JP2006038519A - Visualization method for pore structure of coke - Google Patents
Visualization method for pore structure of coke Download PDFInfo
- Publication number
- JP2006038519A JP2006038519A JP2004215750A JP2004215750A JP2006038519A JP 2006038519 A JP2006038519 A JP 2006038519A JP 2004215750 A JP2004215750 A JP 2004215750A JP 2004215750 A JP2004215750 A JP 2004215750A JP 2006038519 A JP2006038519 A JP 2006038519A
- Authority
- JP
- Japan
- Prior art keywords
- coke
- gas
- pore structure
- nmr
- spin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000571 coke Substances 0.000 title claims abstract description 102
- 239000011148 porous material Substances 0.000 title claims abstract description 72
- 238000007794 visualization technique Methods 0.000 title abstract description 5
- 238000005481 NMR spectroscopy Methods 0.000 claims abstract description 49
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000003384 imaging method Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 47
- 238000005259 measurement Methods 0.000 abstract description 29
- 239000007789 gas Substances 0.000 description 46
- 239000000523 sample Substances 0.000 description 24
- 230000005291 magnetic effect Effects 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 9
- 229910052753 mercury Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000001066 destructive effect Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 238000012800 visualization Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000002247 constant time method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002102 hyperpolarization Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Coke Industry (AREA)
Abstract
Description
本発明は、コークスの気孔構造を可視化する方法に関するものである。 The present invention relates to a method for visualizing the pore structure of coke.
製鉄プロセスにおける高炉に装入されるコークスは、鉄鉱石等の鉄含有原料を還元し溶融銑鉄を製造するための還元剤、熱源、または、炉内の通気性・通液性の維持など多くの機能をもっており、高炉の操業安定化および生産性向上の観点から、これらのコークス機能の向上が重要な課題となる。 The coke charged into the blast furnace in the iron making process is a reducing agent for reducing iron-containing raw materials such as iron ore and producing molten pig iron, a heat source, or maintaining the breathability and liquid permeability in the furnace. From the viewpoint of stabilizing the operation of the blast furnace and improving productivity, it is important to improve these coke functions.
一般に、粉状原料炭をコークス炉で乾留して得られるコークス成品は気孔率50%程度の多孔質構造体であり、さらに、このコークスを高炉に装入後には、炉内でガス化反応によりそのコークス内の気孔分布は変化する。 In general, a coke product obtained by carbonizing powdered raw coal in a coke oven is a porous structure having a porosity of about 50%. Further, after charging the coke into a blast furnace, a gasification reaction is performed in the furnace. The pore distribution in the coke changes.
そのため、コークス成品内の気孔構造、さらには、高炉内での反応後のコークスの気孔構造を解析することは、高炉用原料として要求される、例えば、冷間強度、反応後強度、コークス粒度などのコークス特性を評価する上で重要な情報となる。 Therefore, analyzing the pore structure in the coke product, and further, the pore structure of coke after reaction in the blast furnace is required as a raw material for blast furnace, for example, cold strength, post-reaction strength, coke particle size, etc. This is important information for evaluating the coke characteristics of slag.
従来のコークスの気孔構造の解析法としては、光学顕微鏡などによる直接観測法、水銀圧入による気孔径分布の測定法(水銀ポロシメータ)が一般的に使われている(特許文献1、2、参照)。 As a conventional method for analyzing the pore structure of coke, a direct observation method using an optical microscope or the like, and a pore diameter distribution measurement method (mercury porosimeter) by mercury intrusion are generally used (see Patent Documents 1 and 2). .
光学顕微鏡を用いる場合は、光学焦点深度があまり深くないため、コークスのように試料表面に多くの凹凸があると、画像処理で気孔を明確に観測できない。そのため、多くの場合、コークス試料を切断しその断面を鏡面研磨し、反射光で観察する反射型顕微鏡法が用いられる。 When using an optical microscope, the optical depth of focus is not very deep, so if there are many irregularities on the sample surface like coke, the pores cannot be clearly observed by image processing. Therefore, in many cases, a reflection type microscopy is used in which a coke sample is cut, its cross section is mirror-polished, and observed with reflected light.
しかし、前述の通り、コークス試料は多孔質構造体であり、強度が低く脆いため、あるいは強度が不均一なため、試料断面を鏡面研磨する時に、一様に研磨できず、コークス組織が破戒し、脱落、移動などにより気孔形態が初期のものから変化してしまうため、コークスの気孔構造をそのままの状態で測定することはできない。 However, as described above, the coke sample is a porous structure, and since the strength is low and brittle, or the strength is not uniform, when the sample cross-section is mirror-polished, it cannot be uniformly polished, and the coke structure is destructive. Since the pore shape changes from the initial one due to dropping, moving, etc., the pore structure of coke cannot be measured as it is.
また、コークス気孔中の水銀圧入による気孔径分布の測定法(水銀ポロシメータ)を用いる場合は、濡れ性の悪い水銀に圧力をかけ、コークス表面につながっている気孔内に水銀を圧入し、その際の押し込み圧力と水銀が侵入する平均気孔径との関係から、気孔径分布を算出する方法である。 In addition, when using a pore size distribution measurement method (mercury porosimeter) by injecting mercury into coke pores, pressure is applied to mercury with poor wettability, and mercury is injected into the pores connected to the coke surface. The pore size distribution is calculated from the relationship between the indentation pressure and the average pore size into which mercury enters.
しかし、この方法では、コークス表面の開口部の径が狭く奥に広い空隙をもつ気孔の気孔径を測定する場合は、コークス表面の開口部の径として気孔径が測定され、必ずしもコークス気孔構造の実態を表すものではない。 However, in this method, when measuring the pore diameter of a pore having a narrow opening at the coke surface and a wide void at the back, the pore diameter is measured as the diameter of the opening at the coke surface, and the coke pore structure is not necessarily measured. It does not represent the actual situation.
また、前述の通り、コークス試料は多孔質構造体であり低強度で脆いため、水銀圧入時にコークス組織の破壊が起こり、気孔構造が初期のものから変化する可能性があるため、コークスの気孔構造を、そのままの状態で測定することはできない。 In addition, as described above, the coke sample is a porous structure and is low in strength and brittle, so the destruction of the coke structure occurs during mercury intrusion, and the pore structure may change from the initial one. Cannot be measured as is.
また、水銀とコークスとの濡れ性を一定として気孔径分布を算出するが、実際には濡れ性は表面の物理化学的な性状により変化するため、誤差が生ずる可能性もある。 In addition, the pore size distribution is calculated with the wettability of mercury and coke constant, but in reality the wettability changes depending on the physicochemical properties of the surface, so that an error may occur.
また、非破壊分析が可能な方法として、X線CT法が一般に知られているが、測定分解能は数100μm程度と低く、また、直接観測する対象はコークス組織(基質)であるため、気孔径などの気孔情報は基質部の測定値から算出する必要があるので、測定精度が悪い。 As a method capable of nondestructive analysis, the X-ray CT method is generally known, but the measurement resolution is as low as several hundred μm, and the object to be directly observed is a coke tissue (substrate). Since the pore information such as is required to be calculated from the measured value of the substrate portion, the measurement accuracy is poor.
一方、近年、上記X線CT法に比べて分解能が高い非破壊分析方法として、SF4ガスを観測対象媒体として用いたNMRガスイメージ法(非特許文献1、参照)により、コークスの気孔構造を解析する方法(非特許文献2、参照)が報告されている。 On the other hand, in recent years, as a non-destructive analysis method having higher resolution than the X-ray CT method, the pore structure of coke has been determined by NMR gas image method using SF 4 gas as an observation target medium (see Non-Patent Document 1). A method of analysis (see Non-Patent Document 2) has been reported.
このNMRガスイメージ法は、観測対象媒体としてコークスに対して反応性や吸着性がない不活性ガスであるSF4ガスを用いているため、NMRで観測されるSF4ガスに由来するF原子核から気孔を非破壊状態で容易に観察し判別できる点で優れているが、一方で、測定時間が30時間程度と長時間を要するという問題がある。 Since this NMR gas image method uses SF 4 gas, which is an inert gas having no reactivity or adsorptivity to coke, as an observation target medium, from the F nuclei derived from SF 4 gas observed by NMR Although it is excellent in that the pores can be easily observed and discriminated in a non-destructive state, there is a problem that the measurement time is as long as about 30 hours.
上記従来技術の現状に鑑みて、本発明は、コークスの気孔構造を非破壊で、高感度かつ1時間程度の短時間で測定することができるNMRガスイメージ法によるコークスの気孔構造可視化方法を提供することを目的とする。 In view of the above-described prior art, the present invention provides a method for visualizing the pore structure of coke by NMR gas image method that can measure the pore structure of coke in a non-destructive manner with high sensitivity and in a short time of about 1 hour. The purpose is to do.
本発明は上記課題を解決するものであり、その要旨とするところは以下の通りである。 The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1)NMRマイクロイメージング法によるコークス気孔構造の可視化方法において、核磁気共鳴分析装置内に置かれたコークスにスピン超偏極させた3Heガスを連続的に供給し、該コークスの気孔内に含浸した3HeをNMRマイクロイメージング法により可視化することを特徴とするコークスの気孔構造可視化方法。 (1) In the visualization method of coke pore structure by NMR micro-imaging method, 3 He gas spin hyperpolarized is continuously supplied to coke placed in a nuclear magnetic resonance analyzer, and the coke pores are introduced into the coke pores. A method for visualizing pore structure of coke, characterized by visualizing impregnated 3 He by NMR micro-imaging method.
(2)前記コークスは、予めコークスに含有する酸化鉄を除去したものであることを特徴とする上記(1)記載のコークスの気孔構造可視化方法。 (2) The method for visualizing the pore structure of coke according to (1), wherein the coke is obtained by removing iron oxide contained in coke in advance.
本発明によれば、コークスの気孔構造を非破壊で、高感度かつ短時間で測定することができるため、これにより、製鉄プロセスにおける高炉で使用されるコークスの冷間強度、反応後強度、コークス粒度などのコークス特性の評価に反映することが可能となる。 According to the present invention, since the pore structure of coke can be measured in a non-destructive manner with high sensitivity and in a short time, the cold strength, post-reaction strength, coke used in a blast furnace in an iron making process can be obtained. It can be reflected in the evaluation of coke characteristics such as particle size.
本発明は非特許文献1に開示される核磁気共鳴(NMR)装置を用いたマイクロイメージング法(以下「NMRマイクロイメージング法」という。)によって、コークスの気孔構造を可視化する方法に関するものである。 The present invention relates to a method of visualizing the pore structure of coke by a micro imaging method (hereinafter referred to as “NMR micro imaging method”) using a nuclear magnetic resonance (NMR) apparatus disclosed in Non-Patent Document 1.
一般に物質は、その分子を構成する原子核が同一であっても、化学構造の違いなど分子内での様々な環境の違いから、原子核が磁気共鳴を起こす共鳴周波数が異なることが知られており、その共鳴周波数が化学シフトと呼ばれている。 In general, it is known that even if the nuclei constituting the molecule are the same, the resonance frequencies at which the nuclei cause magnetic resonance are different due to various environmental differences within the molecule, such as differences in chemical structure. The resonance frequency is called chemical shift.
この化学シフトを利用して化学構造を解析するNMRの多くの手法の中で、NMRマイクロイメージング法は、磁場勾配を与え、被測定対象核が感知する磁場強度の差をある化学シフトに出現した吸収線として捉え、その情報を位置情報に変換し、空間的な存在分布について可視化する方法である。 Among many NMR techniques for analyzing chemical structure using this chemical shift, the NMR micro-imaging method gives a magnetic field gradient, and the difference in magnetic field intensity detected by the target nucleus appears in a certain chemical shift. It is a method of grasping as an absorption line, converting the information into position information, and visualizing the spatial existence distribution.
その特徴として、1)被測定対象物の形態学的な情報とともに物理的及び化学的情報が得られる、2)被測定対象物を非破壊状態で測定できる、3)被測定対象物の任意方向の断面像(2次元像)および立体配置像(3次元像)を得られる等、着目する物質の空間的な分布に関して、可視化情報を得ることが挙げられる。 Features include 1) physical and chemical information along with morphological information of the object to be measured, 2) measurement of the object to be measured in a non-destructive state, and 3) arbitrary direction of the object to be measured. It is possible to obtain visualization information regarding the spatial distribution of the material of interest, such as a cross-sectional image (two-dimensional image) and a three-dimensional image (three-dimensional image).
非特許文献2で開示するNMRマイクロイメージング法によるコークス気孔構造の解析手法は、NMRの観測対象媒体として、気孔内に容易に浸透し、かつ、コークスに対して反応性や吸着性がない不活性ガスであるSF4ガスを用い、このガスをコークスの気孔中に浸透させ、SF4ガスに由来するF原子核のNMR吸収線のイメージを可視化することにより、コークス気孔構造を評価する方法である。 The analysis method of the coke pore structure by the NMR micro-imaging method disclosed in Non-Patent Document 2 is an inert material that easily penetrates into the pores as a medium to be observed by NMR and has no reactivity or adsorption to coke. This is a method for evaluating the coke pore structure by using SF 4 gas, which is a gas, permeating into the pores of coke and visualizing the image of the NMR absorption lines of F nuclei derived from SF 4 gas.
この方法によれば、その他の従来法に比べて、気孔を非破壊状態で容易に高分解能で観察できるものの、SF4ガスの測定感度が低いことに起因して、測定の繰り返し数を増加させる必要があり、その結果、測定に要する時間が30時間程度と非常に測定時間が長い点が課題であった。 According to this method, although the pores can be easily observed with high resolution in a non-destructive state as compared with other conventional methods, the number of measurement repetitions is increased due to the low measurement sensitivity of SF 4 gas. As a result, the problem was that the measurement time was as long as about 30 hours.
本発明は、上記NMRマイクロイメージング法によるコークス気孔構造の可視化方法における課題を解決するものであり、その第1の実施形態として、核磁気共鳴分析装置内に置かれたコークスにスピン超偏極させた3Heガスを連続的に供給し、該コークスの気孔内に含浸した3HeをNMRマイクロイメージング法により可視化することを特徴とする。 The present invention solves the problem in the method for visualizing the coke pore structure by the NMR micro-imaging method, and as a first embodiment, the coke placed in the nuclear magnetic resonance analyzer is spin hyperpolarized. Further, 3 He gas is continuously supplied, and 3 He impregnated in the pores of the coke is visualized by an NMR micro-imaging method.
本発明の第1の実施形態において、NMRの観測対象媒体として、スピン超偏極させた3Heガスを用いる。これの理由は、スピン超偏極させた3Heガスは、気孔内に容易に浸透し、コークスに対して反応性や吸着性がない不活性ガスであり、かつ、NMR単一吸収線で、吸収線の半値幅が狭いガスであるとともに、非特許文献2で開示するSF4ガス等に比べて吸収強度が強いため、NMRの測定感度が極めて高くなるためである。 In the first embodiment of the present invention, a spin hyperpolarized 3 He gas is used as an NMR observation target medium. The reason for this is that spin hyperpolarized 3 He gas easily penetrates into the pores, is an inert gas that is not reactive or adsorbing to coke, and is an NMR single absorption line. This is because the gas has a narrow half-width of the absorption line and the absorption intensity is stronger than that of SF 4 gas disclosed in Non-Patent Document 2, so that the NMR measurement sensitivity becomes extremely high.
本発明でNMRの観測対象媒体としてスピン超偏極した3Heガスを用いることにより、従来に比べ、高感度かつ1時間程度の短時間のNMRマイクロイメージング法によるコークス気孔構造の可視化測定が可能となる。 By using the 3 He gas spin hyperpolarized as an observation target medium NMR in the present invention, compared with the conventional, it can be visualized measured coke pore structure with high sensitivity and 1 hour or so brief NMR micro imaging method and Become.
スピン超偏極させた3Heガスを生成するための方法としては、例えば、ルビジウムなどのアルカリ金属を50〜100ガウス程度の磁場中に置き、例えば、ダイオードレーザなどを用い、795nmの波長で10〜100Wのパワーでレーザーを上記アルカリ金属に照射し、その電子状態をS軌道からP軌道に励起した電子スピンの超偏極状態を得て、このアルカリ金属に3Heを同居させることにより、3Heの原子核に超偏極状態を移動させる方法が適用できる。 As a method for generating spin hyperpolarized 3 He gas, for example, an alkali metal such as rubidium is placed in a magnetic field of about 50 to 100 gauss, and a diode laser is used, for example, at a wavelength of 795 nm. By irradiating the alkali metal with a laser with a power of ˜100 W to obtain a hyperpolarized state of an electron spin whose electronic state is excited from the S orbit to the P orbit, and coexisting 3 He with the alkali metal, 3 A method of moving the hyperpolarized state to the He nucleus can be applied.
本発明では、観測対象媒体ガスとしてスピン超偏極させた3Heガスを用いるが、この超偏極させた3Heガスは失活しやすい不安定状態にあるため、非特許文献2で開示するような所定圧力で観測対象媒体ガスをコークス気孔に浸透させた後、密閉した状態でNMR測定するようなバッチ法を用いるのは、測定感度低下の原因となるため好ましくない。 In the present invention, spin hyperpolarized 3 He gas is used as an observation target medium gas. However, since this hyperpolarized 3 He gas is in an unstable state that is easily deactivated, it is disclosed in Non-Patent Document 2. It is not preferable to use a batch method in which the measurement target medium gas is permeated into the coke pores at such a predetermined pressure and then NMR measurement is performed in a sealed state because it causes a reduction in measurement sensitivity.
そのため、本発明では、スピン超偏極した3Heガスをコークス気孔内に浸透させる際の失活による測定感度の低下を抑制するために、核磁気共鳴分析装置内に置かれたコークスにスピン超偏極させた3Heガスを連続的に供給する。 Therefore, in the present invention, in order to suppress a decrease in measurement sensitivity due to deactivation when the 3 He gas with spin hyperpolarization penetrates into the coke pores, the coke placed in the nuclear magnetic resonance analyzer is subjected to spin overheating. A polarized 3 He gas is continuously supplied.
また、常磁性物質あるいは強磁性物質は、スピン超偏極させた3Heガスを失活させる作用がある。このようなスピン超偏極させた3Heガスの失活による測定感度低下を抑制するために、本発明の第2の実施形態として、前記第1の実施形態におけるコークスは事前処理によりコークスに含有する酸化鉄を除去したものとするのが好ましい。 Paramagnetic materials or ferromagnetic materials have the effect of deactivating the spin hyperpolarized 3 He gas. In order to suppress the decrease in measurement sensitivity due to the deactivation of the spin hyperpolarized 3 He gas, as a second embodiment of the present invention, the coke in the first embodiment is contained in the coke by pretreatment. It is preferable that the iron oxide to be removed is removed.
コークスに含有する酸化鉄を除去するための事前処理としては、例えば、コークスを強酸溶液中に所定時間浸漬させる方法が適用できる。これにより、特にコークスの灰分中に存在する酸化鉄を除去することができ、酸化鉄によるスピン超偏極させた3Heガスの失活を抑制し、より感度の高い測定が可能となる。 As a pretreatment for removing iron oxide contained in coke, for example, a method in which coke is immersed in a strong acid solution for a predetermined time can be applied. As a result, iron oxide particularly present in the ash content of coke can be removed, and the deactivation of 3 He gas that has been spin hyperpolarized by iron oxide can be suppressed, thereby enabling measurement with higher sensitivity.
本発明の第1および/または第2の実施形態において、NMR分析装置内に置かれたコークスにスピン超偏極させた3Heガスを連続的に供給する際のガス圧力およびガス流量は、特に限定する必要はない。上記ガス圧力条件は、コークス気孔内にスピン超偏極させた3Heガスを均一に浸透させるためにコークス試料充填用チューブ内での圧力で1×105Pa以上が必要であり、また、設備制約上からその上限は7×105Paとするのが好ましい。 In the first and / or second embodiment of the present invention, the gas pressure and the gas flow rate when continuously supplying the spin-polarized 3 He gas to the coke placed in the NMR analyzer are particularly There is no need to limit. The above gas pressure condition requires a pressure of 1 × 10 5 Pa or more in the coke sample filling tube in order to uniformly infiltrate the spin-polarized 3 He gas into the coke pores. The upper limit is preferably 7 × 10 5 Pa due to restrictions.
