JP2006036883A - Reclaimed frp-based thermoplastic composite composition - Google Patents

Reclaimed frp-based thermoplastic composite composition Download PDF

Info

Publication number
JP2006036883A
JP2006036883A JP2004217458A JP2004217458A JP2006036883A JP 2006036883 A JP2006036883 A JP 2006036883A JP 2004217458 A JP2004217458 A JP 2004217458A JP 2004217458 A JP2004217458 A JP 2004217458A JP 2006036883 A JP2006036883 A JP 2006036883A
Authority
JP
Japan
Prior art keywords
frp
composite composition
regenerated
waste
fluid composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217458A
Other languages
Japanese (ja)
Inventor
Takahiro Okamoto
隆宏 岡本
Isamu Tokuyama
勇 徳山
Yasumochi Hamada
泰以 濱田
Asami Nakai
朝美 仲井
Keisuke Fukuoka
敬介 福岡
Yasuhiko Hirao
康彦 平尾
Shigeki Toshima
茂喜 戸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
El & Chem Corp
TRUST KK
Kurimoto Kasei Kogyo KK
Original Assignee
El & Chem Corp
TRUST KK
Kurimoto Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by El & Chem Corp, TRUST KK, Kurimoto Kasei Kogyo KK filed Critical El & Chem Corp
Priority to JP2004217458A priority Critical patent/JP2006036883A/en
Publication of JP2006036883A publication Critical patent/JP2006036883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reclaimed FRP-based thermoplastic composite composition obtained by utilizing a waste FRP, having heat flow characteristics moldable by a general-purpose molding method of a resin material such as an injection molding method and an extrusion molding method, providing an FRP-reclaimed product keeping the sufficient mechanical properties even when the mixed proportion of the waste FRP is ≥50 pts. wt. and effective for practical application of the material recycle of the waste FRP. <P>SOLUTION: The reclaimed FRP-based thermoplastic composite composition is obtained by mixing a pulverized waste FRP with a polyolefin-based resin and a functional binder comprising a copolymer or terpolymer having an epoxy group in the main chain of the polymer to form a chemical bond at the interface of the waste FRP and the polyolefin-based resin, and compounding the mixture by melting and kneading. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浴槽をはじめ船舶、タンク、建設資材、自動車など産業上幅広く使用されているFRP(Fiber Reinforced Plastic:繊維強化複合プラスチック材料)のマテリアルリサイクル技術(不用物を選別回収してその素材、部材毎に再加工してもう一度新しい商品や包材として再利用する技術)に関する。特に、射出成形法、押出成形法といった樹脂材料の汎用成形法に好適な再生FRP系熱流動性複合組成物に関するものである。   In the present invention, FRP (Fiber Reinforced Plastic) is widely used in industries such as bathtubs, ships, tanks, construction materials, and automobiles. Technology for reworking each member and reusing it as a new product or packaging material). In particular, the present invention relates to a regenerated FRP-based heat-fluid composite composition suitable for general-purpose molding methods of resin materials such as injection molding and extrusion molding.

FRPは、ガラス繊維や炭素繊維などの無機繊維又はアラミド繊維などの有機繊維を不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂などのバインダー樹脂により固化した複合材料であり、軽量性、高剛性、耐薬品性、耐熱性などの優れた特性を有する先進材料である。
近年の環境に対する意識の高まりと共に、資源有効利用法(改正リサイクル法)の施行により、FRP製品についても3R:Reduce(減量),Reuse(再使用),Recycle(再生利用)に配慮した設計などの対応が義務づけられ、FRP製品のリサイクルは避けて通れない問題となっている。
FRP is a composite material in which inorganic fibers such as glass fibers and carbon fibers, or organic fibers such as aramid fibers are solidified with a binder resin such as unsaturated polyester resin, epoxy resin, phenol resin, urethane resin, and is lightweight and highly rigid. Advanced material with excellent properties such as chemical resistance and heat resistance.
Along with the recent increase in environmental awareness, the implementation of the Effective Resource Utilization Law (Revised Recycling Law), FRP products, such as 3R: Reduce, Reuse, Recycle (recycle) design, etc. Response is required, and recycling of FRP products is an unavoidable problem.

しかしながら、FRPは、バインダー樹脂として硬化性樹脂を含む複合材料であり、ポリプロピレンやポリエチレン、ポリスチレンなどの一般的な熱可塑性樹脂とは異なる性質を有しているため、前記熱可塑性樹脂と同様に、粉砕後、加熱溶融して再成形・再利用することができず、マテリアルリサイクルが困難なものである。
そのため、廃棄FRPについては、一部のFRP製品メーカーが自社工程内廃棄物を破砕後、セメントキルンで処理してセメント原料として再資源化したり、細かく粉砕してFRPの一種であるSMC(Sheet Molding Compound)の充填材として再使用するなどの取り組みを行ってはいるものの、大部分は埋立処分されているのが実情である。
However, FRP is a composite material containing a curable resin as a binder resin, and has properties different from general thermoplastic resins such as polypropylene, polyethylene, and polystyrene. After crushing, it cannot be remelted and reused by heating and melting, and material recycling is difficult.
For this reason, some FRP product manufacturers crush their in-process wastes and process them with cement kilns to recycle them as cement raw materials, or finely pulverize them to produce SMC (Sheet Molding). Although efforts are being made to re-use it as a compound (compound) filler, most of it has been disposed of in landfills.

一方で、近年、産業廃棄物の埋立用地の新規確保も困難を極めており、埋立処分場の残余年数は全国平均で3.9年、首都圏においては1.2年と厳しい状況にあるとの報告もあり、廃棄FRPの有効的なマテリアルリサイクル技術の確立が切望されている。   On the other hand, in recent years, it has become extremely difficult to secure new land for industrial waste, and the remaining years of landfill sites are 3.9 years on average nationwide and 1.2 years in the Tokyo metropolitan area. There is a report, and establishment of effective material recycling technology of waste FRP is eagerly desired.

これら現状を鑑みて、廃棄FRPの致命的な欠点である燃焼カロリーの低さを補うために、ポリプロピレンやポリエチレンなどの高燃焼カロリーの廃棄樹脂と混合して熱回収するサーマルリサイクルや、廃棄FRPに含まれる熱硬化性のバインダー樹脂をグリコールなどで分解・融解させた後、蒸留してモノマーとして再利用するケミカルリサイクルなどのリサイクル方法が検討されている。   In view of these current conditions, in order to compensate for the low burned calories, which is a fatal drawback of waste FRP, thermal recycling that recovers heat by mixing with waste resin of high burned calories such as polypropylene and polyethylene, and waste FRP A recycling method such as chemical recycling in which the thermosetting binder resin contained is decomposed and melted with glycol or the like and then distilled and reused as a monomer has been studied.

しかしながら、前記サーマルリサイクルは、リサイクルにおける最終手段であって、われわれの目指している資源循環型社会においては、廃棄物を複数回にわたって再製品化・再使用(マテリアルリサイクル)させて、再生において物性の保持が困難となった後に、最終的サーマルリサイクルにより熱回収されることが望まれる。また、前記ケミカルリサイクルは、大掛かりな設備や高額な加工コストを要すると共に、無機物を多く含むため樹脂製分の回収率が低く、リサイクル効率がよくないという問題がある。   However, the thermal recycling is a last resort in recycling, and in the resource recycling society we are aiming for, waste can be remanufactured and reused multiple times (material recycling), and the physical properties in recycling can be improved. It is desired that the heat is recovered by final thermal recycling after the holding becomes difficult. In addition, the chemical recycling requires large-scale equipment and expensive processing costs, and has a problem that the recovery rate of the resin product is low because it contains a lot of inorganic substances, and the recycling efficiency is not good.

このような状況の下で、廃棄FRPの粉砕物にポリプロピレンなどのポリオレフィン系樹脂と表面処理剤とを添加して加熱溶融混練することにより、一般的な熱可塑性樹脂と同様に、加熱プレス成形や射出成形が可能な熱可塑性樹脂複合材料を製造する廃棄FRPのリサイクル方法が提唱されている。(特許文献1参照)
FRPの粉砕物は、無機充填材に比べてポリオレフィン系樹脂との界面での親和性が低く、前記廃棄FRPの混合比が高くなると樹脂複合組成物の機械的特性が低下されることから、このものでは、廃棄FRPとオレフィン系樹脂と共に両者間の親和性を改善する表面処理剤を混合することにより機械的特性の低下の防止を図っている。
特開2004−115656号公報
Under such circumstances, by adding a polyolefin-based resin such as polypropylene and a surface treatment agent to the pulverized waste FRP and heating and kneading the mixture, heat press molding or A recycling method of waste FRP for producing a thermoplastic resin composite material capable of injection molding has been proposed. (See Patent Document 1)
The pulverized product of FRP has a lower affinity at the interface with the polyolefin-based resin than the inorganic filler, and when the mixing ratio of the waste FRP is increased, the mechanical properties of the resin composite composition are lowered. In the present invention, deterioration of mechanical properties is prevented by mixing a surface treatment agent that improves the affinity between the waste FRP and the olefin resin.
JP 2004-115656 A

しかしながら、上記熱可塑性樹脂複合材料を製造方法においては、廃棄FRPの混合比は最大でも40重量部であり、ポリオレフィン系樹脂に廃棄FRPの微粉砕物が充填材的に海島状分散された組成となっており、製造される熱可塑性樹脂複合材料の物性はマトリックス(海島状分散の海の部分)であるポリオレフィン系樹脂の物性に大きく依存するものとなっている。(特許文献1,請求項1参照)
そのため、廃棄FRPを含んでいる点で環境に配慮した材料ではあるが、主材とするポリオレフィン系樹脂材料の一種と考えられ、廃棄FRPをマテリアルリサイクルした再生品であるとは言いがたいものがある。実際、環境型商品の一つの指標である「エコマーク」による類似類型商品の認定基準において、再生材料の使用割合が50〜60重量部以上であることを基準とするものが多く、廃棄FRPの再生品であるために、廃棄FRPの使用割合が50重量部以上であることが必要とされる可能性が高いと考えられる。
However, in the method for producing the thermoplastic resin composite material, the mixing ratio of the waste FRP is 40 parts by weight at the maximum, and a composition in which the finely pulverized waste FRP is dispersed in a polyolefin resin as a sea island Thus, the physical properties of the thermoplastic resin composite material to be produced largely depend on the physical properties of the polyolefin resin that is a matrix (sea part of sea-island dispersion). (See Patent Document 1 and Claim 1)
Therefore, although it is an environmentally friendly material in that it contains waste FRP, it is considered a kind of polyolefin resin material as the main material, and it is difficult to say that it is a recycled product that is material recycled from waste FRP. is there. In fact, many of the certification criteria for similar products based on the “Eco Mark”, which is one of the indicators for environmental products, are based on the usage rate of recycled materials being 50-60 parts by weight or more. Since it is a recycled product, it is highly likely that the usage rate of the waste FRP is required to be 50 parts by weight or more.

また、上記熱可塑性樹脂複合材料を製造方法では、予め廃棄FRPと表面処理剤とを溶融混練により複合化してマスターバッチを中間生成させた後、前記マスターバッチとポリオレフィン系樹脂とを機械的に溶融混練して複合化することにより、廃棄FRPの混合比が50重量部以上の熱可塑性樹脂複合材料を製造する方法が開示されているが(特許文献1,請求項3参照)、機械的な溶融混練を2回も行うから熱可塑性樹脂複合材料の製造コストが高くなると共に、熱可塑性樹脂複合材料の劣化(機械的強度,弾性力など物性の低下)を招く恐れがある。   In the method for producing the thermoplastic resin composite material, waste FRP and a surface treatment agent are combined in advance by melt-kneading to form a master batch, and then the master batch and the polyolefin resin are mechanically melted. Although a method for producing a thermoplastic resin composite material having a mixing ratio of waste FRP of 50 parts by weight or more by kneading and compounding is disclosed (see Patent Document 1 and Claim 3), mechanical melting is disclosed. Since kneading is performed twice, the manufacturing cost of the thermoplastic resin composite material increases, and the thermoplastic resin composite material may be deteriorated (deterioration of physical properties such as mechanical strength and elastic force).

本発明は、上記事情を鑑みてなされたものであり、廃棄FRPを利用した再生FRP系複合組成物において、射出成形法や押出成形法などの樹脂材料の汎用成形法により成形可能な熱流動特性を有し、且つ、廃棄FRPの混合比を50重量部以上とする場合にもFRP再生品として十分な機械的物性を維持できるようにすることにより、廃棄FRPのマテリアルリサイクルの実用化に有効な再生FRP系熱流動性複合組成物を提供することを課題とする。   The present invention has been made in view of the above circumstances, and in a recycled FRP-based composite composition using waste FRP, heat flow characteristics that can be molded by a general-purpose molding method of a resin material such as an injection molding method or an extrusion molding method. In addition, even when the mixing ratio of waste FRP is 50 parts by weight or more, it is effective for practical use of material recycling of waste FRP by maintaining sufficient mechanical properties as a recycled FRP product. It is an object of the present invention to provide a regenerated FRP heat-fluid composite composition.

上記課題を達成するために、本発明は、『粉砕した廃棄FRPと、ポリオレフィン系樹脂と、前記廃棄FRPとポリオレフィン系樹脂との界面において化学結合を生成する官能性結合剤とを混合し、溶融混練により複合化させた再生FRP系熱流動性複合組成物であって、前記官能性結合剤は、高分子主鎖中にエポキシ基を有するコポリマー又はターポリマーであること』を特徴とするものである。
これによれば、粉砕された廃棄FRPに、熱流動特性を与えるための粘結材としてポリロプロピレンなどのポリオレフィン系熱可塑性樹脂と、廃棄FRPの構成成分である繊維及びバインダー樹脂と前記ポリオレフィン系樹脂との界面において化学結合を生成する反応性の高いエポキシ基を有する官能性結合剤とを混合して溶融混練することにより、親和性の低い廃棄FRPとポリオレフィン系樹脂の界面相互間に強固な化学結合が生成される。
したがって、廃棄FRPの混合比が50重量部以上を占める組成とする場合にも、成形時に熱可塑性樹脂の溶融流動特性における無機質の均一分散化が進み、無機質の不均一化による成形品の機械的強度のバラツキが抑えられるから、成形品としての機械的物性が著しく低下されることがなく、曲げ強度や引張強度などの静的荷重に対する機械的強度や弾性に優れたFRP再生品を得ることができる。
In order to achieve the above-mentioned object, the present invention is to mix and melt a pulverized waste FRP, a polyolefin resin, and a functional binder that generates a chemical bond at the interface between the waste FRP and the polyolefin resin. A regenerated FRP-based heat-fluid composite composition obtained by compounding by kneading, wherein the functional binder is a copolymer or terpolymer having an epoxy group in the polymer main chain. is there.
According to this, a polyolefin-based thermoplastic resin such as polypropylene as a binder for imparting heat flow characteristics to the pulverized waste FRP, fibers and binder resins that are constituents of the waste FRP, and the polyolefin-based material By mixing and melting and kneading a functional binder having a highly reactive epoxy group that generates a chemical bond at the interface with the resin, the interface between the waste FRP having a low affinity and the polyolefin resin is strong. A chemical bond is generated.
Therefore, even when the composition ratio of the waste FRP occupies 50 parts by weight or more, the uniform dispersion of the inorganic material in the melt flow characteristics of the thermoplastic resin proceeds at the time of molding, and the mechanical properties of the molded product due to the non-uniform inorganic material Since variation in strength is suppressed, mechanical properties as a molded product are not significantly reduced, and an FRP recycled product having excellent mechanical strength and elasticity against static loads such as bending strength and tensile strength can be obtained. it can.

『前記廃棄FRPを50〜70重量部と、前記ポリオレフィン系樹脂を15〜45重量部と、前記官能性結合剤を5〜15重量部とを合計を100重量部となるように混合した』ものによれば、廃棄FRPを主材とするFRPの再生品を容易に製造することができるからマテリアルリサイクルの実用化に有効である。
さらに、『前記ポリオレフィン系樹脂は、再生材料又は再生材料とバージン材料との混合材料である』ものでは、100%バージン材料のポリオレフィン系樹脂を用いる組成物よりも再生材料の使用割合が大きいから、リサイクル効率及び環境志向性が高い。また、再生材料は、バージン材料よりも材料コストが小さいからFRP再生品の製造コストが低減される。
“50 to 70 parts by weight of the waste FRP, 15 to 45 parts by weight of the polyolefin resin, and 5 to 15 parts by weight of the functional binder are mixed to a total of 100 parts by weight” According to the above, since it is possible to easily manufacture a recycled product of FRP mainly composed of waste FRP, it is effective for practical use of material recycling.
Furthermore, in the case where “the polyolefin resin is a recycled material or a mixed material of a recycled material and a virgin material”, the usage ratio of the recycled material is larger than the composition using a polyolefin resin of 100% virgin material, High recycling efficiency and environmental orientation. Further, since the recycled material has a lower material cost than the virgin material, the manufacturing cost of the FRP recycled product is reduced.

『前記官能性結合剤は、不飽和カルボン酸グリシジルエステルを含有するコポリマー、又は、不飽和カルボン酸グリシジルエステル−エチレン系不飽和エステル化合物を含有するターポリマーからなる』ものが好ましく、具体的には、前記不飽和カルボン酸グリシジルエステルとしては、グリシジルメタクリレート,グリシジルアクリレート,イタコン酸ジグリシジルエステル,ブテントリカルボン酸グリシジルエステル,p−スチレンカルボン酸グリシジルエステルなどが挙げられる。また、エチレン系不飽和エステル化合物としては、アクリル酸メチル,アクリル酸エチル,アクリル酸n−プロピル,アクリル酸イソプロピル,アクリル酸n−ブチル,アクリル酸t−ブチル,アクリル酸イソブチル,メタクリル酸メチル,メタクリル酸エチル,メタクリル酸ブチル,酢酸ビニル,プロピオン酸ビニルなどが挙げられる。   "The functional binder is preferably composed of a copolymer containing an unsaturated carboxylic acid glycidyl ester or a terpolymer containing an unsaturated carboxylic acid glycidyl ester-ethylenically unsaturated ester compound", specifically Examples of the unsaturated carboxylic acid glycidyl ester include glycidyl methacrylate, glycidyl acrylate, itaconic acid diglycidyl ester, butenetricarboxylic acid glycidyl ester, and p-styrene carboxylic acid glycidyl ester. Examples of the ethylenically unsaturated ester compound include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, methyl methacrylate, methacrylic acid. Examples include ethyl acetate, butyl methacrylate, vinyl acetate, and vinyl propionate.

特に、『前記官能性結合剤が、エチレン−グリシジルメタクリレートコポリマー、エチレン−グリシジルメタクリレート−酢酸ビニルターポリマー、エチレン−グリシジルメタクリレート−アクリル酸メチルターポリマーよりなる群から選択される』ものがより好ましい。   In particular, “the functional binder is selected from the group consisting of ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate-vinyl acetate terpolymer, ethylene-glycidyl methacrylate-methyl acrylate terpolymer” is more preferable.

本発明によれば、廃棄FRPと熱流動性を有するポリオレフィン系樹脂の界面相互間を反応性の高いエポキシ基を有する官能性結合剤が強固に化学結合することにより、汎用成形法により成形可能な熱流動特性と、廃棄FRPの混合比が高い場合にも成形品として十分な機械的物性とを有しているから、本発明の再生FRP系熱流動性複合組成物を用いることにより、曲げ強度や引張強度などの静的荷重に対する機械的強度や弾性に優れたFRP再生品を容易に成形することができる。
そのため、従来例として挙げた廃棄FRPのリサイクル方法に比べて成形容易性や再生コスト、再生材料のリサイクル効率などの点において優れており、廃棄FRPのマテリアルリサイクルの実用化に有効である。
According to the present invention, a functional binder having a highly reactive epoxy group is firmly bonded between the interfaces of the waste FRP and the polyolefin resin having thermal fluidity, and thus can be molded by a general-purpose molding method. Since it has sufficient mechanical properties as a molded product even when the mixing ratio of the waste FRP is high, the bending strength is obtained by using the regenerated FRP-based heat fluid composite composition of the present invention. FRP recycled products having excellent mechanical strength and elasticity against static loads such as tensile strength and tensile strength can be easily formed.
For this reason, it is excellent in terms of ease of molding, recycling cost, recycling efficiency of recycled materials, and the like, compared to the recycling method of waste FRP mentioned as the conventional example, and is effective for practical use of material recycling of waste FRP.

以下に、本発明実施の形態について説明する。
本発明に係る再生FRP系熱流動性複合組成物の実施の形態は、粉砕した廃棄FRPを主材、ポリオレフィン系樹脂材を副材とし、エポキシ基を有する官能性結合剤を混合し、均質になるように機械的に溶融混練させて複合化したものである。
前記ポリオレフィン系樹脂は、バージン材料に限られるものではなく、材料コストの節減の観点からも再生材料又はバージン材料と再生材料との混合材料を用いることが好ましい。
Hereinafter, embodiments of the present invention will be described.
In the embodiment of the regenerated FRP heat fluid composite composition according to the present invention, the pulverized waste FRP is used as a main material, the polyolefin resin material is used as a secondary material, and a functional binder having an epoxy group is mixed and homogeneously mixed. Thus, it is mechanically melted and kneaded to form a composite.
The polyolefin resin is not limited to a virgin material, and it is preferable to use a recycled material or a mixed material of a virgin material and a recycled material from the viewpoint of saving material costs.

より具体的には、前記廃棄FRPを50〜70重量部と、前記ポリオレフィン系樹脂15〜45重量部と、官能性結合剤を5〜15重量部とを、合計100重量部となるように混合させた複合組成物とすることにより、これを用いた成形品は廃棄FRPの使用割合が50重量部以上となるからFRP再生品として、再生樹脂製品に対して明確な位置づけが可能となる点で好ましい。   More specifically, 50 to 70 parts by weight of the waste FRP, 15 to 45 parts by weight of the polyolefin-based resin, and 5 to 15 parts by weight of a functional binder are mixed so that the total amount becomes 100 parts by weight. By using the composite composition, the molded product using the composite composition has a usage rate of the waste FRP of 50 parts by weight or more, so that it can be clearly positioned as a recycled resin product as a recycled FRP product. preferable.

前記官能性結合剤は、高分子主鎖中にエポキシ基を有し、前記高分子自体が常温でゴム弾性を有する低ガラス転移温度を持つコポリマー又はターポリマーとすることが好適であり、特に、エチレン−グリシジルメタクリレートコポリマー、エチレン−グリシジルメタクリレート−アクリル酸メチルターポリマー、エチレン−グリシジルメタクリレート−酢酸ビニルターポリマーから選択されるものが好ましい。   The functional binder is preferably a copolymer or terpolymer having an epoxy group in a polymer main chain, the polymer itself having a low glass transition temperature having rubber elasticity at room temperature, Preferred are those selected from ethylene-glycidyl methacrylate copolymers, ethylene-glycidyl methacrylate-methyl acrylate terpolymers, ethylene-glycidyl methacrylate-vinyl acetate terpolymers.

前記再生FRP系熱流動性複合組成物には、各種のエラストマーをさらに混合することもできる。具体的には、前記エラストマーとしては、粘結材としてポリオレフィン系樹脂を用いる場合の官能性結合剤との相溶化の観点から、SEBS(スチレンエチレンブチレンスチレンブロック共重合体),SEPS(スチレンエチレンプロピレンスチレンブロック共重合体),SEP(スチレンエチレンプロピレンブロック共重合体),SEEPS(スチレンエチレンエチレンプロピレンスチレン共重合体)などのスチレン系熱可塑性エラストマーが好適であり、特に、SEBS(スチレンエチレンブチレンスチレンブロック共重合体)又はSEPS(スチレンエチレンプロピレンスチレンブロック共重合体)から洗濯されるのが好ましい。   Various elastomers can be further mixed into the regenerated FRP heat-fluid composite composition. Specifically, as the elastomer, SEBS (styrene ethylene butylene styrene block copolymer), SEPS (styrene ethylene propylene) are used from the viewpoint of compatibilization with a functional binder when a polyolefin resin is used as a binder. Styrenic thermoplastic elastomers such as styrene block copolymer), SEP (styrene ethylene propylene block copolymer), and SEEPS (styrene ethylene ethylene propylene styrene copolymer) are suitable. In particular, SEBS (styrene ethylene butylene styrene block). Copolymer) or SEPS (styrene ethylene propylene styrene block copolymer).

前記エラストマーは、バージン材料料に限られるものではなく、材料コストの観点から再生材料又はバージン材料と再生材料との混合材料を用いることが好ましい。また、前記エラストマーを混合する場合には、前記官能性結合剤とエラストマーとの合計重量部が5〜20重量部となるように混合するのが好ましい。   The elastomer is not limited to a virgin material material, and it is preferable to use a recycled material or a mixed material of a virgin material and a recycled material from the viewpoint of material cost. Moreover, when mixing the said elastomer, it is preferable to mix so that the total weight part of the said functional binder and an elastomer may be 5-20 weight part.

廃棄FRPの粉砕物は5mm以下のメッシュのふるいを通過したものを用いる。
再生FRP系熱流動性複合組成物の製造には、加熱溶融混練押出機又は加熱ニーダー機として公知の単軸もしくは二軸加熱溶融混練押出機が使用可能であり、必要に応じて材料供給部に加熱ニーダー機が併設された構成のものであってもよい。
The waste FRP pulverized material that has passed through a mesh screen of 5 mm or less is used.
In the production of the regenerated FRP-based heat-fluid composite composition, a known single-screw or biaxial heat-melt kneading extruder can be used as a heat-melt kneading extruder or a heat kneader machine. The thing of the structure by which the heating kneader machine was adjoined may be sufficient.

(実施例1)
廃棄FRPを粉砕して5mmメッシュのふるいを通過した廃棄FRPの粉砕物を60重量部と、粘結材として再生ポリプロピレン樹脂を35重量部と、官能性結合剤としてエチレン−グリシジルメタクリレートコポリマー(EGMA)を5重量部とを均一に混合したものを、前記加熱ニーダー機併設型単軸溶融混練押出機により溶融混練、複合化させて再生FRP系熱流動性複合組成物を製造した。この再生FRP系熱流動性複合組成物を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Example 1)
60 parts by weight of the waste FRP pulverized after passing through a 5 mm mesh screen, 35 parts by weight of recycled polypropylene resin as a binder, and ethylene-glycidyl methacrylate copolymer (EGMA) as a functional binder A remixed FRP-based heat-fluid composite composition was produced by uniformly mixing 5 parts by weight of the mixture with a heating kneader-equipped uniaxial melt-kneading extruder. Using this regenerated FRP-based heat-fluid composite composition, it was molded into a dumbbell type No. 1 test piece for tensile testing according to JIS standard K7113 by an injection molding machine.

(実施例2)
廃棄FRPを粉砕して5mmメッシュのふるいを通過した廃棄FRPの粉砕物を60重量部と、粘結材として再生ポリプロピレン樹脂を30重量部と、官能性結合剤としてエチレン−グリシジルメタクリレートコポリマー(EGMA)を5重量部と、再生エラストマー樹脂としてSEPSを5重量部とを均一に混合したものを加熱ニーダー機併設型単軸溶融混練押出機により溶融混練、複合化させて再生FRP系熱流動性複合組成物を製造した。この再生FRP系熱流動性複合組成物を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Example 2)
60 parts by weight of the waste FRP pulverized after passing through a 5 mm mesh screen, 30 parts by weight of recycled polypropylene resin as a binder, and ethylene-glycidyl methacrylate copolymer (EGMA) as a functional binder 5 parts by weight and 5 parts by weight of SEPS as a regenerated elastomer resin are uniformly mixed with a single kneading and kneading extruder equipped with a heating kneader and combined to produce a regenerated FRP thermal fluid composite composition The thing was manufactured. Using this regenerated FRP-based heat-fluid composite composition, it was molded into a dumbbell type No. 1 test piece for tensile testing according to JIS standard K7113 by an injection molding machine.

(比較例1)
廃棄FRPを粉砕して5mmメッシュのふるいを通過した廃棄FRPの粉砕物を40重量部と、粘結材として再生ポリプロピレン樹脂を60重量部とを均一に混合したものを加熱ニーダー機併設型単軸溶融混練押出機により溶融混練、複合化させて再生FRP系熱流動性複合組成物を製造した。この再生FRP系熱流動性複合組成物を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Comparative Example 1)
A uniaxial heating kneader equipped with 40 parts by weight of the waste FRP pulverized and passed through a 5 mm mesh sieve and 60 parts by weight of recycled polypropylene resin as a binder A regenerated FRP heat fluid composite composition was produced by melt-kneading and compounding with a melt-kneading extruder. Using this regenerated FRP-based heat-fluid composite composition, it was molded into a dumbbell type No. 1 test piece for tensile testing according to JIS standard K7113 by an injection molding machine.

(比較例2)
廃棄FRPを粉砕して5mmメッシュのふるいを通過した廃棄FRPの粉砕物を50重量部と、粘結材として再生ポリプロピレン樹脂を50重量部とを均一に混合したものを加熱ニーダー機併設型単軸溶融混練押出機により溶融混練、複合化させて再生FRP系熱流動性複合組成物を製造した。この再生FRP系熱流動性複合組成物を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Comparative Example 2)
A single shaft equipped with a heating kneader machine that uniformly mixes 50 parts by weight of the pulverized waste FRP after pulverizing the waste FRP and passed through a 5 mm mesh sieve and 50 parts by weight of recycled polypropylene resin as a binder. A regenerated FRP heat fluid composite composition was produced by melt-kneading and compounding with a melt-kneading extruder. Using this regenerated FRP-based heat-fluid composite composition, it was molded into a dumbbell type No. 1 test piece for tensile testing according to JIS standard K7113 by an injection molding machine.

(比較例3)
廃棄FRPを粉砕して5mmメッシュのふるいを通過した廃棄FRPの粉砕物を60重量部と、粘結材として再生ポリプロピレン樹脂40重量部とを均一に混合したものを加熱ニーダー機併設型単軸溶融混練押出機により溶融混練、複合化させて再生FRP系熱流動性複合組成物を製造した。この再生FRP系熱流動性複合組成物を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Comparative Example 3)
Uniform fusion of heating kneader with a mixture of 60 parts by weight of the waste FRP pulverized and passed through a 5 mm mesh sieve and 40 parts by weight of recycled polypropylene resin as a binder A regenerated FRP-based heat-fluid composite composition was produced by melt-kneading and compounding with a kneading extruder. Using this regenerated FRP-based heat-fluid composite composition, it was molded into a dumbbell type No. 1 test piece for tensile testing according to JIS standard K7113 by an injection molding machine.

(比較例4)
上述の実施例ならびに比較例の検証において、粘結材として供した再生ポリプロピレン樹脂を用いて、射出成形機でJIS規格 K7113に従った引張試験用ダンベル型1号試験片に成形した。
(Comparative Example 4)
In the verification of the above-described Examples and Comparative Examples, the recycled polypropylene resin provided as a binder was molded into a dumbbell type No. 1 test piece for tensile test according to JIS standard K7113 using an injection molding machine.

これらの実施例ならびに比較例により得られたダンベル型一号試験片について、引張強度、引張弾性率、曲げ強度、曲げ弾性率、破断伸び、アイゾッド衝撃強度を測定した結果を表1に示している。   Table 1 shows the results of measuring the tensile strength, tensile elastic modulus, bending strength, bending elastic modulus, elongation at break, and Izod impact strength of the dumbbell type No. 1 test pieces obtained in these Examples and Comparative Examples. .

Figure 2006036883
Figure 2006036883

上記実験結果より、本発明の再生FRP系熱流動性複合組成物を用いた廃棄FRPを主材とするマテリアルリサイクルの結果物であるFRP再生品:実施例1〜3は、機械的物性面において、比較例4のポリプロピレン樹脂の成形品に比べて引張強度や衝撃強度については低下が見られるものの、曲げ強度や各種弾性率については大きく向上されており、特に、剛性はアクリルニトリル−スチレン共重合樹脂(AS樹脂)や中衝撃ポリスチレン樹脂(MIPS樹脂)に準ずる高い値を示しており、相対的にみて成形品としての機械的物性は維持されていることが分かる。また、官能性結合剤を用いることなく廃棄FRPと再生ポリプロピレン樹脂とを溶融混練した比較例1〜3と比べても、引張強度,引張弾性率,各種弾性率が向上されていることが分かる。
これより、本発明の再生FRP系熱流動性複合組成物によれば、廃棄FPRの混合比が50重量部以上となる場合にも成形品として十分な機械的物性を備えたFPR再生品を成形することが可能である。
From the above experimental results, FRP recycled products that are the result of material recycling using waste FRP as a main material using the recycled FRP heat-fluid composite composition of the present invention: Examples 1 to 3 are in terms of mechanical properties. Although the tensile strength and impact strength are reduced as compared with the molded product of the polypropylene resin of Comparative Example 4, the bending strength and various elastic moduli are greatly improved. In particular, the rigidity is an acrylonitrile-styrene copolymer. It shows a high value according to resin (AS resin) and medium impact polystyrene resin (MIPS resin), and it can be seen that the mechanical properties as a molded product are maintained relatively. It can also be seen that the tensile strength, tensile elastic modulus, and various elastic moduli are improved as compared with Comparative Examples 1 to 3 in which waste FRP and recycled polypropylene resin are melt-kneaded without using a functional binder.
Thus, according to the recycled FRP-based heat-fluid composite composition of the present invention, an FPR recycled product having sufficient mechanical properties as a molded product is formed even when the mixing ratio of waste FPR is 50 parts by weight or more. Is possible.

また、前述の実施の形態において汎用の射出成形により成形しているが、本発明の再生FRP系熱流動性複合組成物は、従来の廃棄FRPのリサイクル方法のように加熱プレス成形などの特殊な成形法のみに頼らず、汎用の射出成形や押出成形などの一般的な樹脂成形法により容易にFRP再生品を成形することができる点において、従来のリサイクル方法よりも、廃棄FRPのマテリアルリサイクルにおいて実用性が高いものである。
Further, in the above-described embodiment, it is molded by general-purpose injection molding. However, the regenerated FRP-based heat-fluid composite composition of the present invention is a special method such as hot press molding as in the conventional recycling method of waste FRP. In the material recycling of waste FRP rather than the conventional recycling method, the FRP recycled product can be easily molded by general resin molding methods such as general-purpose injection molding and extrusion molding, without relying only on the molding method. It is highly practical.

Claims (6)

粉砕した廃棄FRPと、ポリオレフィン系樹脂と、前記廃棄FRPとポリオレフィン系樹脂との界面において化学結合を生成する官能性結合剤とを混合し、溶融混練により複合化させた再生FRP系熱流動性複合組成物であって、
前記官能性結合剤は、高分子主鎖中にエポキシ基を有するコポリマー又はターポリマーであることを特徴とする再生FRP系熱流動性複合組成物。
Recycled FRP thermal fluid composite obtained by mixing pulverized waste FRP, polyolefin resin, and a functional binder that generates a chemical bond at the interface between the waste FRP and polyolefin resin, and combining them by melt kneading A composition comprising:
The regenerated FRP heat fluid composite composition, wherein the functional binder is a copolymer or terpolymer having an epoxy group in a polymer main chain.
請求項1に記載の再生FRP系熱流動性複合組成物において、
前記廃棄FRPを50〜70重量部と、前記ポリオレフィン系樹脂を15〜45重量部と、前記官能性結合剤を5〜15重量部とを合計を100重量部となるように混合したことを特徴とする再生FRP系熱流動性複合組成物。
In the regenerated FRP-based heat fluid composite composition according to claim 1,
50 to 70 parts by weight of the waste FRP, 15 to 45 parts by weight of the polyolefin-based resin, and 5 to 15 parts by weight of the functional binder are mixed so that the total amount becomes 100 parts by weight. A regenerated FRP-based heat-fluid composite composition.
請求項1又は2に記載の再生FRP系熱流動性複合組成物において、
前記ポリオレフィン系樹脂は、再生材料又は再生材料とバージン材料との混合材料であることを特徴とするFRP系熱流動性複合組成物。
In the regenerated FRP-based heat fluid composite composition according to claim 1 or 2,
The FRP thermal fluid composite composition, wherein the polyolefin resin is a recycled material or a mixed material of a recycled material and a virgin material.
請求項1から3のいずれかに記載の再生FRP系熱流動性複合組成物において、
前記官能性結合剤は、不飽和カルボン酸グリシジルエステルを含有するコポリマー、又は、不飽和カルボン酸グリシジルエステル−エチレン系不飽和エステル化合物を含有するターポリマーからなることを特徴とする再生FRP系熱流動性複合組成物。
In the regenerated FRP heat-fluid composite composition according to any one of claims 1 to 3,
The functional binder comprises a copolymer containing an unsaturated carboxylic acid glycidyl ester, or a terpolymer containing an unsaturated carboxylic acid glycidyl ester-ethylenically unsaturated ester compound. Composite composition.
請求項1から4のいずれかに記載の再生FRP系熱流動性複合組成物において、
前記官能性結合剤が、エチレン−グリシジルメタクリレートコポリマー、エチレン−グリシジルメタクリレート−酢酸ビニルターポリマー、エチレン−グリシジルメタクリレート−アクリル酸メチルターポリマーよりなる群から選択されることを特徴とする再生FRP系熱流動性複合組成物。
In the regenerated FRP-based heat fluid composite composition according to any one of claims 1 to 4,
The regenerative FRP-based heat flow characterized in that the functional binder is selected from the group consisting of ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate-vinyl acetate terpolymer, ethylene-glycidyl methacrylate-methyl acrylate terpolymer. Composite composition.
請求項1から5のいずれかに記載の再生FRP系熱流動性複合組成物を用いてなる成形品。   A molded article using the regenerated FRP-based heat-fluid composite composition according to any one of claims 1 to 5.
JP2004217458A 2004-07-26 2004-07-26 Reclaimed frp-based thermoplastic composite composition Pending JP2006036883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217458A JP2006036883A (en) 2004-07-26 2004-07-26 Reclaimed frp-based thermoplastic composite composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217458A JP2006036883A (en) 2004-07-26 2004-07-26 Reclaimed frp-based thermoplastic composite composition

Publications (1)

Publication Number Publication Date
JP2006036883A true JP2006036883A (en) 2006-02-09

Family

ID=35902231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217458A Pending JP2006036883A (en) 2004-07-26 2004-07-26 Reclaimed frp-based thermoplastic composite composition

Country Status (1)

Country Link
JP (1) JP2006036883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220956A (en) * 2016-08-03 2016-12-14 江苏锐康新材料科技有限公司 Utilize imitation wood section bar and the preparation technology thereof of glass fiber reinforced plastic wastes regeneration preparation
CN115558231A (en) * 2022-10-17 2023-01-03 南京斯贝尔复合材料仪征有限公司 FRP (fiber reinforced plastic) section composite material and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117953A (en) * 1988-07-14 1990-05-02 Nippon Shokubai Kagaku Kogyo Co Ltd Low-shrinkage thermosetting resin composition
JPH04202533A (en) * 1990-11-30 1992-07-23 Sekisui Chem Co Ltd Glass-fiber reinforced resin molded article and its production
JPH0632871A (en) * 1992-07-15 1994-02-08 Mitsuboshi Belting Ltd Resin molding using waste material
JPH06340777A (en) * 1993-06-01 1994-12-13 Tosoh Corp Production of polyolefin composite material
JP2001030245A (en) * 1999-07-22 2001-02-06 Suzue Denki Kk Treatment method for waste plastic, and molding method therefor
JP2001253979A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer composition
JP2001525437A (en) * 1997-12-03 2001-12-11 バイエル・アクチエンゲゼルシヤフト Polymer blend containing polyolefin
JP2003113292A (en) * 2001-07-31 2003-04-18 Nippon Steel Corp Metal coating resin composition, resin film, metal plate for container, and metal container
JP2004115656A (en) * 2002-09-26 2004-04-15 Hiroshima Pref Gov Method for producing thermoplastic resin composite material mixed with frp recyclate
JP2005082792A (en) * 2003-09-11 2005-03-31 Misawa Homes Co Ltd Method for recycling frp waste material
JP2005305876A (en) * 2004-04-22 2005-11-04 Bridgestone Corp Method for manufacturing frp recycle molded article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117953A (en) * 1988-07-14 1990-05-02 Nippon Shokubai Kagaku Kogyo Co Ltd Low-shrinkage thermosetting resin composition
JPH04202533A (en) * 1990-11-30 1992-07-23 Sekisui Chem Co Ltd Glass-fiber reinforced resin molded article and its production
JPH0632871A (en) * 1992-07-15 1994-02-08 Mitsuboshi Belting Ltd Resin molding using waste material
JPH06340777A (en) * 1993-06-01 1994-12-13 Tosoh Corp Production of polyolefin composite material
JP2001525437A (en) * 1997-12-03 2001-12-11 バイエル・アクチエンゲゼルシヤフト Polymer blend containing polyolefin
JP2001030245A (en) * 1999-07-22 2001-02-06 Suzue Denki Kk Treatment method for waste plastic, and molding method therefor
JP2001253979A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer composition
JP2003113292A (en) * 2001-07-31 2003-04-18 Nippon Steel Corp Metal coating resin composition, resin film, metal plate for container, and metal container
JP2004115656A (en) * 2002-09-26 2004-04-15 Hiroshima Pref Gov Method for producing thermoplastic resin composite material mixed with frp recyclate
JP2005082792A (en) * 2003-09-11 2005-03-31 Misawa Homes Co Ltd Method for recycling frp waste material
JP2005305876A (en) * 2004-04-22 2005-11-04 Bridgestone Corp Method for manufacturing frp recycle molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220956A (en) * 2016-08-03 2016-12-14 江苏锐康新材料科技有限公司 Utilize imitation wood section bar and the preparation technology thereof of glass fiber reinforced plastic wastes regeneration preparation
CN115558231A (en) * 2022-10-17 2023-01-03 南京斯贝尔复合材料仪征有限公司 FRP (fiber reinforced plastic) section composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Ramarad et al. Waste tire rubber in polymer blends: A review on the evolution, properties and future
US20190338122A1 (en) Thermoformed structural composites
JP2002292628A (en) Method for reuse of used resin
CN101629025B (en) Plastic material prepared by using waste thermosetting foam plastics and preparation method thereof
JP2012506918A (en) Epoxy-based structural foam with improved tack
JP2012506919A (en) Structural foam containing thermoplastic polyurethane and based on epoxide
CN101914241A (en) Formula of special material for cases of electrocars and motorcycles
KR20100113491A (en) Thermoplast-containing epoxy resins and the processing thereof by extrusion or injection molding
WO2018096377A2 (en) Homogeneous polymer agglomerate containing ground rubber, reinforced thermoset plastic waste and thermoplastic waste
JPWO2018101022A1 (en) COMPOSITION FOR FIBER-REINFORCED RESIN, PROCESS FOR PRODUCING THE SAME, FIBER-REINFORCED RESIN, AND MOLDED BODY
JP2007112913A (en) Recycled plastic and thick recycled plastic plate
JP4775877B2 (en) Material for injection molding using waste plastic, method for producing the same, and method for producing molded articles using the material for injection molding
JP2006036883A (en) Reclaimed frp-based thermoplastic composite composition
JP5209178B2 (en) Resin composition
KR100718949B1 (en) Method for Preparing lightweight panel of Waste Fiber Reinforced Plastics and lightweight panel manufactured thereof
JP2006290921A (en) Recycled resin-added, glass fiber-reinforced stampable sheet and molded article thereof
JP3747258B2 (en) Method for producing thermoplastic resin composite material containing FRP recycle
JP5503359B2 (en) Thermoplastic resin composite
JP4125942B2 (en) Mixed material using plastic waste, manufacturing apparatus thereof, and manufacturing method thereof
JP5082174B2 (en) Plastic composite panels
KR101127435B1 (en) The tpe composites
JP2005081794A (en) Recycled fiber reinforced plastic molding
Sahu et al. Recycling and circular economy of thermoplastic elastomers
McCafferty Demonstrating the Feasibility of Mechanically Recycling Glass Fibre Reinforced Composites
JP2002301781A (en) Plastic composite panel and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510