JP2006037791A - Radial flow type steam turbine - Google Patents

Radial flow type steam turbine Download PDF

Info

Publication number
JP2006037791A
JP2006037791A JP2004216743A JP2004216743A JP2006037791A JP 2006037791 A JP2006037791 A JP 2006037791A JP 2004216743 A JP2004216743 A JP 2004216743A JP 2004216743 A JP2004216743 A JP 2004216743A JP 2006037791 A JP2006037791 A JP 2006037791A
Authority
JP
Japan
Prior art keywords
steam
blades
interval
stage
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216743A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
浩 清水
Seiji Kinoshita
誠二 木ノ下
Takashi Noto
隆 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004216743A priority Critical patent/JP2006037791A/en
Publication of JP2006037791A publication Critical patent/JP2006037791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient radial flow type steam turbine in which steam flows in radial direction on a plane substantially perpendicular to a turbine rotary shaft. <P>SOLUTION: This radial flow type steam turbine includes a pair of rotary plates 3, 5 arranged in the direction substantially perpendicular to the turbine shaft and a plurality of blades 3a-3d, 5a-5d alternately provided on a surface facing a pair of the rotary plates 3, 5 to overlap in a radial direction from an inner circumference toward an outer circumference, and steam flows toward an outer circumference part from an inner circumference part between the blades. An interval of blade steps is 0.5 times or more of the minimum interval between adjoining blades of a high pressure side front step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸気流れがタービン回転軸に対して実質的に直角な平面内を半径方向に流れる半径流型蒸気タービンに関する。   The present invention relates to a radial flow steam turbine in which steam flows radially in a plane substantially perpendicular to the turbine rotation axis.

蒸気流れがタービン回転軸に対して実質的に直角な平面内を半径方向に流れる半径流型蒸気タービンの代表的なものとしてユングストロームタービンがある。
図8はこのユングストロームタービンの概要を説明する説明図である。ユングストロームタービンは、図8に示すように、ケーシング101に回転可能に支持されるとともにケーシング101の両側から内側に延出する回転軸103,105と、回転軸103,105に取り付けられた回転板107,109を有している。そして、回転板107,109には径方向に複数の動翼111,113が設けられている。
A typical example of a radial flow type steam turbine in which steam flows radially in a plane substantially perpendicular to the turbine rotation axis is a Jungstrom turbine.
FIG. 8 is an explanatory diagram for explaining the outline of the Jungstrom turbine. As shown in FIG. 8, the Jungstrom turbine is rotatably supported by a casing 101 and extends inward from both sides of the casing 101, and a rotating plate attached to the rotating shafts 103 and 105. 107 and 109. The rotating plates 107 and 109 are provided with a plurality of blades 111 and 113 in the radial direction.

ケーシング101の内部には蒸気室115が設けられ、蒸気室115にはケーシング101の外側から蒸気導入管117,119が連結されている。そして、蒸気室115と回転板107,109で挟まれる空間121とは連通しており、蒸気導入管117,119から蒸気室115に導入された蒸気が空間121に導入される。そして、導入蒸気は空間121から動翼111,113間を半径方向に流れ、半径方向で隣り合って配置されている動翼111,113が互いに相手の動翼に対して案内羽根の役目をして、回転板107,109が反対方向に同一速度で回転する構造となっている(例えば、非特許文献1参照)。
西川他著「わかる蒸気タービン」日新出版株式会社、1999年4月30日、第6版p179〜180(本文、図9・17)
A steam chamber 115 is provided inside the casing 101, and steam introduction pipes 117 and 119 are connected to the steam chamber 115 from the outside of the casing 101. The steam chamber 115 and the space 121 sandwiched between the rotating plates 107 and 109 communicate with each other, and steam introduced into the steam chamber 115 from the steam introduction pipes 117 and 119 is introduced into the space 121. The introduced steam flows in a radial direction from the space 121 between the moving blades 111 and 113, and the moving blades 111 and 113 arranged adjacent to each other in the radial direction serve as guide blades for the other moving blade. Thus, the rotating plates 107 and 109 rotate in the opposite direction at the same speed (for example, see Non-Patent Document 1).
Nishikawa et al., “Steam Turbine Understanding”, Nissin Publishing Co., Ltd., April 30, 1999, 6th edition p179-180 (text, Fig. 9 ・ 17)

半径流型蒸気タービンは、比較的少ない段数で効率良くかつ、小型にすることができるという特徴を有する。また、各段におけるタービン翼全長にわたり周速度は一定であるため蒸気が回転軸方向に流れる軸流タービンに比べて効率が良い等の特徴を有している。
しかしながら、昨今においては発電規模の大きい大出力蒸気タービンのニーズが中心であったため、構造的に大型化が容易な軸流タービンが主流であり、半径流型蒸気タービンについての効率化等の工夫はほとんど提案されていない。
そこで、本発明においては高効率の半径流型蒸気タービンを提供することを目的としている。
The radial flow type steam turbine has a feature that it can be efficiently and downsized with a relatively small number of stages. Further, since the peripheral speed is constant over the entire length of the turbine blades in each stage, it has characteristics such as higher efficiency than an axial flow turbine in which steam flows in the rotation axis direction.
However, in recent years, the need for large-output steam turbines with a large power generation scale has been the mainstream, so axial-flow turbines that are easy to increase in size are the mainstream. Almost no suggestion.
Accordingly, an object of the present invention is to provide a high-efficiency radial flow steam turbine.

図1は本発明に係る半径流型蒸気タービンの回転軸に沿う断面図であり、図2は図1のA−A線に沿う断面の一部を示したものである。また、図3は図2の一部(3段と4段の一部)を拡大して示したものである。以下、図1〜図3等に基づいて、本発明についてその完成に至る経緯及び内容を説明する。
図1に示されるような構造の半径流型蒸気タービンにおいては、図3の矢印で示されるように前段(図3におけるN−1段)の蒸気流出速度をN段の流入速度として利用することから、この際の速度利用率を向上させることにより、出力の向上が図られる。
FIG. 1 is a cross-sectional view of the radial flow steam turbine according to the present invention along the rotational axis, and FIG. 2 shows a part of the cross section taken along the line AA of FIG. FIG. 3 is an enlarged view of a part of FIG. 2 (a part of the third and fourth stages). Hereinafter, the background and contents of the present invention will be described with reference to FIGS.
In the radial flow type steam turbine having the structure as shown in FIG. 1, the steam outflow speed of the previous stage (N-1 stage in FIG. 3) is used as the inflow speed of the N stage as shown by the arrow in FIG. Therefore, the output can be improved by improving the speed utilization rate at this time.

この点をより詳細に説明する。
図3に示すように蒸気高圧側前段(N−1段)から流出速度:C2をもった蒸気がN段に流入する。この際、流出速度:C2はN段において流入速度:C0となり、C0=εC2(ε:速度利用率)と表すことができる。そして、N−1段からN段に蒸気が流入する際に損失が全く無ければε=1となるが、実際には各種損失によりεは1より小さい値をとる。
したがって、速度利用率を向上させてε=1に近づけるためには各種損失を小さくする必用がある。
そこで、発明者らは各種損失を小さくするためにいかにすべきかについて鋭意検討した結果、翼段間隔が速度利用率向上に関係する重要なパラメータの一つであるとの知見を得た。
ここで、翼段間隔とは、図4に示すように、N−1段の翼後端とN段の翼前端の最小間隔をいい、具体的には図4に示すΔrのことである。
This point will be described in more detail.
As shown in FIG. 3, steam having an outflow rate: C 2 flows into the N stage from the upstream stage (N−1 stage) on the steam high pressure side. At this time, the outflow speed: C 2 becomes the inflow speed: C 0 in the N stage, and can be expressed as C 0 = εC 2 (ε: speed utilization factor). If there is no loss when steam flows from the N-1 stage to the N stage, ε = 1. However, ε takes a value smaller than 1 due to various losses.
Therefore, it is necessary to reduce various losses in order to improve the speed utilization factor and approach ε = 1.
As a result of intensive studies on how to reduce the various losses, the inventors have obtained the knowledge that the blade stage spacing is one of the important parameters related to the speed utilization rate improvement.
Here, as shown in FIG. 4, the blade stage interval refers to the minimum interval between the N−1 stage blade rear end and the N stage blade front end, specifically, Δr shown in FIG. 4.

翼段間隔と速度利用率との関係を知るため、発明者らはまず、図5に示すように、翼段間隔を可能な限り狭くして速度利用率がどのようになるかのシミュレーションを行ったが、この場合には、速度利用率はあまり大きくなかった。
この理由について検討したところ以下の通りと考えられる。図5に示すように、N−1段の翼とN段の翼は逆方向に回転するために、翼段間隔を狭くしても瞬時的に蒸気が翼段間隔へ流入してしまう。しかも、翼段間隔を狭く設定したために、この翼段間隔へ流入する蒸気流れは高速になる。この高速になった蒸気流れがN−1段からN段への本流(図5中で太線の矢印の流れ)の蒸気流れとぶつかり、この流れを乱すことになるため速度利用率が損なわれるものと考えられる。
In order to know the relationship between the blade stage spacing and the speed utilization factor, the inventors first performed a simulation of how the speed utilization factor would be by making the blade stage spacing as narrow as possible, as shown in FIG. In this case, however, the rate utilization rate was not very large.
The reason for this is considered as follows. As shown in FIG. 5, since the N-1 stage blades and the N stage blades rotate in the opposite directions, steam instantaneously flows into the blade stage interval even if the blade stage interval is narrowed. Moreover, since the blade stage interval is set narrow, the steam flow flowing into the blade stage interval becomes high speed. This high speed steam flow collides with the steam flow of the main stream from N-1 stage to N stage (the flow of the thick arrow in FIG. 5) and disturbs this flow, so that the speed utilization rate is impaired. it is conceivable that.

この検討から、翼段間隔への蒸気流入が避けられない以上、翼段間隔に流入する蒸気流速が本流に対してあまり高速にならないようにする必要があると考えた。つまり、本流の流れは前段(N−1段)の出口速度で規定され、この出口速度は前段の隣接翼間の最小間隔S(換言すれば翼後縁と隣接する翼との最小間隔)(図4参照)によって規定されることから、翼段間隔に流入する蒸気流速が本流に対してあまり高速にならないようにするには、この最小間隔Sに対して翼段間隔Δrを一定以上にすることが必要であることが分かった。   From this study, we thought that it was necessary to prevent the flow velocity of the steam flowing into the blade stage interval from becoming too high compared to the main stream, as long as steam inflow into the blade stage space was unavoidable. That is, the main flow is defined by the outlet speed of the preceding stage (N-1 stage), and this outlet speed is the minimum distance S between the adjacent blades of the preceding stage (in other words, the minimum distance between the blade trailing edge and the adjacent blade) ( Therefore, in order to prevent the steam flow velocity flowing into the blade stage interval from becoming very high with respect to the main flow, the blade stage interval Δr is set to a certain value or more with respect to the minimum interval S. I found that it was necessary.

他方、図6に示すように翼段間隔Δrを一定の間隔以上に広く取った場合においても同様のシミュレーションしたところ、速度利用率が低くなった。この理由を検討した結果、図6に示すように、翼段間隔Δrを広く取ったことにより翼段間において流路面積が拡大するため、段間を通過する間に速度が低下して、その結果、前段(N−1段)の出口速度に比べてN段における流入速度が低下して速度利用率が損なわれたものと考えられる。   On the other hand, as shown in FIG. 6, when the blade stage interval Δr was set larger than a certain interval, a similar simulation was performed, and the speed utilization rate was low. As a result of examining this reason, as shown in FIG. 6, since the flow passage area between the blade stages is increased by widening the blade stage interval Δr, the speed decreases while passing between the stages. As a result, it is considered that the inflow speed in the N stage is lower than the outlet speed in the previous stage (N-1 stage) and the speed utilization rate is impaired.

以上の検討の結果から、発明者らはさらに解析並びに試験を行った結果、高圧側前段(N−1段)における隣接翼間の最小間隔Sと、翼段間隔Δrを最適設計することにより速度利用率を向上させることが可能であるとの知見を得た。
そこで、速度利用率εと、A=Δr/Sの関係を知るためにさらにシミュレーションを行ったところ、図7に示す結果が得られた。図7においては、縦軸が速度利用率ε、横軸がA=Δr/Sである。
この図7から分かるように、速度利用率εとA=Δr/Sとは一定の関係があり、A=Δr/Sを最適値にすることで速度利用率εを向上させることができることが明確になった。ここでいうAの最適値とは、図7から分かるように、速度利用率が0.8を超えるような値であり、A=0.5〜5であり、より好ましい最適値としては速度利用率が0.9を超えるときの値であり、A=0.75〜2.5である。
本発明は以上の知見を基になされたものである。
From the results of the above examination, the inventors further analyzed and tested, and as a result, optimally designed the minimum spacing S between adjacent blades and the blade stage spacing Δr in the upstream side (N-1 stage) of the high pressure side. The knowledge that the utilization rate can be improved was obtained.
Therefore, further simulation was performed to know the relationship between the speed utilization factor ε and A = Δr / S, and the result shown in FIG. 7 was obtained. In FIG. 7, the vertical axis represents the speed utilization factor ε, and the horizontal axis represents A = Δr / S.
As can be seen from FIG. 7, there is a fixed relationship between the speed utilization factor ε and A = Δr / S, and it is clear that the speed utilization factor ε can be improved by setting A = Δr / S to an optimum value. Became. As can be seen from FIG. 7, the optimum value of A here is a value at which the speed utilization rate exceeds 0.8, A = 0.5 to 5, and a more preferable optimum value is speed utilization. It is a value when the rate exceeds 0.9, and A = 0.75 to 2.5.
The present invention has been made based on the above findings.

(1)本発明に係る半径流型蒸気タービンは、タービン軸に実質的に直角方向に設置された互いに対向する一対の板状部材と、該一対の板状部材の対向する面に内周から外周に向けて半径方向で互いに重なるように交互に設けられた複数の翼と、を有し、蒸気が前記翼間を内周部から外周部に向けて流れるものであって、翼段の間隔が高圧側前段の隣接翼間の最小間隔の0.5倍以上であることを特徴とするものである。
なお、上記一対の板状部材は共に回転する回転板であり、これらに設けられた翼が共に動翼となるものでもよいし、あるいは、一対の板状部材の片方を回転板とし他方を固定板としてそれぞれに設ける翼が動翼、静翼となるものであってもよい。
(1) A radial flow steam turbine according to the present invention includes a pair of plate-like members opposed to each other installed in a direction substantially perpendicular to the turbine shaft, and an inner surface on opposite surfaces of the pair of plate-like members. A plurality of blades alternately provided so as to overlap each other in the radial direction toward the outer periphery, and the steam flows between the blades from the inner peripheral portion toward the outer peripheral portion, and the interval between the blade stages Is 0.5 times or more the minimum distance between adjacent blades on the upstream side of the high pressure side.
The pair of plate-like members may be rotating plates that rotate together, and the blades provided on them may be moving blades, or one of the pair of plate-like members may be a rotating plate and the other fixed. The blades provided as the plates may be moving blades and stationary blades.

(2)また、上記(1)のものにおいて、翼段の間隔が高圧側前段の隣接翼間の最小間隔の5倍以下であることを特徴とするものである。 (2) Further, in the above (1), the interval between the blade stages is not more than 5 times the minimum interval between the adjacent blades on the high pressure side front stage.

本発明においては、適正な段間隔を設定することにより、前段蒸気流出速度の速度利用率の高いタービンの提供でき、従来に比べて確実なエネルギー有効活用が可能となった。   In the present invention, by setting an appropriate stage interval, it is possible to provide a turbine with a high speed utilization factor of the upstream steam outflow speed, and it has become possible to effectively use energy more reliably than before.

図1は本実施の形態に係る半径流型蒸気タービン1の構造を説明する説明図である。本実施の形態に係る半径流型蒸気タービン1は、タービン軸に実質的に直角な平面内に複数の動翼を内周部から外周部に向けて半径方向で互いに重なるように交互に配置し、蒸気が前記複数の翼間を半径方向に流れるものであって、翼段の間隔を7mmに、高圧側前段の隣接翼間の最小間隔を5mmに、設定したものである。以下、半径流型蒸気タービン1の構成をさらに詳細に説明する。   FIG. 1 is an explanatory view illustrating the structure of a radial flow steam turbine 1 according to the present embodiment. In the radial flow steam turbine 1 according to the present embodiment, a plurality of moving blades are alternately arranged in a plane substantially perpendicular to the turbine shaft so as to overlap each other in the radial direction from the inner peripheral portion toward the outer peripheral portion. The steam flows in a radial direction between the plurality of blades, and the blade interval is set to 7 mm, and the minimum interval between adjacent blades on the high pressure side front is set to 5 mm. Hereinafter, the configuration of the radial flow type steam turbine 1 will be described in more detail.

半径流型蒸気タービン1は、所定の距離を離して対向する一対の回転板3,5を有しており、これら回転板3,5の対向面側には中心側から外周側に向かって半径方向に複数の動翼3a、3b、3c、3d、と動翼5a、5b、5c、5dがそれぞれ取り付けられている。そして、これら動翼3a〜3d及び動翼5a〜5dが回転板3,5の半径方向で交互に隣り合って設置されている。また、このような半径方向に延びる翼列が回転板3,5の円周方向で複数列設けられている。
これら動翼3a〜3d及び5a〜5dは反動翼であり、流路面積を出口に向かうにしたがって狭くしてあり、導入蒸気は外周部に行くにしたがって圧力降下すると共に加速される。この際、熱エネルギーを回転エネルギーに変換する作用により動翼に回転力を発生させる。
The radial flow type steam turbine 1 has a pair of rotating plates 3 and 5 that are opposed to each other with a predetermined distance, and on the opposing surface side of these rotating plates 3 and 5, the radius is increased from the center side toward the outer peripheral side. A plurality of moving blades 3a, 3b, 3c, 3d and moving blades 5a, 5b, 5c, 5d are respectively attached in the direction. The rotor blades 3 a to 3 d and the rotor blades 5 a to 5 d are installed alternately adjacent to each other in the radial direction of the rotary plates 3 and 5. A plurality of blade rows extending in the radial direction are provided in the circumferential direction of the rotary plates 3 and 5.
These moving blades 3a to 3d and 5a to 5d are reaction blades, and the flow passage area is narrowed toward the outlet, and the introduced steam is accelerated and dropped as it goes to the outer periphery. At this time, a rotational force is generated in the rotor blade by the action of converting the heat energy into the rotational energy.

回転板3,5の対向側の中心部には蒸気導入空間4が形成されている。蒸気導入空間4には図示しない蒸気導入路が連通して設けられ、外部から蒸気が導入可能になっている。
また、回転板3,5の中心部には回転軸9,11がそれぞれ取り付けられており、各回転軸9,11はそれぞれ軸受13a,13b及び15a,15bによって回転自在に支持されている。
上記のような回転板3,5及び回転軸9,11の一端部がケーシング17内に収納され、ケーシング17及び軸受13a,13b及び15a,15bは図示しない固定部に支持されている。また、ケーシング17と回転軸9,11との間はそれぞれシール19によってシールされている。
A steam introduction space 4 is formed in the central portion on the opposite side of the rotary plates 3 and 5. A steam introduction path (not shown) communicates with the steam introduction space 4 so that steam can be introduced from the outside.
Further, rotary shafts 9 and 11 are respectively attached to the central portions of the rotary plates 3 and 5, and the rotary shafts 9 and 11 are rotatably supported by bearings 13a and 13b and 15a and 15b, respectively.
One end portions of the rotary plates 3 and 5 and the rotary shafts 9 and 11 as described above are accommodated in the casing 17, and the casing 17 and the bearings 13a and 13b and 15a and 15b are supported by a fixed portion (not shown). The casing 17 and the rotary shafts 9 and 11 are sealed with seals 19 respectively.

図2は図1のA−A線に沿う断面の一部を示したものである。以下、図2を参照しながら本実施形態の動作を説明する。
図示しない蒸気導入路から蒸気(例えば、温度400℃、圧力4MPa)が蒸気導入空間4に供給される。
蒸気導入空間4に供給された導入蒸気は複数の動翼3a〜3d、5a〜5dを通過しつつ外周部へと流動する(図2における破線矢印参照)。このとき、高圧側前段の隣接翼間の最小間隔を5mmに、翼段の間隔を7mmに設定しており、(翼段の間隔/高圧側前段の隣接翼間の最小間隔)A=1.4であることから、高い速度利用率(約0.95)が得られている(図7参照)。
FIG. 2 shows a part of a cross section taken along line AA of FIG. The operation of this embodiment will be described below with reference to FIG.
Steam (for example, a temperature of 400 ° C. and a pressure of 4 MPa) is supplied to the steam introduction space 4 from a steam introduction path (not shown).
The introduced steam supplied to the steam introducing space 4 flows to the outer peripheral portion while passing through the plurality of moving blades 3a to 3d and 5a to 5d (see broken line arrows in FIG. 2). At this time, the minimum gap between adjacent high-pressure side adjacent blades is set to 5 mm, and the blade stage interval is set to 7 mm, (blade stage interval / minimum distance between adjacent high-pressure side adjacent blades) A = 1. Therefore, a high rate utilization rate (about 0.95) is obtained (see FIG. 7).

蒸気は外周部に行くにしたがってその圧力が徐々に降下して最外周段の動翼5d通過時には復水圧力として、例えば0.025MPaまで回転エネルギーに変換される。このような内周から外周への蒸気流れの過程で熱エネルギーを回転エネルギーに変換する作用により回転力を発生させるのである。
最外周段の動翼5dを通過した蒸気はケーシング15の内部から図示しない復水器に回収される。
The pressure of the steam gradually decreases as it goes to the outer peripheral portion, and is converted into rotational energy as, for example, 0.025 MPa as condensate pressure when passing through the outermost moving blade 5d. In such a process of steam flow from the inner periphery to the outer periphery, a rotational force is generated by the action of converting thermal energy into rotational energy.
The steam that has passed through the outermost rotor blade 5d is recovered from the inside of the casing 15 to a condenser (not shown).

本実施の形態においては、高圧側前段の隣接翼間の最小間隔と、翼段の間隔を最適値に設定したことにより、前段蒸気流出速度の速度利用率の高いタービンが実現でき、このような工夫のされていない従来例に比べて確実なエネルギー有効活用が可能となった。   In the present embodiment, by setting the minimum gap between adjacent blades on the high pressure side front stage and the gap between the blade stages to the optimum values, a turbine with a high speed utilization rate of the front stage steam outflow speed can be realized. Compared to conventional examples that have not been devised, it has become possible to use energy more reliably.

なお、本実施の形態においては、対向する2枚の板状部材を回転板3,5としてそれぞれに設けた翼を動翼とした例を示したが、回転板の片方を固定板として静翼を設ける構造にしても、本発明による高圧側前段の隣接翼間の最小間隔と、翼段の間隔を最適値に設定することにより、本実施の形態と同様の効果を得ることができる。   In the present embodiment, an example in which a blade provided with two opposing plate-like members as rotating plates 3 and 5 is used as a moving blade, but a stationary blade with one of the rotating plates as a fixed plate is shown. Even when the structure is provided, the same effect as that of the present embodiment can be obtained by setting the minimum distance between adjacent blades on the high pressure side front stage and the distance between the blade stages to the optimum values according to the present invention.

本発明の一実施の形態に係る半径流型蒸気タービンの説明図である。It is explanatory drawing of the radial flow type steam turbine which concerns on one embodiment of this invention. 図1のA−A線に沿う断面の一部を示す図である。It is a figure which shows a part of cross section which follows the AA line of FIG. 半径流型蒸気タービンにおける蒸気の流れを説明する説明図である。It is explanatory drawing explaining the flow of the steam in a radial flow type steam turbine. 半径流型蒸気タービンにおける翼段の間隔Δrと、高圧側前段の隣接翼間の最小間隔Sの説明図である。It is explanatory drawing of the space | interval (DELTA) r of the blade stage in a radial flow type steam turbine, and the minimum space | interval S between the adjacent blades of a high pressure side front stage. 半径流型蒸気タービンにおいて翼段の間隔Δrを狭く設定した場合の蒸気流れを説明する説明図である。It is explanatory drawing explaining a steam flow when the space | interval (DELTA) r of a blade stage is set narrowly in a radial flow type steam turbine. 半径流型蒸気タービンにおいて翼段の間隔Δrを広く設定した場合の蒸気流れを説明する説明図である。It is explanatory drawing explaining a steam flow when the space | interval (DELTA) r of a blade stage is set widely in a radial flow type steam turbine. 速度利用率εと(翼段の間隔/高圧側前段の隣接翼間の最小間隔)Aとの関係を示すグラフである。6 is a graph showing a relationship between a speed utilization factor ε and (blade stage interval / minimum gap between adjacent blades on the high pressure side front stage) A. 従来のユングストロームタービンの概要を説明する説明図である。It is explanatory drawing explaining the outline | summary of the conventional Jungstrom turbine.

符号の説明Explanation of symbols

1 半径流型蒸気タービン、3,5 回転板、3a〜3d,5a〜5d 動翼、9,11 回転軸、17 ケーシング。   DESCRIPTION OF SYMBOLS 1 Radial flow type steam turbine, 3, 5 rotary plate, 3a-3d, 5a-5d Rotor blade, 9,11 rotating shaft, 17 casing.

Claims (2)

タービン軸に実質的に直角方向に設置された互いに対向する一対の板状部材と、該一対の板状部材の対向する面に内周から外周に向けて半径方向で互いに重なるように交互に設けられた複数の翼と、を有し、蒸気が前記翼間を内周部から外周部に向けて流れる半径流型蒸気タービンであって、翼段の間隔が高圧側前段の隣接翼間の最小間隔の0.5倍以上であることを特徴とする半径流型蒸気タービン。 A pair of opposed plate-like members installed substantially perpendicular to the turbine shaft and alternately provided on opposite surfaces of the pair of plate-like members so as to overlap each other in the radial direction from the inner circumference to the outer circumference. A radial flow type steam turbine in which steam flows between the blades from the inner periphery toward the outer periphery, and the interval between the blade stages is the minimum between adjacent blades on the high pressure side front stage. A radial flow type steam turbine characterized by being 0.5 times or more of the interval. 翼段の間隔が高圧側前段の隣接翼間の最小間隔の5倍以下であることを特徴とする請求項1記載の半径流型蒸気タービン。 The radial flow steam turbine according to claim 1, wherein the interval between the blade stages is not more than 5 times the minimum interval between adjacent blades on the upstream side of the high pressure side.
JP2004216743A 2004-07-26 2004-07-26 Radial flow type steam turbine Pending JP2006037791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216743A JP2006037791A (en) 2004-07-26 2004-07-26 Radial flow type steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216743A JP2006037791A (en) 2004-07-26 2004-07-26 Radial flow type steam turbine

Publications (1)

Publication Number Publication Date
JP2006037791A true JP2006037791A (en) 2006-02-09

Family

ID=35903043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216743A Pending JP2006037791A (en) 2004-07-26 2004-07-26 Radial flow type steam turbine

Country Status (1)

Country Link
JP (1) JP2006037791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510921A (en) * 2016-03-30 2019-04-18 エクセルギー エス.ピー.エー.Exergy S.P.A. Method of manufacturing a bladed disk for radial turbomachines and bladed disk obtained by this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510921A (en) * 2016-03-30 2019-04-18 エクセルギー エス.ピー.エー.Exergy S.P.A. Method of manufacturing a bladed disk for radial turbomachines and bladed disk obtained by this method

Similar Documents

Publication Publication Date Title
US9476315B2 (en) Axial flow turbine
JP2010223010A (en) Gas turbine
JP2010174885A (en) Rotor chamber cover member having aperture for dirt separation and related turbine
JP2009019627A (en) Steam turbine moving blade
JP2018115581A (en) Turbine exhaust chamber
JP2011140943A (en) Adverse pressure gradient seal mechanism
JP5850805B2 (en) Exhaust chamber of steam turbine and method for manufacturing the same
JP2016084813A (en) Turbine assembly
JP2009036118A (en) Axial-flow exhaust gas turbine
US9896952B2 (en) Rotating machine
WO2019244785A1 (en) Steam turbine installation and combined cycle plant
JP2012082826A (en) Turbine bucket shroud tail
EP2649279B1 (en) Fluid flow machine especially gas turbine penetrated axially by a hot gas stream
JP2016525642A (en) Rotor for thermal turbomachine
JP2013249843A (en) Nozzle diaphragm inducer
JP2008051101A (en) Rotor for steam turbine, and turbine engine
JP2014020372A (en) Stationary vane assembly for axial flow turbine
JP2006037791A (en) Radial flow type steam turbine
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP2011094614A (en) Turbo machine efficiency equalizer system
JP2011058498A (en) Axial turbine and method for discharging flow from the same
JP6637455B2 (en) Steam turbine
EP3663514B1 (en) Steam turbine blade and steam turbine
JP2005105855A (en) Steam turbine
JP2011074804A (en) Nozzle of steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060807

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Effective date: 20090121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A02 Decision of refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A02