JP2004077427A - Pore structure visualization method for coke - Google Patents

Pore structure visualization method for coke Download PDF

Info

Publication number
JP2004077427A
JP2004077427A JP2002241769A JP2002241769A JP2004077427A JP 2004077427 A JP2004077427 A JP 2004077427A JP 2002241769 A JP2002241769 A JP 2002241769A JP 2002241769 A JP2002241769 A JP 2002241769A JP 2004077427 A JP2004077427 A JP 2004077427A
Authority
JP
Japan
Prior art keywords
coke
pore structure
nuclear magnetic
sample
visualizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241769A
Other languages
Japanese (ja)
Inventor
Koichi Fukuda
福田 耕一
Kouji Saito
齋藤 公児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002241769A priority Critical patent/JP2004077427A/en
Publication of JP2004077427A publication Critical patent/JP2004077427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To nondestructively and precisely grasp a pore structure and crack status of coke by visualizing the pore structure of coke, and connect them with an evaluation of the strength of a coke structure. <P>SOLUTION: After coke is impregnated with a gas including a nucleus capable of developing nuclear magnetic resonance, a nuclear magnetic resonator is used to visualize a pore structure of the coke by a microimaging method. The microimaging method using the nuclear magnetic resonator is a sprite method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コークスの気孔構造を可視化する方法に関するものである。
【0002】
【従来の技術】
従来、空隙構造の評価法としては、1)光学顕微鏡や電子顕微鏡による直接観測法、2)水銀圧入による気孔径分布の測定法などが実施されており、その概要を以下に説明する。
【0003】
1)光学顕微鏡や電子顕微鏡による直接観測法
光学顕微鏡の場合、焦点深度があまり深くないため、試料の凹凸があると明確に観測できない。そのため、多くの場合表面を鏡面研磨して反射光で観察する。また、5μm程度の厚さまで研磨した薄片試料を透過光で観察することもある。試料の破断面を観察する場合、走査型電子顕微鏡を用いることもある。
2)水銀圧入による気孔径分布の測定法
濡れ性の悪い水銀に圧力をかけ、表面につながっている気孔に圧入する方法であり、押し込み圧力とその時に水銀が侵入する平均気孔径との関係から、気孔径分布を算出する。
【0004】
【発明が解決しようとする課題】
上記のような従来技術の問題点を以下に示す。
1)光学顕微鏡や電子顕微鏡による直接観察法
明確な画像を得るためには鏡面研磨が必要になるが、多孔質材料で強度が弱い場合、あるいは強度が不均一な場合、脆い場合などでは、研磨が一様にできず、粒径の脱落、移動により空隙形態は異なった状況になってしまう。
走査型電子顕微鏡を用いて破断面を観察する場合、表面の凹凸が激しく空隙の形状がわかりにくい。また破断した表面観察では、粒子の周辺の隙間や微粉集合部分に発生し易い微細構造も検知し難い。
【0005】
2)水銀圧入による気孔径分布の測定法
圧力が掛かり水銀を浸透させる場合、出口が狭く奥が広い空隙では出口の大きさに規定され、必ずしも実態を表していない。測定対象である多孔質材料が低強度で脆い場合、高圧力下での材料組織の破壊が起こり、当初と異なる空隙構造を示す可能性がある。また、水銀と測定対象物との濡れ性を一定として気孔径分布を算出するが、実際には濡れ性は表面の物理化学的な性状により変化するため誤差が生ずる。
【0006】
本発明は、コークスの気孔構造を非破壊で可視化する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を要旨とする。
(1)核磁気共鳴を起こすことのできる核を含む気体をコークスに含浸させた後、核磁気共鳴装置を用いたマイクロイメージング法によりコークスの気孔構造を可視化することを特徴とするコークスの気孔構造可視化方法。
(2)核磁気共鳴装置を用いたマイクロイメージング法として、スプライト法を用いることを特徴とする前記(1)記載のコークスの気孔構造可視化方法。
【0008】
【発明の実施の形態】
本発明は、核磁気共鳴装置を用いたマイクロイメージング法(以降NMRマイクロイメージング法と記載する)によって、コークスの気孔構造を可視化する方法に関するものである。NMRマイクロイメージング法(Bulletin Magnetic Resonance.Vol.18,p.154,1996 )はNMR(核磁気共鳴)を用いた分析法である。
【0009】
物質は同一の核であっても分子内での様々な環境の違いから、核が磁気共鳴を起こす共鳴周波数が異なることが知られており、その共鳴周波数が化学シフトと呼ばれている。NMRの多くの手法の中でNMRマイクロイメージング法は、磁場勾配を与え、試料が感知する磁場強度の差をある化学シフトに出現した吸収線として捉え、その情報を位置情報に変換し、空間的な存在分布について可視化している。
【0010】
その特徴として、1)形態学的な情報とともに物理的及び化学的情報が得られる、2)非破壊である、3)任意の方向の断層像及び立体配置像を得られる等、着目する物質の空間的な分布に関して、可視化情報を得ることができる点である。
【0011】
本発明は、気孔を持つコークスの気孔中に気体を浸透させ、その気体の吸収線のイメージを可視化することにより、気孔の形態を評価するものである。非破壊で且つ高分解能を達成することで、従来法では評価できなかった、コークスのような基質の材料が不均一で且つ灰分等を含み、反応性のある材料の気孔構造を非破壊で直接的に評価することを達成するものである。
【0012】
本発明の手法は、気孔に浸透させた気体の存在を検知することにより、コークスの気孔分布や構造を評価するものであり、気体の選び方が重要である。使用する気体としては、コークスと反応せず、容易に浸透し易く且つ高感度で高分解能に像を得るために、核磁気共鳴を起こさせ、単一吸収線を与え、吸収線の半値幅が狭く、吸収強度の強いような気体を用いる。例えばXe,He,SF4 ,SF6 及びスピン偏極させたXeやHeの気体が使用できる。
【0013】
NMRマイクロイメージング法の手法としては、2次元スピンエコー法、マルチスライススピンエコー法、3次元スピンエコー法などがあり、得たい情報に応じて使い分けることができる。
2次元スピンエコー法は、ある断面での空隙の分布等を明確にできるし、マルチスライススピンエコー法は連続して、ある厚さ間隔での複数断面における空隙の分布や空隙のつながり等を得ることができる。
