JP2006036653A - Method for producing 1,3-cyclohexanediol - Google Patents

Method for producing 1,3-cyclohexanediol Download PDF

Info

Publication number
JP2006036653A
JP2006036653A JP2004215063A JP2004215063A JP2006036653A JP 2006036653 A JP2006036653 A JP 2006036653A JP 2004215063 A JP2004215063 A JP 2004215063A JP 2004215063 A JP2004215063 A JP 2004215063A JP 2006036653 A JP2006036653 A JP 2006036653A
Authority
JP
Japan
Prior art keywords
carbonate
hydroxide
catalyst
metal compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004215063A
Other languages
Japanese (ja)
Other versions
JP4349227B2 (en
Inventor
Tomoki Koshiyama
智樹 越山
Hiroshi Masami
博司 真見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2004215063A priority Critical patent/JP4349227B2/en
Publication of JP2006036653A publication Critical patent/JP2006036653A/en
Application granted granted Critical
Publication of JP4349227B2 publication Critical patent/JP4349227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 1,3-cyclohexanediol high in cis-form content. <P>SOLUTION: The method for producing the 1,3-cyclohexanediol comprises hydrogenating resorcinol in the presence of a base metal catalyst, wherein the hydrogenation reaction is carried out in the presence of at least one metal compound selected from an alkali metal compound and an alkaline earth metal compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、1,3−シクロヘキサンジオール(以下、「1,3−CHD」と略記する。)の製造方法に関する。更に詳しくはレゾルシンを卑金属触媒並びにアルカリ金属化合物及びアルカリ土類金属化合物からなる群から選ばれる少なくとも1種の金属化合物の存在下に水素化して、シス体含有率の高い1,3−CHDを得る製造方法に関する。   The present invention relates to a method for producing 1,3-cyclohexanediol (hereinafter abbreviated as “1,3-CHD”). More specifically, resorcin is hydrogenated in the presence of a base metal catalyst and at least one metal compound selected from the group consisting of alkali metal compounds and alkaline earth metal compounds to obtain 1,3-CHD having a high cis-isomer content. It relates to a manufacturing method.

1,3−CHDは、医薬、農薬、高分子化合物等の製造のための中間体として非常に有用な化合物である。   1,3-CHD is a very useful compound as an intermediate for producing pharmaceuticals, agricultural chemicals, polymer compounds and the like.

1,3−CHDの製造方法としては、以下の方法が知られている。例えば、(1)1,3−シクロヘキサンジオンを水素化ホウ素ナトリウムで水素化する方法(特許文献1)、(2)レゾルシンをニッケル触媒存在下で水素化する方法(非特許文献1〜3)、(3)レゾルシンをルテニウム/シリカ担持触媒に更に塩基性金属を担持させた触媒を用いて水素化する方法(特許文献2)等が知られている。   The following methods are known as methods for producing 1,3-CHD. For example, (1) a method of hydrogenating 1,3-cyclohexanedione with sodium borohydride (Patent Document 1), (2) a method of hydrogenating resorcin in the presence of a nickel catalyst (Non-Patent Documents 1 to 3), (3) A method in which resorcin is hydrogenated using a catalyst in which a ruthenium / silica-supported catalyst further supports a basic metal is known (Patent Document 2).

上記(1)法では、反応系に更に周期率表の1族(IA族)、2族(IIA族)、12族(IIB族)、13族(IIIB族)元素の化合物を添加して、シス体の選択率を向上させているものの、多量の水素化ホウ素ナトリウムを使用せねばならず多量の廃棄物が発生する問題点を有している。さらに、原料の1,3−シクロヘキサンジオンは、高価なパラジウムを触媒として、レゾルシンを水素化して製造するため、工業的に有利な製造方法とは言い難い。(2)法では、水素化により1,3−CHDを製造しているものの、得られたシス体とトランス体の生成比については言及されていない上、その収率はいずれも低いものであった。(3)法では、75%以上の選択率でシス体を生成しているが、高価な貴金属触媒であるルテニウム触媒を使用しているため工業的に有利な方法とは言い難いのが現状である。このような現状に鑑み、シス体含有率の高い1,3−CHDを、有利に生産性よく安価に製造できる方法の出現が望まれていた。   In the above method (1), compounds of Group 1 (Group IA), Group 2 (Group IIA), Group 12 (Group IIB), Group 13 (Group IIIB) of the periodic table are further added to the reaction system, Although the selectivity of the cis isomer is improved, a large amount of sodium borohydride must be used, and a large amount of waste is generated. Furthermore, since 1,3-cyclohexanedione as a raw material is produced by hydrogenating resorcin using expensive palladium as a catalyst, it is difficult to say that it is an industrially advantageous production method. In method (2), 1,3-CHD is produced by hydrogenation, but the production ratio of the obtained cis isomer and trans isomer is not mentioned, and the yield is low. It was. In the method (3), a cis isomer is generated with a selectivity of 75% or more, but it is difficult to say that the method is industrially advantageous because it uses a ruthenium catalyst that is an expensive noble metal catalyst. is there. In view of such a current situation, there has been a demand for the emergence of a method capable of producing 1,3-CHD having a high cis-isomer content rate advantageously and with low productivity.

特開2003−300919号公報JP 2003-300919 A 韓国公開特許特2003−92889号公報Korean Patent Application No. 2003-92889 Journal of Chemical Society,p.2103(1950)Journal of Chemical Society, p. 2103 (1950) Journal of Chemical Society,p.1586(1949)Journal of Chemical Society, p. 1586 (1949) 薬学雑誌,第58巻,657頁(1938)Pharmaceutical Journal, Vol. 58, 657 (1938)

本発明は、シス体含有率の高い1,3−CHDを工業的に有利に製造する方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing 1,3-CHD with high cis-isomer content industrially advantageously.

本発明者らは、上記課題を達成すべく鋭意検討の結果、レゾルシンを卑金属触媒並びにアルカリ金属化合物及びアルカリ土類金属化合物からなる群から選ばれる少なくとも1種の金属化合物の存在下に水素化する事により、シス体含有率の高い1,3−CHDを工業的に有利に製造することができることを見いだし、かかる知見に基づいて本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors hydrogenate resorcin in the presence of at least one metal compound selected from the group consisting of a base metal catalyst and an alkali metal compound and an alkaline earth metal compound. As a result, it has been found that 1,3-CHD having a high cis-isomer content can be produced industrially advantageously, and the present invention has been completed based on this finding.

即ち、本発明は、以下の1,3−CHDの製造方法を提供するものである。   That is, the present invention provides the following method for producing 1,3-CHD.

項1 レゾルシンを、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選ばれる少なくとも1種を含有する卑金属触媒存在下に水素化して1,3−シクロヘキサンジオールを製造するに際し、該水素化反応をアルカリ金属化合物及びアルカリ土類金属化合物からなる群から選ばれる少なくとも1種の金属化合物の存在下で行うことを特徴とする製造方法。   Item 1 In producing 1,3-cyclohexanediol by hydrogenating resorcin in the presence of a base metal catalyst containing at least one selected from the group consisting of iron, cobalt, nickel, copper and zinc, the hydrogenation reaction is performed. The manufacturing method characterized by performing in presence of the at least 1 sort (s) of metal compound chosen from the group which consists of an alkali metal compound and an alkaline-earth metal compound.

項2 前記金属化合物を、レゾルシンに対して1〜50モル%用いることを特徴とする上記項1に記載の製造方法。   Item 2 The method according to Item 1, wherein the metal compound is used in an amount of 1 to 50 mol% based on resorcin.

項3 卑金属触媒が、ニッケル及びコバルトからなる群から選ばれる少なくとも一種を含有する卑金属触媒である上記項1又は2に記載の製造方法。   Item 3. The method according to Item 1 or 2, wherein the base metal catalyst is a base metal catalyst containing at least one selected from the group consisting of nickel and cobalt.

項4 前記金属化合物が、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム及び炭酸バリウムからなる群から選ばれる少なくとも1種である上記項1〜3のいずれかに記載の製造方法。   Item 4 The metal compound is lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, calcium hydroxide, hydroxide Item 4. The production method according to any one of Items 1 to 3, which is at least one selected from the group consisting of strontium, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate.

本発明に従って、レゾルシンを水素化することにより、樹脂、農薬、医薬品等の中間体として有用に用いられる、シス体含有率の高い1,3−CHDを工業的に有利に製造することができる。   According to the present invention, by resorcinating resorcin, 1,3-CHD having a high cis-isomer content, which is usefully used as an intermediate for resins, agricultural chemicals, pharmaceuticals and the like, can be advantageously produced industrially.

本発明に用いるレゾルシンは、従来公知の方法に従って製造されたものが広く使用でき、通常、工業用原料として市販されているものをそのまま用いることができる。さらに、必要に応じて、再結晶、昇華等の従来公知の方法により精製して、水素化反応を阻害する硫黄分を低減させたものを使用することができる。   As the resorcin used in the present invention, those produced according to a conventionally known method can be widely used, and those commercially available as industrial raw materials can be used as they are. Furthermore, if necessary, a product that has been purified by a conventionally known method such as recrystallization or sublimation to reduce the sulfur content that inhibits the hydrogenation reaction can be used.

また、上記レゾルシンの他に、ヒドロキシル基がシリル基、アルキル基等の保護基で保護されたレゾルシン誘導体も用いることができる。   In addition to the resorcin, resorcin derivatives in which the hydroxyl group is protected with a protecting group such as a silyl group or an alkyl group can also be used.

卑金属触媒
本発明に係る卑金属触媒は、芳香環を核水素化できる卑金属を含有する触媒であり、該卑金属としては、鉄、コバルト、ニッケル、銅、亜鉛が挙げられる。この中でも反応性、選択率の観点から、ニッケル、コバルトが好ましく、特にニッケルが推奨される。該卑金属は0価の金属に限らず、硝酸塩、硫酸塩、酢酸塩、塩化物、臭化物、酸化物、水酸化物等の無機化合物、アセチルアセトナート化合物、アミン化合物、ホスフィン化合物、カルボニル化合物との錯体等であってもよい。
Base metal catalyst The base metal catalyst according to the present invention is a catalyst containing a base metal capable of nuclear hydrogenation of an aromatic ring, and examples of the base metal include iron, cobalt, nickel, copper, and zinc. Among these, nickel and cobalt are preferable from the viewpoint of reactivity and selectivity, and nickel is particularly recommended. The base metal is not limited to zero-valent metals, but includes inorganic compounds such as nitrates, sulfates, acetates, chlorides, bromides, oxides, hydroxides, acetylacetonate compounds, amine compounds, phosphine compounds, and carbonyl compounds. It may be a complex or the like.

さらに、上記卑金属の他に、ホウ素、マグネシウム、アルミニウム、ケイ素、カルシウム、チタン、クロム、マンガン、パラジウム、銀、スズ、バリウム、モリブテン等の1種以上を添加した変性触媒を使用してもよい。   Further, in addition to the base metal, a modified catalyst to which one or more of boron, magnesium, aluminum, silicon, calcium, titanium, chromium, manganese, palladium, silver, tin, barium, molybdenum and the like are added may be used.

上記卑金属触媒はそのままで使用することができるが、通常、スポンジメタル型触媒又は担体担持型触媒として使用される。   The base metal catalyst can be used as it is, but is usually used as a sponge metal type catalyst or a carrier-supported type catalyst.

スポンジメタル型触媒としては、従来公知或いは市販されているものが広く使用でき、例えば、スポンジニッケル触媒、スポンジコバルト触媒、スポンジ銅触媒、スポンジ鉄触媒、スポンジ亜鉛触媒等が挙げられ、この中でもスポンジニッケル触媒、スポンジコバルト触媒が好ましく、選択率が高い点から、特にスポンジニッケル触媒が好ましい。   As the sponge metal type catalyst, those conventionally known or commercially available can be widely used, and examples thereof include a sponge nickel catalyst, a sponge cobalt catalyst, a sponge copper catalyst, a sponge iron catalyst, and a sponge zinc catalyst. A catalyst and a sponge cobalt catalyst are preferable, and a sponge nickel catalyst is particularly preferable from the viewpoint of high selectivity.

スポンジメタル型触媒は、展開後の含水状態のまま使用できる他、水分を適当な溶媒で置換した後に使用することも可能である。水分を置換する際に使用する溶媒としては、水と相溶し、水素化反応に不活性な溶媒であれば、特に限定されない。   The sponge metal type catalyst can be used as it is in a water-containing state after development, or can be used after water has been replaced with a suitable solvent. The solvent used for replacing water is not particularly limited as long as it is compatible with water and is inert to the hydrogenation reaction.

担体担持型触媒としては、従来公知或いは市販されているものが広く使用でき、例えば、安定化ニッケル触媒、耐硫黄性ニッケル触媒、フレークニッケル触媒、担持コバルト触媒等が挙げられる。この中でも安定化ニッケル触媒、耐硫黄性ニッケル触媒が好ましい。   Conventionally supported or commercially available catalysts can be widely used as the carrier-supported catalyst, and examples thereof include a stabilized nickel catalyst, a sulfur-resistant nickel catalyst, a flake nickel catalyst, and a supported cobalt catalyst. Among these, a stabilized nickel catalyst and a sulfur-resistant nickel catalyst are preferable.

該担体担持型触媒に使用される坦体としては、珪藻土、軽石、活性炭、グラファイト、シリカゲル、アルミナ、酸化マグネシウム、酸化ジルコニウム、酸化チタン、ゼオライト、炭酸カルシウム、硫酸バリウム等が例示され、なかでも珪藻土、アルミナ等が好ましい。これらの坦体は、1種でまたは2種以上を組み合わせて使用することができる。   Examples of the carrier used for the carrier-supported catalyst include diatomaceous earth, pumice, activated carbon, graphite, silica gel, alumina, magnesium oxide, zirconium oxide, titanium oxide, zeolite, calcium carbonate, barium sulfate, and the like. Alumina and the like are preferable. These carriers can be used alone or in combination of two or more.