また、上記ガス流量は、スピン超偏極させた3Heガスの失活による測定感度低下を抑制するために、2ml/min以上が必要であり、また、設備制約上から、その上限は20ml/minとするのが好ましい。 The gas flow rate needs to be 2 ml / min or more in order to suppress a decrease in measurement sensitivity due to deactivation of the spin hyperpolarized 3 He gas, and the upper limit is 20 ml / min due to equipment constraints. It is preferable to set to min.
また、本発明に適用されるNMRマイクロイメージング法の手法としては、以下の2次元スピンエコー法、マルチスライススピンエコー法、3次元スピンエコー法、さらに、スプライト法の何れかが適用でき、測定の目的に応じて、これらを使い分けることが好ましい。 In addition, as a method of NMR micro-imaging method applied to the present invention, any of the following two-dimensional spin echo method, multi-slice spin echo method, three-dimensional spin echo method, and sprite method can be applied. It is preferable to use these properly according to the purpose.
2次元スピンエコー法は、コークスのある断面での気孔分布を明確にでき、マルチスライススピンエコー法は連続してコークスのある厚さ間隔で複数断面における気孔分布や各気孔のつながり状態を観察できる。また、3次元スピンエコー法は、コークスの気孔に関するデータを3次元的に取り込み、任意な位置断面における気孔分布、各気孔のつながり状態などの情報がえられる。 The two-dimensional spin echo method can clarify the pore distribution in a cross section with coke, and the multi-slice spin echo method can continuously observe the pore distribution in a plurality of cross sections and the connection state of each pore at a thickness interval with coke. . In the three-dimensional spin echo method, data relating to coke pores is obtained three-dimensionally, and information such as pore distribution in an arbitrary position cross section, connection state of each pore, and the like can be obtained.
また、スプライト法(Single-Point Ramped Imaging with T1 Enhancement)[B.J.Banicom et al.,J.Magn.Reson.,Al23,131,(1996)]は、測定対象材料中にある核スピンの磁化率の差の影響を受けない方法であるため、材料基質が不均一でかつ灰分等を含むコークスのような試料を測定する場合に、上記のスピンエコー法に比較して、より正確なイメージ画像を得ることができる。 In addition, the sprite method (Single-Point Ramped Imaging with T 1 Enhancement) [BJBanicom et al., J. Magn. Reson., Al23, 131, (1996)] is used to measure the magnetic susceptibility of nuclear spins in the material to be measured. Because it is a method that is not affected by the difference, when measuring a sample such as coke with a non-uniform material substrate and containing ash, etc., a more accurate image can be obtained compared to the above spin echo method. be able to.
従来のスピンエコー法のように帯域選択パルス(周波数でエンコードする、つまり周波数を使って情報位置や吸収を認識するパルス)に依存しておらず、RF(ラジオ波)パルスの励起域に依存しているため、励起に使用するパルス幅の逆数は試料の大きさ(sm)と磁場勾配量(T/m)の積よりも大きくなくてはならない。 Unlike the conventional spin echo method, it does not depend on a band selection pulse (encoding by frequency, that is, a pulse for recognizing information position or absorption using frequency), but depends on the excitation range of RF (radio wave) pulse Therefore, the reciprocal of the pulse width used for excitation must be larger than the product of the sample size (sm) and the magnetic field gradient (T / m).
同時に、スプライト法は、純粋に位相エンコード(位相でエンコードする、つまり位相を使って情報位置や吸収を認識する)のみでのイメージング技術であり、従来法の位相及び周波数エンコードの混合型とは異なる。 At the same time, the sprite method is an imaging technique that is purely phase-encoded (encoding by phase, that is, using the phase to recognize information position and absorption), and is different from the conventional phase and frequency encoding mixed type. .
例えば、NMRマイクロイメージング法の手法としてスプライト法を用いた場合のコークス気孔構造可視化における測定分解能と測定強度について、以下に説明する。 For example, the measurement resolution and the measurement intensity in the visualization of the coke pore structure when the sprite method is used as the technique of the NMR microimaging method will be described below.
測定信号は磁場勾配が行なわれている間に、短い励起用RF(ラジオ波)パルスの後からt=tp(tp:時間変数)経った後のタイミングで取り込まれる。 The measurement signal is captured at a timing after t = tp (tp: time variable) after a short excitation RF (radio wave) pulse while the magnetic field gradient is performed.
よって、スプライト法では、上記の周波数エンコードを用いたスピンエンコード法とは異なり、B0(静磁場)の不均一性やコークスに含まれる磁化率の異なる物質の影響や、化学シフトの差等から生じるイメージ像の歪などの影響を全く受けない、という利点がある。 Therefore, the sprite method is different from the spin encoding method using the frequency encoding described above due to the nonuniformity of B 0 (static magnetic field), the influence of substances having different magnetic susceptibility contained in coke, the difference in chemical shift, etc. There is an advantage that the image is not affected at all by the distortion of the image.
この場合の測定分解能は、ほぼ磁場勾配量(T/m)で決まり、磁場勾配量(T/m)が大きいほど、測定分解能は高くなる。 The measurement resolution in this case is substantially determined by the magnetic field gradient amount (T / m), and the measurement resolution increases as the magnetic field gradient amount (T / m) increases.
また、測定で得られる信号強度Sは、そこに存在する核磁気共鳴を示す原子核、つまり、スピン超偏極させた3Heの存在密度ρで決まり、下記(1)式で示される。 Further, the signal intensity S obtained by the measurement is determined by the existence density ρ of the atomic nucleus showing the nuclear magnetic resonance existing there, that is, spin hyperpolarized 3 He, and is expressed by the following equation (1).
S=ρ×exp(−tp/T2 *)×R(x)・・・・(1)
ここで、R(x)={1−exp(−TR/T1)}/{1−cosθ×exp(−TR /T1)}
ただし、S:測定で得られる信号強度
ρ:観測対象媒体ガス中の核磁気共鳴を示す原子核の存在密度
tp:磁場勾配間の励起用RFパルス後から信号が取り込みまでの時間(定数 )
T2 *:静磁場B0の不均一性が存在する場合の自由誘導減衰の時定数
TR:測定の繰り返し時間
T1:縦緩和時間
θ:パルスのフリップ角
S = ρ × exp (−tp / T 2 * ) × R (x) (1)
Here, R (x) = {1−exp (−T R / T 1 )} / {1−cos θ × exp (−T R / T 1 )}
Where S: Signal strength obtained by measurement
ρ: Abundance density of nuclei indicating nuclear magnetic resonance in the target gas
tp: Time from the RF pulse for excitation between magnetic field gradients until signal acquisition (constant)
T 2 * : Time constant of free induction decay in the presence of non-uniformity of static magnetic field B 0
T R : Measurement repetition time
T 1 : Longitudinal relaxation time
θ: Pulse flip angle
上記(1)式におけるR(x)から、試料固有の最短のT1に依存して繰り返し時間(TR)が決定できる。この手法により高磁場勾配の発生装置と測定可能なプローブを用いて測定条件を最適化することで、NMRイメージ像から得られた信号強度をコークス気孔内に存在する核磁気共鳴を示す原子核、つまり、スピン超偏極させた3Heの存在量として表せる。 From R (x) in the above equation (1), the repetition time (T R ) can be determined depending on the shortest T 1 specific to the sample. By optimizing the measurement conditions using a high magnetic field gradient generator and a measurable probe by this method, the signal intensity obtained from the NMR image image is the nucleus that shows nuclear magnetic resonance in the coke pores, that is, It can be expressed as the abundance of 3 He which is spin hyperpolarized.
したがって、本発明では、従来に比べ感度の高いスピン超偏極させた3Heガスを用いてNMRマイクロイメージング法によりコークス気孔構造の可視化情報に係る測定信号を基に、コークスの気孔径およびその分布などの2次元および3次元の気孔構造情報を非常に高い精度で、かつ高分解能で、定量分析することが可能となる。 Therefore, in the present invention, the pore diameter of the coke and its distribution based on the measurement signal related to the visualization information of the coke pore structure by the NMR micro-imaging method using the 3 He gas that is spin hyperpolarized with higher sensitivity than conventional. 2D and 3D pore structure information such as can be quantitatively analyzed with very high accuracy and high resolution.
また、本発明では、感度の高いスピン超偏極させた3Heガスを用いるため、測定時間が1時間程度と従来に比べ短時間で測定できる。 In the present invention, since the highly sensitive spin hyperpolarized 3 He gas is used, the measurement time is about 1 hour, which can be measured in a short time compared to the conventional case.
装入石炭量が約100kgの乾留試験炉でコークスを製造後、直径4.5mm×長さ2mm程度のコークス円柱状塊に加工し、これをNMRマイクロイメージング法によるコークス気孔構造可視化分析用の供試料とした。供試料は分析前に予めスピン超偏極した3Heガスを失活する作用をもつコークス灰分中の酸化鉄を除去した。 After producing coke in a dry distillation test furnace with a charged coal amount of about 100 kg, it is processed into a coke cylindrical block with a diameter of 4.5 mm x length of 2 mm, and this is used for visualization analysis of coke pore structure by NMR micro-imaging method. A sample was used. The sample was freed of iron oxide in coke ash having the effect of deactivating the pre-hyperpolarized 3 He gas before analysis.
酸化鉄の除去処理は、強酸溶液として35%塩酸を450mL(各50mLを9回に分けて処理を実施)使用して、コークス供試料を強酸溶液に7日間浸漬し、供試料中に含有する酸化鉄の除去処理を行った。 The iron oxide removal treatment uses 450 mL of 35% hydrochloric acid as the strong acid solution (each 50 mL is divided into 9 portions), soaks the coke sample in the strong acid solution for 7 days and contains it in the sample. The removal process of iron oxide was performed.
当処理により、8.8gのコークス供試料から抽出された鉄分は、ICP(Inductively Coupled Plasma)測定によると38mg/Lであった。 The iron extracted from the 8.8 g coke sample by this treatment was 38 mg / L according to ICP (Inductively Coupled Plasma) measurement.
図1に、酸化鉄除去処理後のコークス供試料の気孔構造可視化分析に使用した装置を示す。まず、装置内空気を真空ポンプ11で充分に脱気した後、3Heガスボンベ1から3Heガスをポンピングセルユニット2に供給する。 FIG. 1 shows the apparatus used for the pore structure visualization analysis of the coke sample after the iron oxide removal treatment. First, after sufficient deaeration device in air by a vacuum pump 11, supplied from the 3 He gas cylinder 1 to 3 He gas in the pumping cell unit 2.
ヒーテングチャンバー3内に設置されたポンピングセルユニット2内には、スピン超偏極した3Heガスを得るために、1gのRbが充填されており、直径60cmのヘルムホルツ・コイル4で70ガウスの磁場を掛けた状態で、ダイオードアレイレーザ5から波長795nmのレーザ光を出力60WでRbに照射し、Rb原子核の電子スピンを超偏極した状態とする(ここで電子はS軌道からP軌道に励起される)。 The pumping cell unit 2 installed in the heating chamber 3 is filled with 1 g of Rb in order to obtain a spin hyperpolarized 3 He gas, and is 70 gauss with a Helmholtz coil 4 having a diameter of 60 cm. In a state where a magnetic field is applied, a laser beam having a wavelength of 795 nm is irradiated from the diode array laser 5 to the Rb at an output of 60 W, so that the electron spin of the Rb nucleus is hyperpolarized (the electrons move from the S orbit to the P orbit. Excited).
なお、ポンピングセルユニット2の後方にはRbコンデンサー7が設置され3Heガスの同伴されて飛散したRbトラップする。 An Rb condenser 7 is installed behind the pumping cell unit 2 and traps Rb trapped by 3 He gas.
スピン超偏極した3Heガスは、この超偏極状態のルビジウムと3Heガスを同居させることにより生成され、このスピン超偏極した3Heガスは、フローメータ6により5mL/minの流量で連続的にNMR装置8の7.05Tの超伝導磁場内に置かれたコークス供試料に供給した。 The spin hyperpolarized 3 He gas is generated by coexisting this hyperpolarized rubidium and 3 He gas, and this spin hyperpolarized 3 He gas is flown at a flow rate of 5 mL / min by the flow meter 6. The sample was continuously fed to a coke sample placed in the superconducting magnetic field of 7.05 T of the NMR apparatus 8.
NMR装置8で測定された信号強度からえられたスペクトルは、スペクトル分析機9で分析し、コークスの気孔構造を可視化を行なった。事前準備としてのチューニング、その他調整は室温で行った。 The spectrum obtained from the signal intensity measured by the NMR apparatus 8 was analyzed by a spectrum analyzer 9 to visualize the pore structure of coke. Tuning as a preliminary preparation and other adjustments were performed at room temperature.
コークス供試料は、管径5mmのNMRプローブ・チューブ内に充填し、その充填層の厚み方向上下にアルミニウムパウダーを充填し、コークス供試料に到るまでのスピン超偏極3Heの失活を防止した。 The coke sample is filled in an NMR probe tube with a tube diameter of 5 mm, and aluminum powder is filled in the upper and lower thickness directions of the packed layer, so that spin hyperpolarized 3 He is deactivated until it reaches the coke sample. Prevented.
測定は、スプライト法、励起パルス:4ms、dephasing時間:117ms、繰り返し時間:10msにより行った。使用した勾配磁場は、X軸で0.7T/m、Y軸で0.7T/m、Z軸で0.7T/mであった。 The measurement was performed by the sprite method, excitation pulse: 4 ms, dephasing time: 117 ms, and repetition time: 10 ms. The gradient magnetic fields used were 0.7 T / m on the X axis, 0.7 T / m on the Y axis, and 0.7 T / m on the Z axis.
測定終了後、得られたデータをX軸、Y軸、Z軸に対してそれぞれゼロフィリングすることで128、128、64のデータとした。これらのデータをライン・ブロードニングすることなしに、X軸、Y軸、Z軸の各方向でフーリエ変換し、NMRマイクロイメージング像とした。
図2に、コークス供試料の任意位置における気孔構造の断面イメージ像を例示する。図中の白い輪は、コークス供試料とNMRプローブ・チューブ間の空隙であり、コークスの気孔はこの部分の内側に示される。
After the measurement was completed, the obtained data was zero-filled with respect to the X axis, the Y axis, and the Z axis to obtain 128, 128, and 64 data. These data were Fourier-transformed in the X-axis, Y-axis, and Z-axis directions without line broadening to obtain NMR microimaging images.
FIG. 2 illustrates a cross-sectional image of the pore structure at an arbitrary position of the coke sample. The white ring in the figure is the gap between the coke sample and the NMR probe tube, and the coke pores are shown inside this part.
当イメージ像から、さらに、スペクトル分析機で画層処理することによりコークス内の気孔率、気孔径分布の情報を得ることができた。 From this image, it was possible to obtain information on the porosity and pore size distribution in the coke by processing the layer with a spectrum analyzer.
1 3Heガスボンベ
2 ポンピングセルユニット
3 ヒーテングチャンバー
4 ヘルムホルツ・コイル
5 ダイオードアレイレーザ
6 フローメータ
7 Rbコンデンサー
8 NMR装置
9 スペクトル分析機
10 ポラライザー
11 バキュームポンプ
1 3 He gas cylinder 2 Pumping cell unit 3 Heating chamber 4 Helmholtz coil 5 Diode array laser 6 Flow meter 7 Rb condenser 8 NMR device 9 Spectrum analyzer 10 Polarizer 11 Vacuum pump
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215750A JP4293951B2 (en) | 2004-07-23 | 2004-07-23 | Coke pore structure visualization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215750A JP4293951B2 (en) | 2004-07-23 | 2004-07-23 | Coke pore structure visualization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006038519A true JP2006038519A (en) | 2006-02-09 |
JP4293951B2 JP4293951B2 (en) | 2009-07-08 |
Family
ID=35903678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004215750A Expired - Lifetime JP4293951B2 (en) | 2004-07-23 | 2004-07-23 | Coke pore structure visualization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4293951B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107843531A (en) * | 2016-09-20 | 2018-03-27 | 中国石油化工股份有限公司 | The nuclear magnetic resonance parameter characterizing method of the low viscous oil oil reservoir pore structure of hyposmosis |
CN107843611A (en) * | 2016-09-20 | 2018-03-27 | 中国石油化工股份有限公司 | Low permeability sandstone reservoir moveable gel nuclear magnetic resonance parameter characterizes new method |
CN110160935A (en) * | 2019-06-06 | 2019-08-23 | 西安石油大学 | Compact reservoir micropore structure feature is evaluated to the method for water drive oil influential effect |
CN110160934A (en) * | 2019-06-06 | 2019-08-23 | 西安石油大学 | Method based on nuclear magnetic resonance technique evaluation compact reservoir pore structure classification standard |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004067637A1 (en) | 2003-01-28 | 2004-08-12 | Toppan Forms Co., Ltd. | Conductive polymer gel and process for producing the same, actuator, patch label for ion introduction, bioelectrode, toner, conductive functional member, antistatic sheet, printed-circuit member, conductive paste, electrode for fuel cell, and fuel cell |
-
2004
- 2004-07-23 JP JP2004215750A patent/JP4293951B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107843531A (en) * | 2016-09-20 | 2018-03-27 | 中国石油化工股份有限公司 | The nuclear magnetic resonance parameter characterizing method of the low viscous oil oil reservoir pore structure of hyposmosis |
CN107843611A (en) * | 2016-09-20 | 2018-03-27 | 中国石油化工股份有限公司 | Low permeability sandstone reservoir moveable gel nuclear magnetic resonance parameter characterizes new method |
CN107843611B (en) * | 2016-09-20 | 2020-07-14 | 中国石油化工股份有限公司 | New method for characterizing saturation nuclear magnetic resonance parameters of movable fluid of low-permeability sandstone reservoir |
CN110160935A (en) * | 2019-06-06 | 2019-08-23 | 西安石油大学 | Compact reservoir micropore structure feature is evaluated to the method for water drive oil influential effect |
CN110160934A (en) * | 2019-06-06 | 2019-08-23 | 西安石油大学 | Method based on nuclear magnetic resonance technique evaluation compact reservoir pore structure classification standard |
Also Published As
Publication number | Publication date |
---|---|
JP4293951B2 (en) | 2009-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arvanitaki et al. | Resonantly detecting axion-mediated forces with nuclear magnetic resonance | |
Hall et al. | Condensate splitting in an asymmetric double well for atom chip based sensors | |
Wood et al. | Wide-band nanoscale magnetic resonance spectroscopy using quantum relaxation of a single spin in diamond | |
Chu et al. | Laboratory search for spin-dependent short-range force from axionlike particles<? format?> using optically polarized He 3 gas | |
US20060116828A1 (en) | Methods and apparatus for measuring capillary pressure in a sample | |
US20120112749A1 (en) | Apparatus and method for increasing spin relaxation times for alkali atoms in alkali vapor cells | |
JPS5946546A (en) | Inspection method and apparatus by nuclear magnetic resonator | |
US20230400534A1 (en) | Sensor using a field gradient in a given volume | |
JPH08320299A (en) | Method and device for measuring sample by nuclear magnetic resonance and for measuring first material in surrounding second material | |
JP2013537303A (en) | Microfluidic cell and spin resonance apparatus used for microfluidic cell | |
US7164123B2 (en) | Method for filtering spurious resonances from an NMR dataset | |
US10782257B2 (en) | Composite FID-CPMG process for fast relaxing media determination | |
Tayler et al. | Ultralow-field nuclear magnetic resonance of liquids confined in ferromagnetic and paramagnetic materials | |
JP4293951B2 (en) | Coke pore structure visualization method | |
JP4951469B2 (en) | Sample holder for NMR measurement that homogenizes the magnetic field in the sample volume by the boundary surface of the sample holder | |
Zhou et al. | Imaging damage in steel using a diamond magnetometer | |
CN117331005B (en) | Triaxial measurement method and device for two-level magnetic resonance Ramsey transition patterns | |
RU2601734C1 (en) | Method of measuring magnetic field | |
US11953457B2 (en) | Method for processing spin magnetometry data | |
US10371653B2 (en) | Multi-phase metering device for oilfield applications | |
WO2013118117A1 (en) | Method and system for inspection of composite material components | |
JPH026701A (en) | Inspecting device for non-destructive cross sectional shape | |
US5317262A (en) | Single shot magnetic resonance method to measure diffusion, flow and/or motion | |
JP2004077427A (en) | Pore structure visualization method for coke | |
KR101091337B1 (en) | Method for visualization of coke pore structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090407 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4293951 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140417 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |