JP2006037898A - Vertical shaft type wind power generator - Google Patents

Vertical shaft type wind power generator Download PDF

Info

Publication number
JP2006037898A
JP2006037898A JP2004221512A JP2004221512A JP2006037898A JP 2006037898 A JP2006037898 A JP 2006037898A JP 2004221512 A JP2004221512 A JP 2004221512A JP 2004221512 A JP2004221512 A JP 2004221512A JP 2006037898 A JP2006037898 A JP 2006037898A
Authority
JP
Japan
Prior art keywords
blade
vertical
wind power
control mechanism
vertical shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221512A
Other languages
Japanese (ja)
Inventor
Masaaki Aiura
正明 相浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004221512A priority Critical patent/JP2006037898A/en
Publication of JP2006037898A publication Critical patent/JP2006037898A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft type windmill using a control mechanism of blades of a vertical type windmill enabling self-start from a low wind speed, in the vertical shaft type windmill. <P>SOLUTION: The vertical shaft type windmill illustrated in the figure comprises the plurality of blades. To maintain front edge parts of the blades in a certain direction regardless of the position of a blade support body 1, the blade support body 1 and a blade control mechanism support body 3 are synchronously rotated, and a blade control mechanism is started. Lift generated in each of the blades by a wind speed flow is applied in the same rotational direction as that of a rotational shaft of the blade support body 1. As a result, the vertical shaft type windmill has good startability from the low wind speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、垂直軸型風力発電装置において、翼ブレードの制御に関するものである。   The present invention relates to control of blade blades in a vertical axis wind power generator.

従来、風力発電用の風車は、オランダ型風車に代表される、風に対して回転軸が水平になっている水平型風車と、風に対して回転軸が垂直になっている垂直軸型風車が知られている。   Conventionally, wind turbines for wind power generation are represented by a Dutch wind turbine, a horizontal wind turbine whose rotation axis is horizontal to the wind, and a vertical axis wind turbine whose rotation axis is perpendicular to the wind. It has been known.

このうち垂直軸型風車は、パドル型やサボニウス型などのようにブレードに発生する抗力で風車を回す抗力型と、ダリウス型やジャイロミル型などのようにブレードに発生する揚力で風車を回す揚力型が知られている。すなわち、前者は、風上に向かう翼ブレードの抵抗を小さくして、抗力差によって風車を回転させるのに対し、後者は翼ブレードに発生する揚力によって風車を回転させるようになっている(例えば特開昭54−153944号公報)。
特開昭54−153944号公報
Among them, the vertical axis type windmill is a drag type that rotates the windmill with the drag generated on the blade, such as a paddle type or Savonius type, and the lift that rotates the windmill with the lift generated on the blade, such as a Darius type or gyromill type. The type is known. In other words, the former reduces the resistance of the blade blade toward the windward and rotates the windmill by the drag difference, while the latter rotates the windmill by the lift generated in the blade blade (for example, No. 54-153944).
JP 54-153944 A

ところが垂直軸抗力型風車においては、周速比(翼ブレードの翼端速度/風速)が1となると、風車をそれ以上に回すモーメントが発生せず、風速が上がっても、周速比1以上の回転数を得ることが出来ず、発電効率が悪いという問題があった。垂直軸揚力型風車では、周速比が1以下では、風車の空力特性が悪くなり、風車を回すモーメントが小さくなる。また起動モーメントが小さく、停止状態からの起動が非常に困難となる欠点があった。 However, in a vertical axis drag type wind turbine, when the circumferential speed ratio (blade blade tip speed / wind speed) is 1, no moment is generated to rotate the wind turbine beyond that, and even if the wind speed increases, the circumferential speed ratio is 1 or more. The number of rotations could not be obtained and power generation efficiency was poor. In a vertical axis lift type windmill, when the peripheral speed ratio is 1 or less, the aerodynamic characteristics of the windmill deteriorate and the moment for turning the windmill decreases. In addition, the starting moment is small, and starting from a stopped state is very difficult.

そこで、翼ブレードの形状、構成等を改良して発電効率を高めるものとして、例えば公開番号 特開2001−65446などがある。この発明は垂直軸揚力型風車であり、翼ブレードを、一組の複数の翼ブレードで構成し、風車を回すモーメントの増加をはかっている。 In order to improve the power generation efficiency by improving the shape and configuration of the blade blade, for example, there is a publication number JP-A-2001-65446. The present invention is a vertical axis lift type windmill, and a blade blade is constituted by a set of a plurality of blade blades to increase the moment of turning the windmill.

ところがこの風車では、翼群を複数の翼ブレードで構成するため、部品点数が増加しコスト高になるという問題点があり、水平軸風車のように常に翼ブレードの前縁部が風上方向に向く事は出来ず、効率的にも、水平軸揚力型風車に至っていない。 However, in this wind turbine, since the blade group is composed of a plurality of blade blades, there is a problem that the number of parts increases and the cost is high, and the leading edge of the blade blade is always in the windward direction like a horizontal axis wind turbine. It cannot be turned, and it has not reached the horizontal axis lift type windmill efficiently.

以上のような課題を解決するため、翼ブレードの角度制御を行い、翼ブレードに発生する揚力を、風車を回すモーメントに作用させ、風車を効率よく回転させ、発電効率の高い風力発電用の風車を提供することにある。 In order to solve the above-mentioned problems, the angle of the blade blade is controlled, the lift generated in the blade blade is applied to the moment of turning the windmill, the windmill is rotated efficiently, and the wind turbine for wind power generation has high power generation efficiency. Is to provide.

本発明の上記目的は、垂直回転軸に直交する面内に、前記回転軸を中心として一定角ごとに複数の翼ブレードが、設けられた風力発電用の風車において、翼ブレードの前縁部が常に風上側に向く機構を有することにより、達成される。 The object of the present invention is to provide a wind turbine for wind power generation in which a plurality of blade blades are provided at fixed angles around the rotation shaft in a plane perpendicular to the vertical rotation shaft. This is achieved by having a mechanism that always faces the windward side.

本発明の上記目的は、翼ブレードの風速流に対する取付角を変更できる機構を有することにより、達成できる。 The above object of the present invention can be achieved by having a mechanism capable of changing the mounting angle of the blade blade with respect to the wind speed flow.

本発明によれば、翼ブレードに単一な直線翼を使用するため、翼ブレードの製作費が、プロペラ型翼ブレードより安価に製作できる。
本発明によれば、プロペラ型のように風を切らないので、運転騒音の少ない風力発電機を、実現できる。
According to the present invention, since a single straight blade is used as the blade blade, the blade blade can be manufactured at a lower cost than the propeller blade.
According to the present invention, since the wind is not cut as in the case of the propeller type, a wind power generator with less operation noise can be realized.

本発明によれば、回転軸の回転数、又は風速等により翼ブレードの取付角を制御することが可能であり、低風速流から起動性のよい、高効率な風力発電機を実現できる。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to control the attachment angle | corner of a blade blade by the rotation speed of a rotating shaft, or a wind speed, etc., and it can implement | achieve a highly efficient wind generator with good startability from low wind speed flow.

垂直回転軸に直交する面内で、前記垂直回転軸を回転中心として一定角度ごとに、複数の翼長方向に回転軸を有した翼ブレードを前記垂直回転軸と平行に、回転可能な状態で複数配置されたことを特徴とする、垂直軸風力発電用風車とした。 In a plane perpendicular to the vertical rotation axis, a blade blade having a plurality of rotation axes in the blade length direction can be rotated in parallel with the vertical rotation axis at a predetermined angle with the vertical rotation axis as a rotation center. A wind turbine for vertical axis wind power generation characterized in that a plurality of wind turbines are arranged.

図1は、本発明の基本的な構成図である。図1において、翼支持体1、2は、同一半径とし、翼ブレード支持体回転軸6に直交な面で固定され、外周部に前記回転軸6と平行に、等角度間隔で翼ブレード12を配置する。翼ブレード12は翼ブレード回転軸7を有しており、翼支持体1,2に回転可能な状態で支持されている。 FIG. 1 is a basic configuration diagram of the present invention. In FIG. 1, the blade supports 1 and 2 have the same radius, are fixed on a plane orthogonal to the blade blade support rotating shaft 6, and the blade blades 12 are arranged at equal angular intervals on the outer periphery in parallel to the rotating shaft 6. Deploy. The blade blade 12 has a blade blade rotating shaft 7 and is supported by the blade supports 1 and 2 in a rotatable state.

翼制御機構支持体3は、翼同期機構回転軸5に回転可能な状態で取り付け、翼同期機構回転軸5をオフセット支持体18に固定する。翼ブレード支持体回転軸6を、オフセット距離Aで、翼同期機構回転軸5と平行に、オフセット支持体18に回転可能な状態で取り付ける The blade control mechanism support 3 is attached to the blade synchronization mechanism rotation shaft 5 in a rotatable state, and fixes the blade synchronization mechanism rotation shaft 5 to the offset support 18. The blade blade support rotating shaft 6 is attached to the offset support 18 so as to be rotatable at an offset distance A parallel to the blade synchronization mechanism rotating shaft 5.

翼同期機構回転軸5他端を図1の様に、風車回転体19に固定する。風車回転体19は風車回転軸8に固定され、また適当な位置に風向舵13を取り付ける。 The other end of the blade synchronization mechanism rotating shaft 5 is fixed to the windmill rotor 19 as shown in FIG. The windmill rotating body 19 is fixed to the windmill rotating shaft 8, and the wind rudder 13 is attached to an appropriate position.

前記オフセット距離Aは、翼ブレード回転軸7と翼ブレード支持体回転軸6の距離B、翼制御機構軸9と、翼同期機構回転軸5の距離Cと、どちらか短い方で、制御ロッド10,などが、オフセット支持体18など、他の機構に干渉しない距離とする。 The offset distance A is the distance B between the blade blade rotating shaft 7 and the blade blade support rotating shaft 6 and the distance C between the blade control mechanism rotating shaft 9 and the blade synchronization mechanism rotating shaft 5, whichever is shorter, and the control rod 10 , Etc. is a distance that does not interfere with other mechanisms such as the offset support 18.

翼制御機構支持体3と翼ブレード支持体回転軸6は同期機構4にて、同一回転数、同一方向に、同期回転させる。前記同期機構4は、同期位置変更機構を有している。 The blade control mechanism support 3 and the blade blade support rotating shaft 6 are synchronously rotated by the synchronization mechanism 4 in the same rotational speed and in the same direction. The synchronization mechanism 4 has a synchronization position changing mechanism.

図2、図3は、翼制御機構の説明図である。翼ブレード回転軸7の端部に制御スリーブ11を翼ブレード12の翼幅と平行に固定する。 2 and 3 are explanatory views of the blade control mechanism. A control sleeve 11 is fixed to the end of the blade blade rotating shaft 7 in parallel with the blade width of the blade blade 12.

翼制御支持体3の外周部に翼支持体1と同じ等角度間隔で、翼ブレード回転軸7と平行に翼制御機構軸9を回転可能な状態で、翼支持体1に取り付けられた翼ブレード回転軸7に、相対する位置より角度α(図2参照)ずらした位置で取り付ける。翼制御機構軸9に制御ロッド10を、翼制御機構軸9と直交方向に固定する。 A blade blade attached to the blade support 1 in a state in which the blade control mechanism shaft 9 can be rotated in parallel with the blade blade rotation shaft 7 at the same angular interval as the blade support 1 at the outer peripheral portion of the blade control support 3. The rotary shaft 7 is attached at a position shifted by an angle α (see FIG. 2) from the opposite position. A control rod 10 is fixed to the blade control mechanism shaft 9 in a direction orthogonal to the blade control mechanism shaft 9.

制御スリーブ11に、制御ロッド10を遊動可能な状態で挿入する。 The control rod 10 is inserted into the control sleeve 11 so as to be freely movable.

同期位置変更機構を作動させ、翼支持体1,2と翼翼制御機構支持体3の相対位置(角度α)を変化させることで、翼の取付角が変化する。 By operating the synchronous position changing mechanism and changing the relative position (angle α) of the blade supports 1, 2 and the blade blade control mechanism support 3, the blade mounting angle changes.

図4、図5は、前記制御スリーブ11,制御ロッド10を、翼ブレード制御リンク210、制御リンク211,接続回転ピン212に変更した実施例で、翼ブレード制御リンク210に固定する翼ブレード12の取付角βは、90度+α以上180度以下の適当な角度とする。 4 and 5 show an embodiment in which the control sleeve 11 and the control rod 10 are changed to a blade blade control link 210, a control link 211, and a connection rotation pin 212. The blade blade 12 fixed to the blade blade control link 210 is shown in FIGS. The mounting angle β is an appropriate angle of 90 ° + α to 180 °.

図6、図7は、本発明装置において、同期機構4および同期位置変更機構の、実施例であって、翼ブレード支持体回転軸6に同期歯車101を固定取り付け、翼制御機構支持体3に同期歯車102を固定取り付ける。同期歯車101と同期歯車102を無端帯同期チェーン103で連結し、同一回転数、同一回転方向に、同期回転させる。   6 and 7 show an embodiment of the synchronization mechanism 4 and the synchronization position changing mechanism in the device of the present invention. The synchronization gear 101 is fixedly attached to the blade blade support rotating shaft 6 and the blade control mechanism support 3 is mounted. The synchronization gear 102 is fixedly attached. The synchronous gear 101 and the synchronous gear 102 are connected by an endless belt synchronous chain 103, and are synchronously rotated in the same rotational speed and the same rotational direction.

無端帯同期チェーン103に、同期位置制御歯車104、たるみ防止テンショナー105を配置する。風速の速さににより同期位置変更駆動体20を作動させ、同期位置制御歯車104の位置を変更し、同期歯車101と同期歯車102の相対位置を変化させ、翼ブレード12の角度を変化させる。   A synchronization position control gear 104 and a sagging prevention tensioner 105 are arranged on the endless belt synchronization chain 103. The synchronous position change driving body 20 is operated according to the wind speed, the position of the synchronous position control gear 104 is changed, the relative positions of the synchronous gear 101 and the synchronous gear 102 are changed, and the angle of the blade blade 12 is changed.

図8、図9は、請求項4の実施例で、複数の支持体回転軸を持ち、無端帯チェーンを用いた、実施例である。無端帯チェーンA 51、無端帯チェーンB 52は同一周長とし、同一周速で同一方向に同期回転させる。各無端帯チェーンには、翼ブレード回転軸7、翼制御機構軸9を支持する、アタッチメント55を必要数取り付ける。 FIG. 8 and FIG. 9 show an embodiment of claim 4 which has a plurality of support rotating shafts and uses an endless belt chain. The endless belt chain A 51 and the endless belt chain B 52 have the same circumferential length and are synchronously rotated in the same direction at the same circumferential speed. A necessary number of attachments 55 for supporting the blade blade rotating shaft 7 and the blade control mechanism shaft 9 are attached to each endless belt chain.

無端帯チェーンB 52に配置されたアタッチメント55に、翼ブレード回転軸7を回転できる状態で支持し、翼ブレード回転軸7の端部に制御スリーブ11を、翼ブレード12の翼幅と平行に固定する。 A blade blade rotating shaft 7 is supported on an attachment 55 arranged in an endless belt chain B 52 in a rotatable state, and a control sleeve 11 is fixed to an end portion of the blade blade rotating shaft 7 in parallel with the blade width of the blade blade 12. To do.

無端帯チェーンA 51に配置されたアタッチメント55に、翼制御機構軸9を、回転できる状態で、前記翼ブレード回転軸7と相対する位置より、角度α(図8参照)ずらした位置で取り付ける。翼制御機構軸9に制御ロッド10を、翼制御機構軸9と直交方向に固定する。制御スリーブ11に、制御ロッド10を遊動可能な状態で挿入する。 The blade control mechanism shaft 9 is attached to the attachment 55 arranged in the endless belt chain A 51 at a position shifted by an angle α (see FIG. 8) from a position facing the blade blade rotation shaft 7 in a state where the blade control mechanism shaft 9 can rotate. A control rod 10 is fixed to the blade control mechanism shaft 9 in a direction orthogonal to the blade control mechanism shaft 9. The control rod 10 is inserted into the control sleeve 11 so as to be freely movable.

同期機構、同期位置変更機構、オフセット距離Aなどは、実施例1と同様になる。
図10は、翼制御機構を二段階に配置した、実施例。
The synchronization mechanism, the synchronization position changing mechanism, the offset distance A, and the like are the same as in the first embodiment.
FIG. 10 shows an embodiment in which the blade control mechanism is arranged in two stages.

垂直軸風車は、一般に効率が低いため、モニュメント的に導入されているが、本発明垂直軸風車は、水平軸風車より高効率な風力発電風車が期待でき、本格的垂直軸発電風車として導入が期待される。 Vertical axis wind turbines are generally introduced as monuments because of their low efficiency, but the vertical axis wind turbines of the present invention can be expected to be more efficient than horizontal axis wind turbines, and they can be introduced as full-scale vertical axis wind turbines. Be expected.

全体構成図(実施例1)Overall configuration diagram (Example 1) 翼制御機構説明図1 正面図Figure 1 Front view 翼制御機構説明図1 側面図Figure 1 Side view 翼制御機構説明図2 正面図Wing control mechanism explanatory drawing 2 Front view 翼制御機構説明図2 側面図Wing control mechanism explanatory drawing 2 Side view 同期機構及び同期位置変更機構の例Example of synchronization mechanism and synchronization position change mechanism 同期機構及び同期位置変更機構の例Example of synchronization mechanism and synchronization position change mechanism 無端帯チェーンを用いた実施例 正面図Example using endless belt chain Front view 無端帯チェーンを用いた実施例 側面図Example using endless belt chain Side view 翼制御機構を二段階に使用した実施例Example using blade control mechanism in two stages

符号の説明Explanation of symbols

1 翼支持体1
2 翼支持体2
3 翼制御機構支持体
4 同期機構および同期位置変更機構
5、5A、5B 翼同期機構回転軸
6、6A、6B 翼ブレード支持体回転軸
7 翼ブレード回転軸
8 風車回転軸
9 翼制御機構軸
10 制御ロッド
11 制御スリーブ
12 翼ブレード
13 風向舵
14 発電機
15 出力歯車
16 ベアリングまたは回転ブッシュ
17 固定台
18 オフセット支持体
19 風車回転体
20 同期位置変更駆動体
21 同期位置変更軸
31 制御ラック
32 制御歯車
33 チェーンテンショナー
34 スライド軸
41 ヒンジ
42 制御リンクロッドA
51 無端帯チェーンA
52 無端帯チェーンB
53A、53B スプロケット
54A、54B スプロケット
55 アタッチメント
60 風車全体支持体
61A、61B スプロッケト支持体
101 同期歯車101
102 同期歯車102
103 無端帯同期チェーン
104 同期位置変更歯車
105 同期位置変更装置
210 翼ブレード制御リンク
211 制御リンク
212 接続回転ピン
α 翼支持体と翼制御機構支持体との位相角
β 翼制御リンク210に取付ける翼ブレード12の取付角

1 Wing support 1
2 Wing support 2
3 Blade control mechanism support 4 Synchronization mechanism and synchronization position change mechanism
5, 5A, 5B Blade synchronization mechanism rotating shaft 6, 6A, 6B Blade blade support rotating shaft 7 Blade blade rotating shaft 8 Windmill rotating shaft 9 Blade control mechanism shaft 10 Control rod 11 Control sleeve 12 Blade blade 13 Wind steering 14 Generator 15 Output Gear 16 Bearing or Rotating Bush 17 Fixing Base 18 Offset Support Body 19 Windmill Rotating Body 20 Synchronous Position Changing Drive 21 Synchronous Position Changing Shaft 31 Control Rack 32 Control Gear 33 Chain Tensioner 34 Slide Shaft 41 Hinge 42 Control Link Rod A
51 Endless belt chain A
52 Endless belt chain B
53A, 53B Sprocket 54A, 54B Sprocket 55 Attachment 60 Windmill overall support 61A, 61B Sprocket support
101 Synchronous gear 101
102 Synchronous gear 102
103 endless belt synchronous chain 104 synchronous position changing gear 105 synchronous position changing device 210 blade blade control link 211 control link 212 connecting rotation pin α phase angle between blade support and blade control mechanism support β blade blade attached to blade control link 210 12 mounting angles

Claims (4)

