28 Kawasaki Heavy Ind Ltd Dismantling method
JP2004003741A (en) * 2002-05-31 2004-01-08 Kawasaki Heavy Ind Ltd Dismantling apparatus and dismantling method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182233A (en) * 1989-12-12 1991-08-08 Toshiba Corp X-ray image display device
JPH07265298A (en) * 1994-03-31 1995-10-17 Aisin Seiki Co Ltd X-ray ct image processing system and method therefor
JPH11194102A (en) * 1998-01-06 1999-07-21 Hitachi Eng & Service Co Ltd Method and apparatus for discrimination of substance at inside of vessel and burning method for low-radioactivity waste
JP2000163562A (en) * 1998-11-30 2000-06-16 Canon Inc Feature amount extraction device and method and computer readable storage medium
JP2001066100A (en) * 1999-08-31 2001-03-16 Toshiba Corp Method and device for eliminating chemical
JP2002048500A (en) * 2000-08-03 2002-02-15 Kawasaki Heavy Ind Ltd Shell-disassembling method
JP2003090700A (en) * 2001-09-18 2003-03-28 Kawasaki Heavy Ind Ltd Dismantling method
JP3629610B2 (en) * 2001-09-18 2005-03-16 川崎重工業株式会社 Dismantling method
JP2004003741A (en) * 2002-05-31 2004-01-08 Kawasaki Heavy Ind Ltd Dismantling apparatus and dismantling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597775B2 (en) 2008-06-03 2013-12-03 Sk Innovation Co., Ltd. Microporous polyolefin multi layer film
JP2016176753A (en) * 2015-03-19 2016-10-06 日本電気株式会社 Identification device, identification method, and traceability system

Also Published As

Publication number Publication date
JP4596129B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US8121400B2 (en) Method of comparing similarity of 3D visual objects
JP5086970B2 (en) Wood appearance inspection device, wood appearance inspection method
JP5263291B2 (en) Image data processing apparatus and method for defect inspection, defect inspection apparatus and method using them, plate-like body manufacturing method using them, and recording medium
JP6654849B2 (en) Method for detecting surface cracks in concrete
KR102073229B1 (en) Surface defect detection apparatus and surface defect detection method
JP2009133085A (en) Crack checking device for tunnel lining
JP6697302B2 (en) Flaw detection device and defect detection method using flaw detection device
JPWO2011117984A1 (en) Filter inspection method and apparatus
WO2020110667A1 (en) Surface defect detecting method, surface defect detecting device, method for manufacturing steel material, steel material quality control method, steel material manufacturing equipment, method for creating surface defect determination model, and surface defect determination model
JP2015210150A (en) Method and device for detecting surface defect
CN106053593B (en) Flaw detection device and flaw detection method using flaw detection device
JP4769859B2 (en) Reflected light detection device, reflection characteristic determination device, and object detection device
JP5572450B2 (en) Deformed coin discrimination method and coin processing apparatus
JP4596129B2 (en) Object identification method and apparatus
JP2007271434A (en) Inspection apparatus, inspection method, inspection program, and inspection system
JP4981433B2 (en) Inspection device, inspection method, inspection program, and inspection system
JP2018194475A (en) Detection method and system of bolt position
JP5279236B2 (en) Target imaging detector
JP2017173992A (en) Inspection device for bundled steel pipes and inspection method for bundled steel pipes
CN111602047A (en) Tablet inspection method and tablet inspection device
JP2006220570A (en) Detector for bottom part corrosion, and detection method of bottom part corrosion
JP5786631B2 (en) Surface defect inspection equipment
JPH0718811B2 (en) Defect inspection method
JP2010210212A (en) Object identification device
JP2006284308A (en) Visual examination method of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees