JP2006037166A - Surface treatment method - Google Patents

Surface treatment method Download PDF

Info

Publication number
JP2006037166A
JP2006037166A JP2004219001A JP2004219001A JP2006037166A JP 2006037166 A JP2006037166 A JP 2006037166A JP 2004219001 A JP2004219001 A JP 2004219001A JP 2004219001 A JP2004219001 A JP 2004219001A JP 2006037166 A JP2006037166 A JP 2006037166A
Authority
JP
Japan
Prior art keywords
processed
treatment method
surface treatment
treated
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219001A
Other languages
Japanese (ja)
Other versions
JP5097331B2 (en
Inventor
Sakae Inayoshi
さかえ 稲吉
Shunji Misawa
三沢  俊司
Katsuosa Ishizawa
克修 石澤
Takeshi Nomura
健 野村
Shinichi Saito
真一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANAI PLANT KOGYO KK
Ulvac Inc
Original Assignee
SANAI PLANT KOGYO KK
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANAI PLANT KOGYO KK, Ulvac Inc filed Critical SANAI PLANT KOGYO KK
Priority to JP2004219001A priority Critical patent/JP5097331B2/en
Publication of JP2006037166A publication Critical patent/JP2006037166A/en
Application granted granted Critical
Publication of JP5097331B2 publication Critical patent/JP5097331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method capable of cleaning the inside wall or external wall of an object to be treated, such as vacuum vessel and forming a dense oxide layer. <P>SOLUTION: In the surface treatment method of the object to be treated for metallic components constituting a vacuum treatment apparatus, the object to be treated is connected to the anode side of an electric power source and a treatment medium for polishing the surface of the object to be treated is connected to the cathode side of the electric power source and in the state of holding an electrolyte in the treatment medium, a DC current is passed via the electrolyte between the electrodes, thereby electrolytically polishing the surface of the object to be treated in such a manner that the surface roughness (R<SB>max</SB>) thereof attains ≥0.1 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空処理装置を構成する金属製部品の表面を清浄化するための表面処理方法に関するものである。   The present invention relates to a surface treatment method for cleaning the surface of a metal part constituting a vacuum processing apparatus.

従来、真空処理装置に使用される金属製容器等の金属製部品は、前記真空処理装置に組み込む前に、表面を洗浄するようにしている。
その目的は、金属製部品を加工する際に付着した潤滑油、研磨剤や切削屑等を除去し、金属製部品の表面酸化層を緻密なものとするためである。後者の金属製部品の表面酸化層を緻密なものとする理由は、研磨や切削等の処理がされた際に金属製部品の表面酸化層が緻密でなくなり真空雰囲気でガスが発生したり、或いは、溶接により生じた溶接焼け部分から真空雰囲気でガスが発生したりするからである。
上記理由から、電解研磨、化学研磨又は酸性溶液による洗浄等の処理、ガラス、SiC又はアルミナ等によるブラスト処理、或いは、ステンレス鋼を使用した部品の場合には、フッ硝酸のペーストを使用した処理等が行われていた。
Conventionally, metal parts such as a metal container used in a vacuum processing apparatus are cleaned on the surface before being incorporated into the vacuum processing apparatus.
The purpose is to remove the lubricating oil, abrasives, cutting scraps and the like adhering when processing the metal part, and to make the surface oxide layer of the metal part dense. The reason for making the surface oxide layer of the latter metal parts dense is that the surface oxide layer of the metal parts becomes less dense when processing such as polishing or cutting is performed, or gas is generated in a vacuum atmosphere, or This is because gas is generated in a vacuum atmosphere from a weld burnt portion generated by welding.
For the above reasons, treatment such as electrolytic polishing, chemical polishing or cleaning with an acidic solution, blasting treatment using glass, SiC or alumina, or treatment using a paste of hydrofluoric acid in the case of parts using stainless steel, etc. Was done.

しかしながら、電解研磨等の処理の場合、被処理物を処理溶液で満たされた容器に浸漬する必要があるために、被処理物が大きくなると処理できないという問題があった。また、被処理物の重量が大きくなりすぎると、クレーン等の許容荷重を超えて搬送できないという問題があった。また、ブラスト処理は、ガス放出量が多いため好ましくなく、また、フッ硝酸ペーストを使用した処理は危険を伴うため好ましくないという問題があった。   However, in the case of processing such as electrolytic polishing, there is a problem in that processing cannot be performed when the processing object becomes large because the processing object needs to be immersed in a container filled with the processing solution. In addition, if the weight of the object to be processed becomes too large, there is a problem in that it cannot be transported exceeding an allowable load such as a crane. In addition, the blast treatment is not preferable because of the large amount of gas released, and the treatment using the fluorinated nitric acid paste is not preferable because it involves danger.

一方、化学塔槽内面のステンレスを鏡面仕上げするニーズに対して、電解複合鏡面研磨法が非特許文献1において提案されている。
この文献には、被処理物の表面をRmax0.05〜0.01μm程度に加工して、表面の欠陥層を除去して均一に鏡面仕上げすることについて開示されている。
しかしながら、鏡面加工をする際に、研磨剤等が被処理物の表面に混入して緻密な酸化層を形成することができず、結果として、真空雰囲気で被処理物から放出するガスを低減させることは難しかった。
On the other hand, Non-Patent Document 1 proposes an electrolytic composite mirror polishing method for the needs of mirror finishing the stainless steel on the inner surface of the chemical tower.
This document discloses that the surface of an object to be processed is processed to have an R max of about 0.05 to 0.01 μm, and a defect layer on the surface is removed to make a mirror finish uniformly.
However, when mirror processing is performed, an abrasive or the like is mixed into the surface of the object to be processed, so that a dense oxide layer cannot be formed, and as a result, gas released from the object to be processed in a vacuum atmosphere is reduced. That was difficult.

前畑 英彦、大工 博之、馬場 吉康,「電解複合鏡面研磨技術による金属表面のクリーン化」,表面技術,1989,Vol.40,No.3,p.40-45Hidehiko Maebata, Hiroyuki Carpenter, Yoshiyasu Baba, “Cleaning of Metal Surface by Electrolytic Composite Mirror Polishing Technology”, Surface Technology, 1989, Vol.40, No.3, p.40-45

そこで、本発明は、上記従来の問題を解決するもので、真空容器等の被処理物の内壁又は外壁を清浄化するとともに、緻密な酸化層を形成することが可能な表面処理方法を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and provides a surface treatment method capable of purifying an inner wall or an outer wall of an object to be treated such as a vacuum vessel and forming a dense oxide layer. For the purpose.

上記課題を解決するために、本発明者等は鋭意検討の結果、表面粗度(Rmax)が0.1μm以上となるようにして、被処理物を電解液に浸漬しないで電解研磨をすることにより、被処理物の表面に緻密な表面酸化層を形成することができるという知見に基づき、下記の通り解決手段を見出した。
即ち、本発明の表面処理方法は、請求項1に記載の通り、真空処理装置を構成する金属製部品を被処理物の表面処理方法であって、前記被処理物を電源の陽極側に接続し、前記被処理物の表面を研磨するための処理媒体を前記電源の陰極側に接続するとともに、前記処理媒体に電解液を保持させた状態で、前記電極間に、前記電解液を介して直流電流を流すことにより、前記被処理物の表面を、表面粗度(Rmax)が0.1μm以上となるように電解研磨することを特徴とする。
また、請求項2に記載の表面処理方法は、請求項1に記載の表面処理方法において、酸洗処理も併せて行うことを特徴とする。
また、請求項3に記載の表面処理方法は、請求項1又は2に記載の表面処理方法において、研磨剤による機械的研磨も併せて行うことを特徴とする。
In order to solve the above-mentioned problems, the present inventors have conducted an electropolishing without immersing the object to be treated in an electrolytic solution so that the surface roughness (R max ) is 0.1 μm or more as a result of intensive studies. Thus, based on the knowledge that a dense surface oxide layer can be formed on the surface of the object to be processed, the present inventors have found a solution as follows.
That is, the surface treatment method of the present invention is a surface treatment method for a metal object constituting a vacuum processing apparatus as claimed in claim 1, wherein the object to be treated is connected to the anode side of a power source. And a processing medium for polishing the surface of the object to be processed is connected to the cathode side of the power source, and the electrolytic solution is held between the electrodes with the electrolytic solution held in the processing medium. By flowing a direct current, the surface of the object to be processed is electropolished so that the surface roughness (R max ) is 0.1 μm or more.
The surface treatment method according to claim 2 is characterized in that in the surface treatment method according to claim 1, pickling treatment is also performed.
The surface treatment method according to claim 3 is characterized in that in the surface treatment method according to claim 1 or 2, mechanical polishing with an abrasive is also performed.

本発明の表面処理方法によれば、大型化された真空処理装置用の金属製容器等の部品であっても、電解液に浸漬するという大がかりな装置を必要とせず、比較的簡素な構成で被処理物の表面を洗浄することができる。また、本発明の表面処理方法により処理された被処理物には、電解液に被処理物を浸漬する電解研磨と同等の緻密な表面酸化層を形成されるため、真空雰囲気下においても、被処理物表面から放出されるガス放出が少なくすることができる。   According to the surface treatment method of the present invention, even a component such as an enlarged metal container for a vacuum processing apparatus does not require a large-scale apparatus that is immersed in an electrolytic solution, and has a relatively simple configuration. The surface of the workpiece can be cleaned. In addition, the object to be processed treated by the surface treatment method of the present invention is formed with a dense surface oxide layer equivalent to the electrolytic polishing in which the object to be treated is immersed in an electrolytic solution. Gas emission released from the surface of the treatment object can be reduced.

本発明は、前記被処理物を電源の陽極側に接続するとともに、前記被処理物の表面に電解液を接触させるための処理媒体を前記電源の陰極側に接続し、前記電極間に、前記電解液を介して直流電流を流すことにより、前記被処理物の表面を、表面粗度(Rmax)が0.1μm以上となるように電解研磨するものである。
本発明は、被処理物の表面を鏡面にすることを目的とするものではなく、汚染された粗な表面酸化層を除去し、新たに清浄な表面酸化層を形成して、真空処理中に被処理物からガスが放出することを低減させることを目的とするため、被処理物の表面粗度(Rmax)が0.1μm以上となるようにしている。表面粗度(Rmax)が0.1μm未満となる鏡面研磨をしてしまうと、砥粒の研磨剤や不純物等が被処理物の表面酸化層に埋設されるか、或いは、巻き込まれ、緻密な表面酸化層を形成することができないからである。
前記真空処理装置を構成する金属製部品は、真空処理環境下におかれる部品であればよく、特に制限するものではない。一例を挙げると、金属製容器等が挙げられる。尚、前記金属としては、ステンレス鋼、アルミニウム合金、チタン合金等が挙げられる。
前記処理媒体としては、前記電極間に直流電流を流すことができれば、材料や形状は限定されるものではなく、不織布等が挙げられる。
また、電解液としては、通常の電解研磨と同じものを使用することができ、無機酸、有機酸、無機酸塩及び有機酸塩のうちの少なくともいずれかを含むもの等が挙げられる。
尚、本発明の電解研磨における電解電流密度は、被処理物により異なるが、例えば、ステンレス鋼であれば、0.1〜0.5A/m2である。
前記表面処理方法に加えて、電解液として酸性溶液を使用することで、電解酸洗を行うことが好ましい。更なる清浄化ができるからである。この場合には、無機酸や有機酸等の電解液を使用することができる。
更に、前記表面処理方法に加えて、研磨剤による機械研磨を行うことが好ましい。これにより、更に清浄化が図られるからである。尚、この場合の研磨剤は、電解研磨後の表面粗度(Rmax)が0.1μm以上となるものを適宜選択する必要がある。
In the present invention, the object to be processed is connected to the anode side of the power source, and a processing medium for bringing an electrolytic solution into contact with the surface of the object to be processed is connected to the cathode side of the power source. By passing a direct current through the electrolytic solution, the surface of the object to be processed is electrolytically polished so that the surface roughness (R max ) is 0.1 μm or more.
The present invention is not intended to make the surface of an object to be processed into a mirror surface, but removes a contaminated rough surface oxide layer to form a new clean surface oxide layer, and during vacuum processing. In order to reduce the release of gas from the object to be processed, the surface roughness (R max ) of the object to be processed is set to 0.1 μm or more. When mirror polishing is performed so that the surface roughness (R max ) is less than 0.1 μm, abrasives, impurities, etc. of abrasive grains are embedded or entrained in the surface oxide layer of the object to be processed. This is because a surface oxide layer cannot be formed.
The metal parts constituting the vacuum processing apparatus are not particularly limited as long as they are parts placed in a vacuum processing environment. An example is a metal container. Examples of the metal include stainless steel, aluminum alloy, titanium alloy, and the like.
The treatment medium is not limited in material and shape as long as a direct current can flow between the electrodes, and examples thereof include a nonwoven fabric.
In addition, as the electrolytic solution, the same one as in normal electrolytic polishing can be used, and examples thereof include those containing at least one of an inorganic acid, an organic acid, an inorganic acid salt, and an organic acid salt.
In addition, although the electrolytic current density in the electropolishing of this invention changes with to-be-processed objects, in the case of stainless steel, it is 0.1-0.5 A / m < 2 >.
In addition to the surface treatment method, electrolytic pickling is preferably performed by using an acidic solution as the electrolytic solution. This is because it can be further cleaned. In this case, an electrolytic solution such as an inorganic acid or an organic acid can be used.
Further, in addition to the surface treatment method, it is preferable to perform mechanical polishing with an abrasive. This is because further cleaning is achieved. In addition, it is necessary to select suitably the abrasive | polishing agent in this case as for the surface roughness ( Rmax ) after electropolishing being 0.1 micrometer or more.

以下、本発明の実施例について図面を参照して説明する。
(実施例1)
図1は、本発明の表面処理方法の一実施例の説明図である。
図中1は、圧延上がりのステンレス鋼板(SUS304)からなる500mm×1000mm×5mmの被処理物であり、この被処理物1は図示されるように、接合部が溶接2されている。
図中3で示されるものは、本発明の処理媒体であり、ナイロン製不織布により構成されている。処理媒体3には、5%の硫酸ナトリウム溶液を染み込ませてあり、電源5の陰極側に、端子4を介して接続されている。電源5の陽極側は、被処理物1に接続されている。
そして、処理媒体3を、溶接部2に接触させた状態で、電極間に10V−10A(電解電流密度0.1A/cm2)を加え、10分間処理を行い、被処理物1を純水により洗浄した。
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 is an explanatory view of an embodiment of the surface treatment method of the present invention.
In the figure, reference numeral 1 denotes a workpiece of 500 mm × 1000 mm × 5 mm made of a rolled stainless steel plate (SUS304), and the workpiece 1 is welded 2 at the joint as shown in the figure.
What is indicated by 3 in the figure is the treatment medium of the present invention, and is constituted by a nylon nonwoven fabric. The treatment medium 3 is impregnated with a 5% sodium sulfate solution, and is connected to the cathode side of the power source 5 via a terminal 4. The anode side of the power source 5 is connected to the workpiece 1.
And in the state which made the processing medium 3 contact the welding part 2, 10V-10A (electrolytic current density 0.1A / cm < 2 >) is added between electrodes, it processes for 10 minutes, and the to-be-processed object 1 is a pure water. Washed with

前記処理された被処理物1について、昇温速度0.5℃/sで450℃まで温度を上昇させた時の単位面積当たりのガス放出量を測定した(以下、昇温脱離法という)。処理前後の結果を比較して表1に示す。   For the treated object 1, the amount of gas released per unit area when the temperature was raised to 450 ° C. at a temperature rising rate of 0.5 ° C./s was measured (hereinafter referred to as a temperature-programmed desorption method). . Table 1 compares the results before and after the treatment.

上記表1から、実施例1の表面処理方法によれば、ガス放出量を低減できることがわかった。   From Table 1 above, it was found that the amount of gas released can be reduced according to the surface treatment method of Example 1.

次に、実施例1の電解液及び処理条件を、表2に示すように変更して表面処理を行った。処理された被処理物について、前記昇温脱離法によりガス放出量を測定した結果を同表に示す。   Next, the electrolytic treatment and the treatment conditions of Example 1 were changed as shown in Table 2 to perform surface treatment. The results of measuring the amount of gas released by the temperature programmed desorption method for the treated objects are shown in the same table.

上記表2より、無機酸、有機酸、無機酸塩及び有機酸塩のいずれの電解液で表面処理をした場合も、ガス放出量は低かった。
尚、電解液に無機酸塩、有機酸塩を用いた場合の研磨量は、0.05〜0.4μm、無機酸を用いた場合の研磨量は、2〜10μmであった。
From Table 2 above, when the surface treatment was performed with any electrolyte solution of inorganic acid, organic acid, inorganic acid salt and organic acid salt, the gas release amount was low.
In addition, the grinding | polishing amount when using an inorganic acid salt and organic acid salt for electrolyte solution was 0.05-0.4 micrometer, and the grinding | polishing amount when using an inorganic acid was 2-10 micrometers.

(実施例2)
図2は、本発明の表面処理方法の他の実施例の説明図である。
図中11は、被処理物であり、図中20で示されるものは、実施例2の表面処理方法に使用される装置であり、この装置20は、処理媒体13としてナイロン製不織布からなるバフを備えている。前記処理媒体13は、エア回転式の工具12に回転自在に取り付けられている。処理媒体13の上方にはカバー17が設けられ、このカバー17に電解液を投入するための投入口16が設けられており、この投入口16から投入された電解液は、処理媒体13に染み込むようになっている。
また、電源15の陰極側は、端子14を介して処理媒体13に導通可能に接続され、陽極側は被処理物11に接続されている。尚、本実施例では、電解液として、5%の硫酸ナトリウム溶液を使用した。
次に、被処理物11として、次のサンプル1及び2を用意した。サンプル1は、500mm×1000mm×5mmのステンレス鋼板(SUS304)を、ガラスビーズによりブラスト処理したものであり、サンプル2は、同形状のステンレス鋼板(SUS304)を#400バフ研磨により処理したものである。尚、使用した被処理物1には、溶接部分は存在していない。
上記装置20により、処理媒体13と、被処理物11との間に10V−10Aの電解電流(電解電流密度0.1A/cm2)を流すとともに、処理媒体13を回転(60回転/分)させ、純水により被処理物1を洗浄した。
(比較例1)
サンプル2を10%のリン酸系溶液に浸漬して電解研磨を行った。
(Example 2)
FIG. 2 is an explanatory view of another embodiment of the surface treatment method of the present invention.
In the figure, reference numeral 11 denotes an object to be treated, and what is indicated by 20 in the figure is an apparatus used in the surface treatment method of Example 2. This apparatus 20 is a buff made of a nylon nonwoven fabric as the treatment medium 13. It has. The processing medium 13 is rotatably attached to an air rotary tool 12. A cover 17 is provided above the processing medium 13, and a charging port 16 for charging the electrolytic solution into the cover 17 is provided. The electrolytic solution charged from the charging port 16 soaks into the processing medium 13. It is like that.
Further, the cathode side of the power supply 15 is connected to the processing medium 13 through the terminal 14 so as to be conductive, and the anode side is connected to the object 11 to be processed. In this example, a 5% sodium sulfate solution was used as the electrolytic solution.
Next, as samples 11 to be processed, the following samples 1 and 2 were prepared. Sample 1 is a 500 mm × 1000 mm × 5 mm stainless steel plate (SUS304) blasted with glass beads, and sample 2 is a stainless steel plate (SUS304) of the same shape processed by # 400 buffing. . In addition, the used to-be-processed object 1 does not have a welding part.
The apparatus 20 causes an electrolytic current (electrolytic current density of 0.1 A / cm 2 ) of 10 V-10 A to flow between the processing medium 13 and the workpiece 11 and rotates the processing medium 13 (60 rotations / minute). Then, the workpiece 1 was washed with pure water.
(Comparative Example 1)
Sample 2 was immersed in a 10% phosphoric acid solution and electropolished.

上記実施例2により処理されたサンプル1及び2と、比較例1により処理されたサンプル2について、昇温脱離法によるガス放出量を測定した結果を表3に示す。   Table 3 shows the results of measuring the amount of gas released by the temperature programmed desorption method for Samples 1 and 2 processed in Example 2 and Sample 2 processed in Comparative Example 1.

表3から、実施例2により処理されたサンプル1及び2のガス放出量は低減したことがわかる。
また、サンプル1の表面のSEM画像を、図3((a)処理前、(b)実施例2による処理後)に示す。図3から、実施例2により処理された被処理物の表面は、溶解され、エッジ部の角が丸くなっていることがわかる。
尚、比較例1により処理されたサンプル2のガス放出量が、実施例2により処理されたサンプル2のガス放出量よりも若干少ない理由は、研磨量の差によるものと考えられる。即ち、実施例2では研磨量を約0.2μmで留めたのに対して、比較例1では研磨量を約4μmとした。その結果として、実施例2により処理されたサンプル2の表面(凹凸も含めた真の表面積)が大きくなったためと考えられる。
尚、上記実施例2の表面処理方法では、エア式の回転工具12を使用したが、モータ式のものを使用してもよい。
From Table 3, it can be seen that the amount of outgassing of Samples 1 and 2 treated according to Example 2 was reduced.
Moreover, the SEM image of the surface of the sample 1 is shown in FIG. 3 ((a) before processing, (b) after processing according to Example 2). From FIG. 3, it can be seen that the surface of the workpiece processed in Example 2 is melted and the corners of the edge portions are rounded.
The reason why the gas release amount of the sample 2 processed by the comparative example 1 is slightly smaller than the gas release amount of the sample 2 processed by the example 2 is considered to be due to the difference in the polishing amount. That is, in Example 2, the polishing amount was kept at about 0.2 μm, whereas in Comparative Example 1, the polishing amount was about 4 μm. As a result, it is considered that the surface (true surface area including irregularities) of the sample 2 processed in Example 2 was increased.
In the surface treatment method of the second embodiment, the pneumatic rotary tool 12 is used. However, a motor type may be used.

<比較試験例1>
内寸法、ステンレス鋼板を有底の円筒状に成形し、接合部を溶接することにより作製した内寸1m×1m×0.8mの真空容器に対して、下記3種類の処理を行った。
<Comparative Test Example 1>
The following three types of treatment were performed on a vacuum vessel having an inner dimension of 1 m × 1 m × 0.8 m, which was formed by forming a stainless steel plate with an inner dimension into a bottomed cylindrical shape and welding the joint.

(比較例2)
前記容器の溶接焼けした部分を含む内壁を、純水のみにより洗浄したものをサンプル1とした。
(Comparative Example 2)
Sample 1 was prepared by washing the inner wall of the container including the welded portion with pure water only.

(実施例3)
前記容器の溶接焼けした部分を含む内壁を、電解液として10%リン酸アンモニウム溶液を使用して、実施例2と同様の処理を行い、純水により清浄したものをサンプル2とした。
(Example 3)
Sample 2 was prepared by treating the inner wall including the welded portion of the container with a 10% ammonium phosphate solution as an electrolyte solution and purifying with pure water in the same manner as in Example 2.

(比較例3)
70%リン酸−硫酸系溶液に前記容器を浸漬して電解研磨を行い、純水により洗浄したものをサンプル3とした。
(Comparative Example 3)
Sample 3 was prepared by immersing the container in a 70% phosphoric acid-sulfuric acid solution, electrolytic polishing, and washing with pure water.

上記3つのサンプルを、室温下で300リットル/sのターボ分子ポンプで排気したときの圧力の時間変化を図4に示す。排気開始10時間後の圧力は、サンプル1では4.2×10-5Pa、サンプル2では6.4×10-6Pa、サンプル3では4.3×10-6Paであった。
サンプル2の圧力は、サンプル1と比べて低く、サンプル3とほぼ同等であり、実施例3の表面処理方法が有効であることがわかる。
FIG. 4 shows changes in pressure over time when the above three samples are evacuated with a 300 liter / s turbo molecular pump at room temperature. The pressure 10 hours after the start of evacuation was 4.2 × 10 −5 Pa for sample 1, 6.4 × 10 −6 Pa for sample 2, and 4.3 × 10 −6 Pa for sample 3.
The pressure of the sample 2 is lower than that of the sample 1 and is almost equal to that of the sample 3, and it can be seen that the surface treatment method of Example 3 is effective.

(実施例4)
500mm×1000mm×5mmのアルミニウム合金板を被処理物として、電解液と処理条件を下記表4の条件とした以外は、上記実施例2と同様に表面処理を行った。各処理を行った後の被処理物について、昇温脱離法によるガス放出量を測定した結果を同表に示す。
Example 4
Surface treatment was performed in the same manner as in Example 2 except that an aluminum alloy plate having a size of 500 mm × 1000 mm × 5 mm was used as an object to be processed and the electrolytic solution and the processing conditions were the conditions shown in Table 4 below. The results of measuring the amount of gas released by the temperature programmed desorption method for the workpieces after each treatment are shown in the same table.

(実施例5)
500mm×1000mm×5mmのチタン合金板を被処理物として、電解液と処理条件を下記表5の条件とした以外は、上記実施例2と同様に表面処理を行った。各処理を行った後の被処理物について、昇温脱離法によるガス放出量を測定した結果を同表に示す。
(Example 5)
Surface treatment was performed in the same manner as in Example 2 except that a 500 mm × 1000 mm × 5 mm titanium alloy plate was used as an object to be processed and the electrolytic solution and the treatment conditions were as shown in Table 5 below. The results of measuring the amount of gas released by the temperature programmed desorption method for the workpieces after each treatment are shown in the same table.

表4及び表5から、各条件の処理を行うことでガス放出量を少なくすることができることがわかる。   From Table 4 and Table 5, it can be seen that the gas emission amount can be reduced by performing the treatment under each condition.

<比較試験例2>
(実施例6)
#400バフ研磨により前処理された500mm×1000mm×5mmのステンレス鋼を被処理物として、10%リン酸アンモニウム溶液を使用した以外は実施例2と同様にして表面処理を行った。
(比較例4)
実施例6と同じ被処理物を使用して、非特許文献1に開示される方法で電解複合鏡面研磨処理を行った。
尚、#400バフ研磨をした処理前の被処理物の表面粗度(Rmax)は0.2μm、実施例6により処理された被処理物の表面粗度(Rmax)は0.25μm、比較例4により処理された被処理物の表面粗度(Rmax)は0.02μmであった。
表6に、各処理後の被処理物について、昇温脱離法によるガス放出量を測定した結果を示す。
<Comparative Test Example 2>
(Example 6)
Surface treatment was performed in the same manner as in Example 2 except that a stainless steel of 500 mm × 1000 mm × 5 mm pretreated by # 400 buffing was used as a workpiece, and a 10% ammonium phosphate solution was used.
(Comparative Example 4)
Using the same object to be treated as in Example 6, electrolytic composite mirror polishing was performed by the method disclosed in Non-Patent Document 1.
The surface roughness (R max ) of the object to be processed before # 400 buffing was 0.2 μm, and the surface roughness (R max ) of the object processed in Example 6 was 0.25 μm. The surface roughness (R max ) of the workpiece processed in Comparative Example 4 was 0.02 μm.
Table 6 shows the results of measuring the amount of gas released by the temperature programmed desorption method for each processed object.

表6から、比較例4により処理された被処理物の方が、実施例6により処理された被処理物よりもガス放出量が多いことがわかる。
比較例4により処理された被処理物のガス放出量が多くなった理由は、被処理物の表面に緻密な表面酸化層が形成されなかったことによるものと推定される。このことを検証するために、実施例6により処理された被処理物及び比較例4により処理された被処理物を、真空中において450℃で2時間加熱し、オージェ電子分光法により表面酸化層の厚さの変化を調べた。その結果、比較例4により処理された被処理物では、真空中で加熱すると表面酸化層が厚くなったのに対して、実施例6により処理された被処理物では表面酸化層の厚さが変化しなかった。従って、実施例6により処理された被処理物の表面酸化層は、比較例4により処理された被処理物の表面酸化層よりも緻密なものであるといえる。
From Table 6, it can be seen that the processed material processed by Comparative Example 4 has a larger amount of gas emission than the processed material processed by Example 6.
It is estimated that the reason why the amount of gas released from the object processed by Comparative Example 4 was increased was that a dense surface oxide layer was not formed on the surface of the object to be processed. In order to verify this, the workpiece processed in Example 6 and the workpiece processed in Comparative Example 4 were heated in vacuum at 450 ° C. for 2 hours, and surface oxide layers were formed by Auger electron spectroscopy. The change of the thickness was investigated. As a result, in the workpiece processed in Comparative Example 4, the surface oxide layer became thick when heated in vacuum, whereas in the workpiece processed in Example 6, the thickness of the surface oxide layer was increased. It did not change. Therefore, it can be said that the surface oxide layer of the workpiece processed in Example 6 is denser than the surface oxide layer of the workpiece processed in Comparative Example 4.

本発明の一実施例の説明図Explanatory drawing of one Example of this invention 本発明の他の実施例の説明図Explanatory drawing of the other Example of this invention ステンレス鋼板の表面処理前後のSEM画像((a)処理前、(b)処理後)SEM images before and after surface treatment of stainless steel sheet (before (a) treatment, after (b) treatment) 比較試験例1の排気特性を示すグラフGraph showing the exhaust characteristics of Comparative Test Example 1

符号の説明Explanation of symbols

1 被処理物
2 溶接部
3 処理媒体
4 端子
5 電源
11 被処理物
12 エア回転式の工具
13 処理媒体
14 端子
15 電源
16 投入口
17 カバー
20 装置
DESCRIPTION OF SYMBOLS 1 To-be-processed object 2 Welding part 3 Processing medium 4 Terminal 5 Power supply 11 To-be-processed object 12 Air rotary tool 13 Processing medium 14 Terminal 15 Power supply 16 Input port 17 Cover 20 Apparatus

Claims (3)

真空処理装置を構成する金属製部品を被処理物とする表面処理方法であって、前記被処理物を電源の陽極側に接続するとともに、前記被処理物の表面に電解液を接触させるための処理媒体を前記電源の陰極側に接続し、前記電極間に、前記電解液を介して直流電流を流すことにより、前記被処理物の表面を、表面粗度(Rmax)が0.1μm以上となるように電解研磨することを特徴とする表面処理方法。 A surface treatment method using a metal part constituting a vacuum processing apparatus as an object to be processed, for connecting the object to be processed to the anode side of a power source and bringing an electrolytic solution into contact with the surface of the object to be processed A processing medium is connected to the cathode side of the power source, and a direct current is passed between the electrodes via the electrolytic solution, whereby the surface of the object to be processed has a surface roughness (R max ) of 0.1 μm or more. A surface treatment method characterized by electropolishing so that 酸洗処理も併せて行うことを特徴とする請求項1に記載の表面処理方法。   The surface treatment method according to claim 1, wherein pickling treatment is also performed. 研磨剤による機械的研磨も併せて行うことを特徴とする請求項1又は2に記載の表面処理方法。
The surface treatment method according to claim 1, wherein mechanical polishing with an abrasive is also performed.
JP2004219001A 2004-07-27 2004-07-27 Surface treatment method Active JP5097331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219001A JP5097331B2 (en) 2004-07-27 2004-07-27 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219001A JP5097331B2 (en) 2004-07-27 2004-07-27 Surface treatment method

Publications (2)

Publication Number Publication Date
JP2006037166A true JP2006037166A (en) 2006-02-09
JP5097331B2 JP5097331B2 (en) 2012-12-12

Family

ID=35902474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219001A Active JP5097331B2 (en) 2004-07-27 2004-07-27 Surface treatment method

Country Status (1)

Country Link
JP (1) JP5097331B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379226U (en) * 1989-12-06 1991-08-13
JPH0679533A (en) * 1992-09-02 1994-03-22 Nishiyama Stainless Chem Kk Complex electrolytic polishing process
JPH07185941A (en) * 1993-12-27 1995-07-25 Hitachi Zosen Corp Method for electrolytic polishing of member made of stainless steel
JPH09217166A (en) * 1987-10-24 1997-08-19 Tadahiro Omi Stainless steel, production thereof and evacuating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217166A (en) * 1987-10-24 1997-08-19 Tadahiro Omi Stainless steel, production thereof and evacuating device
JPH0379226U (en) * 1989-12-06 1991-08-13
JPH0679533A (en) * 1992-09-02 1994-03-22 Nishiyama Stainless Chem Kk Complex electrolytic polishing process
JPH07185941A (en) * 1993-12-27 1995-07-25 Hitachi Zosen Corp Method for electrolytic polishing of member made of stainless steel

Also Published As

Publication number Publication date
JP5097331B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6686164B2 (en) Coated semiconductor processing components having chlorine and fluorine plasma corrosion resistance, and complex oxide coatings therefor
JP4456378B2 (en) Method for producing conductive diamond electrode
JP4716779B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP5258873B2 (en) Method for cleaning surface metal contamination from electrode assemblies
US20080217186A1 (en) Electropolishing process for titanium
JP2008095192A (en) Electropolishing process for niobium and tantalum
JP5072398B2 (en) Surface treatment method for welded part of metal member
TWI418656B (en) Surface treatment method
JP5097331B2 (en) Surface treatment method
JP2000257795A (en) Inner surface treatment method of high pressure gas container
JP4287140B2 (en) Method for recycling aluminum parts for semiconductor manufacturing equipment
JP4895440B2 (en) Method and apparatus for improving surface function of workpiece
Marceau Phosphoric acid anodize
CN114959835A (en) Magnesium alloy surface treatment method
Bloess Chemistry and surface treatment
JP4285649B2 (en) Surface treatment composition and treatment method for removing silicon component and reducing metal salt generated during etching of aluminum die casting material
JP2009248763A (en) Manufacturing method of aluminum wheel, and aluminum wheel
EP0958412B1 (en) Treating aluminium workpieces
JP2005186415A (en) Manufacturing method of support for lithographic plate
JP4595093B2 (en) Magnesium alloy material surface treatment method and magnesium alloy material treated thereby
KR101309980B1 (en) Chemical treatment method to improve the corrosion resistance highly-alloyed duplex stainless steel welds
JP3103884B1 (en) Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate
JP2003071722A (en) Super abrasive grain grinding wheel
KR20180000953A (en) Connecting structure for overhead transmission line and a method of manufacturing the same, including the anodized suface
TWI518214B (en) Method for removing oxide layers from the metal surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250