垂直回転軸に直交する面内で、前記垂直回転軸を回転中心として一定角度ごとに、複数の翼長方向に回転軸を有した翼ブレードを前記垂直回転軸と平行に、回転可能な状態で複数配置されたことを特徴とする、垂直軸風力発電用風車   In a plane perpendicular to the vertical rotation axis, a blade blade having a plurality of rotation axes in the blade length direction can be rotated in parallel with the vertical rotation axis at a predetermined angle with the vertical rotation axis as a rotation center. Wind turbines for vertical axis wind power generation, characterized by being arranged in multiple numbers 請求項1の垂直軸風力発電用風車において、翼ブレードの前縁部が、風上方向に位置する、翼制御機構を有することを特徴とする、垂直軸風力発電用風車。   2. The wind turbine for vertical axis wind power generation according to claim 1, further comprising a blade control mechanism in which a front edge portion of the blade blade is positioned in the windward direction. 請求項1、請求項2の翼ブレードの取付角を、変更できる同期位置変更機構を有することを、特徴とする、垂直軸風力発電用風車。   A wind turbine for vertical axis wind power generation, comprising a synchronous position changing mechanism capable of changing the mounting angle of the blade blade according to claim 1 or 2. 請求項1の垂直回転軸を平行に複数配置し、前記各回転軸に直交する同一平面にスプロケットを取り付け、無端帯チェーンを配置し、前記無端帯チェーンに複数のアタッチメントを取り付け、前記翼ブレードの回転軸を回転可能な状態で取り付け、請求項2,請求項3の特徴を併せ持つことを特徴とする、垂直軸風力発電用風車。   A plurality of vertical rotating shafts according to claim 1 are arranged in parallel, a sprocket is attached to the same plane orthogonal to each rotating shaft, an endless belt chain is placed, a plurality of attachments are attached to the endless belt chain, and the blade blade A wind turbine for vertical axis wind power generation, characterized in that the rotary shaft is attached in a rotatable state and has the features of claims 2 and 3.
JP2004221512A 2004-07-29 2004-07-29 Vertical shaft type wind power generator Pending JP2006037898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221512A JP2006037898A (en) 2004-07-29 2004-07-29 Vertical shaft type wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221512A JP2006037898A (en) 2004-07-29 2004-07-29 Vertical shaft type wind power generator

Publications (1)

Publication Number Publication Date
JP2006037898A true JP2006037898A (en) 2006-02-09

Family

ID=35903138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221512A Pending JP2006037898A (en) 2004-07-29 2004-07-29 Vertical shaft type wind power generator

Country Status (1)

Country Link
JP (1) JP2006037898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA017409B1 (en) * 2007-10-30 2012-12-28 Виктор Дьёрди Wind turbine with vertical axis and wind power plant
JP2019517633A (en) * 2016-09-16 2019-06-24 アデヴェ テックAdv Tech Fluid rotor with steerable vanes with improved vane control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA017409B1 (en) * 2007-10-30 2012-12-28 Виктор Дьёрди Wind turbine with vertical axis and wind power plant
JP2019517633A (en) * 2016-09-16 2019-06-24 アデヴェ テックAdv Tech Fluid rotor with steerable vanes with improved vane control

Similar Documents

Publication Publication Date Title
US9115697B2 (en) Fluid interacting device
RU2453711C2 (en) Turboprop with variable-pitch propeller
US8167544B2 (en) Rotating device to be used in a fluid
US20120269629A1 (en) Vertical axis wind turbine
WO2008022209A3 (en) Wind driven power generator
US10218246B2 (en) Variable diameter and angle vertical axis turbine
EA200700242A1 (en) WIND ENGINE WITH VERTICAL AXIS
JP2006177370A5 (en)
JP2019094903A5 (en)
JP2006242169A (en) Rotary wing and power generating device using it
JP2005090332A (en) Darrieus wind turbine
GB2263735A (en) Blade adjustment/control of a e.g. wind turbine
JPH11117850A (en) Wind mill
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
JP2006037898A (en) Vertical shaft type wind power generator
KR101525553B1 (en) Wind power generator with vertical rotor
US20160327022A1 (en) Crossflow axes rotary mechanical devices with dynamic increased swept area
KR101700157B1 (en) Vertical shaft windmill
KR101057125B1 (en) Flap control unit
WO2003098036A1 (en) Orbital-rotating turbine and propeller
KR20090102282A (en) A vertical axis wind turbin with rotate on it&#39;s own axis type wind plane
WO2012152263A3 (en) Wind turbine with pivotable rotor blades
JP2001123933A (en) Multi-stage wind mill
JP2010216367A (en) Wind turbine for wind power generation
TWM518272U (en) Multi-layer blade type wind power generation device