また3次元スピンエコー法は、試料の空隙に関するデータを3次元的に取り込み、任意な位置断面における空隙の情報、空隙のつながり等について多くの知見を得ることができる。
【0014】
次に、本発明におけるNMRマイクロイメージング法のさらに好ましい手法として、スプライト法が挙げられる。
スプライト法(Single−Point Ramped Imaging with T1  Enhancement)[B.J.Balcom et al.,J.Magn.Reson.,A123,131,(1996)] は、測定対象材料中にある核スピンの磁化率の差の影響を受けないので、コークスのような基質の材料が不均一で且つ灰分等を含む材料において、上記のスピンエコー法に比して、より正確なイメージ像を撮ることが可能となる。
【0015】
従来のスピンエコー法のように帯域選択パルス(周波数でエンコードする、つまり周波数を使って位置情報や吸収を認識するパルス)に依存しておらず、RF(ラジオ波)パルスの励起域に依存している。よって励起に使用するパルス幅の逆数は試料の大きさ(cm)と磁場勾配量(T/m)の積よりも大きくなくてはならない。同時にスプライト法は純粋に位相エンコード(位相でエンコードする、つまり位相を使って位置情報や吸収を認識すること)のみでのイメージング技術で、従来法の位相及び周波数エンコードの混合型とは異なる。
【0016】
信号は磁場勾配が行われている間に、短い励起用RFパルスの後にt=tp  (tp:時間変数)のタイミングで取り込まれる。よって、周波数エンコードを用いた従来のスピンエコー法と異なり、B0 (静磁場)の不均一性や岩石に多く存在する磁化率の異なる物質の影響や、化学シフトの差等から生じるイメージ像の歪み等の影響を全く受けない。
【0017】
分解能はSF4 ガスのようなT2  * (静磁場の不均一静が存在する場合の自由誘導減衰の時定数)の短い試料でさえも、単純に試料に掛ける磁場勾配の大きさだけで決まる。つまり試料に掛ける磁場勾配が大きければ大きいほど分解能は高くなる。得られる信号強度Sはその部分に存在する、核磁気共鳴を起こすことのできる核を含む気体の存在密度ρで記述でき、下記式[1]のように表せる。
S=ρexp(−tp/T2  * )xR(x) ……………[1]
ここでR(x) ={1−exp(−TR /T1 ) }/{1−cos θ exp (−TR /T1 ) }
2  * :静磁場の不均一静が存在する場合の自由誘導減衰の時定数
1  :縦緩和時間
θ  :与えるパルスのフリップ角度
【0018】
上記式[1]でのR(x) から、試料固有の最短のT1 に依存して繰り返し時間(TR )を決定できる。この手法は、高磁場勾配発生装置と測定可能なプロ−ブを準備し、測定条件を最適化することで、上記[1]式からわかるように、イメージ像における信号強度がコークス中の気孔に入った、上記核磁気共鳴を起こすことのできる核を含む気体成分の存在量として表せる。従って本発明の手法は、磁化率の異なる試料が多く混在するコークス等において、非常に精度の良い、定量的な解析を達成できるものである。
【0019】
【実施例】
乾留試験炉(装入石炭量:約80kg)で製造したコークスを、φ19mm×30mmのサンプルに加工し、それをNMRマイクロイメージング用試料とした。
図1に示す様に、98kPaで100容量%SF4 ガスを満たしたNMR用φ20mm試料管1に試料2を入れ、24時間放置した。
その後検出コイル位置に試料がくるように高さ調整をした後、事前に磁場の分解能調整を実施した9.4Tの超電導磁場(ボア径89mm)に入れて、系が安定するまで1時間放置した。室温状態でチューニング,マッチングの調整を行い、NMRロックは掛けず、試料も回転させず、測定準備とした。
【0020】
測定手法はスプライト法を用い、励起パルスは5μsec 、エコー時間は100μsec 、繰り返し時間は15msecであった。使用した勾配磁場は、X軸で1.46T/m、Y軸で1.46T/m、Z軸で1.09T/mであった。
【0021】
測定終了後、得たデータをx,y,zに対してそれぞれゼロフィリングすることで1024,1024,1024のデータとした。それらのデータをブロードニングファクターを6Hz、サイン関数を窓関数として、x,y,zの各方向にフーリエ変換し、NMRマイクロイメージング像とした。
【0022】
任意の位置について2次元スライスを切り出した結果を図2に示す。白い部分が空隙の位置を表しており、黒い部分と白い部分の比から空隙の平均存在量が面積比で約50%と計算でき、空隙の大きさを詳細にヒストグラム化することで容易に空隙の大きさとその分布状態がわかった。
【0023】
【発明の効果】
本発明方法によるコークス構造可視化により、コークスの気孔構造および亀裂状況を非破壊で精度良く把握できる。このことにより、コークス構造体の強度の評価に結びつけることが可能となる。
【図面の簡単な説明】
【図1】NMRマイクロイメージング測定時のサンプルの設置状態を示す図である。
【図2】NMRマイクロイメージング法によるコークス気孔構造の測定例を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for visualizing the pore structure of coke.
[0002]
[Prior art]
Conventionally, methods for evaluating the void structure include 1) a direct observation method using an optical microscope or an electron microscope, and 2) a method for measuring the pore size distribution by mercury intrusion. The outline of the method is described below.
[0003]
1) Direct observation method using an optical microscope or an electron microscope In the case of an optical microscope, since the depth of focus is not so deep, it is not possible to clearly observe the sample if there is unevenness. Therefore, in many cases, the surface is mirror-polished and observed with reflected light. In some cases, a thin sample polished to a thickness of about 5 μm is observed with transmitted light. When observing the fracture surface of a sample, a scanning electron microscope may be used.
2) Measurement method of pore size distribution by mercury intrusion A method of applying pressure to mercury with poor wettability and injecting it into pores connected to the surface. Calculate the pore size distribution.
[0004]
[Problems to be solved by the invention]
The problems of the above prior art are described below.
1) Direct observation method using an optical microscope or an electron microscope Mirror polishing is required to obtain a clear image. However, if the porous material has low strength, uneven strength, or is brittle, polishing is required. Is not uniform, and the form of the voids becomes different due to the drop and movement of the particle size.
When observing the fractured surface using a scanning electron microscope, the surface is very uneven and the shape of the void is difficult to understand. Further, in the observation of the broken surface, it is difficult to detect a fine structure which is likely to be generated in a gap around the particles or a fine powder gathering portion.
[0005]
2) Measurement method of pore diameter distribution by mercury intrusion When pressure is applied and mercury is permeated, the size of the outlet is defined in a narrow outlet and a wide gap, and does not necessarily represent the actual condition. When the porous material to be measured is low-strength and brittle, the material structure may be destroyed under high pressure, and may have a different void structure from the initial one. Further, the pore size distribution is calculated while keeping the wettability between mercury and the object to be measured constant. However, an error occurs because the wettability actually changes depending on the physicochemical properties of the surface.
[0006]
An object of the present invention is to provide a method for non-destructively visualizing the pore structure of coke.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following features.
(1) The pore structure of coke characterized by impregnating coke with a gas containing a nucleus capable of causing nuclear magnetic resonance, and then visualizing the pore structure of coke by a micro-imaging method using a nuclear magnetic resonance apparatus. Visualization method.
(2) The method for visualizing the pore structure of coke according to the above (1), wherein a sprite method is used as a micro-imaging method using a nuclear magnetic resonance apparatus.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a method for visualizing a pore structure of coke by a micro-imaging method using a nuclear magnetic resonance apparatus (hereinafter referred to as an NMR micro-imaging method). The NMR microimaging method (Bulletin Magnetic Resonance. Vol. 18, p. 154, 1996) is an analysis method using NMR (nuclear magnetic resonance).
[0009]
It is known that even if a substance is the same nucleus, the resonance frequency at which the nucleus causes magnetic resonance differs due to various environmental differences within the molecule, and the resonance frequency is called a chemical shift. Among many methods of NMR, the NMR microimaging method gives a magnetic field gradient, captures the difference in magnetic field strength detected by a sample as an absorption line that appears in a certain chemical shift, converts that information into positional information, We visualize the existence distribution.
[0010]
Its characteristics are: 1) physical and chemical information can be obtained along with morphological information; 2) non-destructive; 3) tomographic images and configuration images in any direction can be obtained. The point is that visualization information can be obtained for the spatial distribution.
[0011]
The present invention is to evaluate the morphology of pores by infiltrating gas into pores of coke having pores and visualizing an image of an absorption line of the gas. By achieving non-destructive and high resolution, non-destructive and non-destructive pore structure of reactive materials, such as coke, which is inhomogeneous and contains ash etc. It is to achieve an evaluation in a comprehensive manner.
[0012]
The technique of the present invention is to evaluate the pore distribution and structure of coke by detecting the presence of gas permeated into pores, and it is important to select a gas. As a gas to be used, it does not react with coke, easily penetrates easily, and in order to obtain an image with high sensitivity and high resolution, a nuclear magnetic resonance is caused, a single absorption line is given, and the half width of the absorption line is reduced. Use a gas that is narrow and has high absorption intensity. For example, Xe, He, SF 4 , SF 6 and spin-polarized gases of Xe and He can be used.
[0013]
As a technique of the NMR microimaging method, there are a two-dimensional spin echo method, a multi-slice spin echo method, a three-dimensional spin echo method, and the like, and can be used properly according to information to be obtained.
The two-dimensional spin echo method can clarify the distribution of voids in a certain cross section, and the multi-slice spin echo method continuously obtains the distribution of voids and the connection of the voids in a plurality of cross sections at a certain thickness interval. be able to.
In addition, the three-dimensional spin echo method three-dimensionally captures data on the voids of the sample, and can obtain a great deal of knowledge on void information, void connections, and the like at an arbitrary position cross section.
[0014]
Next, as a more preferable technique of the NMR microimaging method in the present invention, a sprite method can be mentioned.
Sprite method (Single-Point Ramped Imaging with T 1 Enhancement) [B. J. Balcom et al. , J. et al. Magn. Reson. , A123, 131, (1996)] are not affected by the difference in the magnetic susceptibility of nuclear spins in the material to be measured, so that the material of the substrate such as coke is non-uniform and contains ash, etc. It is possible to take a more accurate image image as compared with the above spin echo method.
[0015]
Unlike the conventional spin echo method, it does not depend on the band selection pulse (encoding with frequency, that is, a pulse that recognizes position information and absorption using frequency), but does not depend on the excitation range of RF (radio wave) pulse. ing. Therefore, the reciprocal of the pulse width used for the excitation must be larger than the product of the sample size (cm) and the magnetic field gradient (T / m). At the same time, the sprite method is an imaging technique that is purely phase encoding (encoding with phase, that is, recognizing position information and absorption using phase), and is different from the conventional mixed type of phase and frequency encoding.
[0016]
The signal is acquired at a timing of t = tp (tp: time variable) after the short excitation RF pulse while the magnetic field gradient is being performed. Therefore, unlike the conventional spin echo method using frequency encoding, the inhomogeneity of B 0 (static magnetic field), the influence of a substance having a large magnetic susceptibility different from magnetic susceptibility, a difference in an image image caused by a difference in chemical shift, etc. Not affected by distortion or the like.
[0017]
The resolution is determined only by the magnitude of the magnetic field gradient applied to the sample, even for a sample such as SF 4 gas having a short T 2 * (time constant of free induction decay in the presence of a non-uniform static magnetic field). . That is, the higher the magnetic field gradient applied to the sample, the higher the resolution. The obtained signal intensity S can be described by the existence density ρ of a gas containing a nucleus capable of causing nuclear magnetic resonance existing in that portion, and can be expressed as the following equation [1].
S = ρexp (−tp / T 2 * ) × R (x) [1]
Where R (x) = {1- exp (-T R / T 1)} / {1-cos θ exp (-T R / T 1)}
T 2 * : Time constant of free induction decay when non-uniform static magnetic field exists T 1 : Longitudinal relaxation time θ: Flip angle of given pulse
From R (x) in the above equation [1], the repetition time (T R ) can be determined depending on the shortest T 1 unique to the sample. This method prepares a high magnetic field gradient generator and a probe that can be measured, and optimizes the measurement conditions so that the signal intensity in the image image is reduced to the pores in the coke, as can be seen from the above equation [1]. It can be expressed as the abundance of the gas component containing the nucleus capable of causing the nuclear magnetic resonance. Therefore, the method of the present invention can achieve extremely accurate and quantitative analysis in coke or the like in which many samples having different magnetic susceptibilities coexist.
[0019]
【Example】
Coke produced in a carbonization test furnace (charging amount: about 80 kg) was processed into a sample of φ19 mm × 30 mm, which was used as a sample for NMR microimaging.
As shown in FIG. 1, a sample 2 was put into a φ20 mm sample tube 1 for NMR filled with 100 vol% SF 4 gas at 98 kPa, and left for 24 hours.
After that, the height was adjusted so that the sample came to the position of the detection coil. Then, the sample was placed in a 9.4 T superconducting magnetic field (bore diameter 89 mm) in which the resolution of the magnetic field was adjusted in advance, and left for 1 hour until the system was stabilized. . Tuning and matching were adjusted at room temperature, NMR lock was not applied, and the sample was not rotated to prepare for measurement.
[0020]
The measurement technique was a sprite method, the excitation pulse was 5 μsec, the echo time was 100 μsec, and the repetition time was 15 msec. The gradient magnetic field used was 1.46 T / m on the X axis, 1.46 T / m on the Y axis, and 1.09 T / m on the Z axis.
[0021]
After the measurement was completed, the obtained data was subjected to zero-filling with respect to x, y, and z to obtain 1024, 1024, and 1024 data. These data were subjected to Fourier transform in the x, y, and z directions using a broadening factor of 6 Hz and a sine function as a window function to obtain an NMR microimaging image.
[0022]
FIG. 2 shows a result obtained by cutting out a two-dimensional slice at an arbitrary position. The white part represents the position of the void, and the average abundance of the void can be calculated as about 50% in terms of the area ratio from the ratio of the black part and the white part. The size of and the distribution state were found.
[0023]
【The invention's effect】
By visualizing the coke structure according to the method of the present invention, the pore structure and the crack state of the coke can be accurately grasped nondestructively. This makes it possible to link the evaluation of the strength of the coke structure.
[Brief description of the drawings]
FIG. 1 is a diagram showing a sample installation state at the time of NMR microimaging measurement.
FIG. 2 is a diagram showing a measurement example of a coke pore structure by an NMR microimaging method.

Claims (2)

核磁気共鳴を起こすことのできる核を含む気体をコークスに含浸させた後、核磁気共鳴装置を用いたマイクロイメージング法によりコークスの気孔構造を可視化することを特徴とするコークスの気孔構造可視化方法。A method for visualizing a pore structure of coke, comprising impregnating coke with a gas containing nuclei capable of causing nuclear magnetic resonance, and then visualizing a pore structure of the coke by a micro-imaging method using a nuclear magnetic resonance apparatus. 核磁気共鳴装置を用いたマイクロイメージング法として、スプライト法を用いることを特徴とする請求項1記載のコークスの気孔構造可視化方法。The method for visualizing a pore structure of coke according to claim 1, wherein a sprite method is used as a micro-imaging method using a nuclear magnetic resonance apparatus.
JP2002241769A 2002-08-22 2002-08-22 Pore structure visualization method for coke Pending JP2004077427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241769A JP2004077427A (en) 2002-08-22 2002-08-22 Pore structure visualization method for coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241769A JP2004077427A (en) 2002-08-22 2002-08-22 Pore structure visualization method for coke

Publications (1)

Publication Number Publication Date
JP2004077427A true JP2004077427A (en) 2004-03-11

Family

ID=32024158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241769A Pending JP2004077427A (en) 2002-08-22 2002-08-22 Pore structure visualization method for coke

Country Status (1)

Country Link
JP (1) JP2004077427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047333A (en) * 2011-07-27 2013-03-07 Nippon Steel & Sumitomo Metal Corp Method of estimating coke strength
CN105241913A (en) * 2015-10-10 2016-01-13 西安石油大学 Nuclear magnetic resonance quantitative analysis method for rock micro-crack damage variable
CN106248712A (en) * 2016-07-07 2016-12-21 中国石油大学(华东) Seam method of making, the measuring method of microcrack density and the method for establishing model of microcrack and the preparation method of microcrack rock core in rock core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047333A (en) * 2011-07-27 2013-03-07 Nippon Steel & Sumitomo Metal Corp Method of estimating coke strength
CN105241913A (en) * 2015-10-10 2016-01-13 西安石油大学 Nuclear magnetic resonance quantitative analysis method for rock micro-crack damage variable
CN106248712A (en) * 2016-07-07 2016-12-21 中国石油大学(华东) Seam method of making, the measuring method of microcrack density and the method for establishing model of microcrack and the preparation method of microcrack rock core in rock core
CN106248712B (en) * 2016-07-07 2018-02-06 中国石油大学(华东) Microcrack makes seam method, the measuring method of microcrack density and the preparation method of method for establishing model and microcrack rock core in rock core

Similar Documents

Publication Publication Date Title
JPH027655B2 (en)
JP2002501204A (en) On-line NMR imaging of solid or liquid objects undergoing continuous translation
Jiang et al. Investigation on microstructure and damage of sandstone under cyclic dynamic impact
Vashaee et al. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media
Pel et al. Determination of moisture profiles in porous building materials by NMR
Prado et al. Spatially resolved relaxometry and pore size distribution by single-point MRI methods: porous media calorimetry
Matzkanin A review of nondestructive characterization of composites using NMR
Koptyug et al. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques
JP2004077427A (en) Pore structure visualization method for coke
US6897654B2 (en) System and method of magnetic resonance imaging
JP4293951B2 (en) Coke pore structure visualization method
Young et al. Magnetic resonance imaging of crack formation in hydrated cement paste materials
Garrido et al. Determination of Binder Distribution in Green‐State Ceramics by NMR Imaging
Viola et al. NMR techniques: A non-destructive analysis to follow microstructural changes induced in ceramics
Wolter et al. Moisture measuring with nuclear magnetic resonance (NMR)
Bachorec et al. A non-destructive impedance method using resonance to evaluate the concentration of steel fibers in concrete
Auld Ferromagnetic resonance flaw detection
Wigen et al. Ferromagnetic resonance force microscopy
Ackerman et al. Development of nuclear magnetic resonance imaging techniques for characterizing green-state ceramic materials
Botto et al. Three-dimensional magnetic resonance microscopy of materials
Meyendorf et al. Basic Concepts of NDE
JPH09264859A (en) Evaluation method for binder in unshaped material
Seeber et al. Advances toward MR microscopy of single biological cells
McDonald et al. Magnetic resonance and porous materials
Nakashima Development of a Single-Sided Magnetic Resonance Surface Scanner: Towards Non-Destructive Quantification of Moisture in Slaked Lime Plaster for Maintenance and Remediation of Heritage Architecture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213