該担体担持型触媒の金属成分の担持量は、特に限定されないが、触媒の総重量に対して、金属分として、通常、1〜90重量%程度、好ましくは20〜80重量%である。   The supported amount of the metal component of the carrier-supported catalyst is not particularly limited, but is usually about 1 to 90% by weight, preferably 20 to 80% by weight, as a metal component, with respect to the total weight of the catalyst.

これらの担体担持触媒の形態は、特に限定されず、所望する反応形態に応じて粉末状、タブレット状等を適宜選択して使用することができる。一般的には、回分或いは連続の懸濁反応には粉末触媒が好ましく、固定床反応にはタブレット触媒を用いることが多い。   The form of these carrier-supported catalysts is not particularly limited, and a powder form, a tablet form or the like can be appropriately selected and used according to the desired reaction form. In general, powder catalysts are preferred for batch or continuous suspension reactions, and tablet catalysts are often used for fixed bed reactions.

これらの担体担持触媒の製造方法は特に限定されず、例えば、含浸法、共沈法等の従来公知の方法により容易に製造することができる。通常は、市販されているものをそのまま、或いは、使用する前に還元処理等の適当な活性化処理をした後で反応に供することができる。   The method for producing these carrier-supported catalysts is not particularly limited, and can be easily produced by a conventionally known method such as an impregnation method or a coprecipitation method. Usually, a commercially available product can be used as it is or after being subjected to a suitable activation treatment such as a reduction treatment before use.

これら卑金属触媒の形態は特に限定されず、選択される反応方式に応じて粉末状、成型触媒など適宜選択して使用される。粉末状の触媒は、通常、回分或いは連続の懸濁床の水素化反応に用いられ、成型触媒は、固定床連続式の水素化反応に使用される。また、成型触媒としては、使用する反応器の大きさにより適宜選択されるが、通常は直径2〜6mm、高さ2〜8mmの範囲の円柱状が好ましい。   The form of these base metal catalysts is not particularly limited, and is suitably selected and used in the form of a powder, a molded catalyst, etc. according to the selected reaction method. The powdered catalyst is usually used for a batch or continuous suspension bed hydrogenation reaction, and the shaped catalyst is used for a fixed bed continuous hydrogenation reaction. Moreover, as a shaping | molding catalyst, although suitably selected by the magnitude | size of the reactor to be used, the column shape of diameter 2-6mm and height 2-8mm is preferable normally.

水素化反応に用いられる触媒の使用量は、通常、原料のレゾルシンに対して、0.1〜50重量%の範囲であり、好ましくは0.5〜20重量%、特に好ましくは1〜10重量%が推奨される。この範囲内において、経済的に有利かつ十分な反応速度で水素化反応を行うことができる。   The amount of the catalyst used in the hydrogenation reaction is usually in the range of 0.1 to 50% by weight, preferably 0.5 to 20% by weight, particularly preferably 1 to 10% by weight, based on the raw material resorcin. % Is recommended. Within this range, the hydrogenation reaction can be carried out at an economically advantageous and sufficient reaction rate.

溶媒
本反応は、無溶媒でも行うことができるが、溶媒を用いて行うことが好ましい。用いる溶媒としては、水素化反応条件下で不活性な限り特に限定されず、例えば、水、炭素数1〜8、好ましくは炭素数1〜4の脂肪族アルコール、炭素数3〜10、好ましくは炭素数6〜9の脂環族アルコール、エーテル基を1〜5個(好ましくは2〜3個)含有する鎖状又は環状エーテルが挙げられる。
Solvent This reaction can be carried out without solvent, but is preferably carried out using a solvent. The solvent to be used is not particularly limited as long as it is inert under the hydrogenation reaction conditions. For example, water, an aliphatic alcohol having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, 3 to 10 carbon atoms, preferably Examples thereof include alicyclic alcohols having 6 to 9 carbon atoms and chain or cyclic ethers containing 1 to 5 (preferably 2 to 3) ether groups.

上記の中でも、レゾルシンの溶解度、反応の選択率の観点から、脂肪族アルコール、鎖状エーテルが好ましい。   Of these, aliphatic alcohols and chain ethers are preferred from the viewpoint of resorcin solubility and reaction selectivity.

より具体的には、水、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブチルアルコール、iso−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2−エチルヘキサノール、2−メトキシエタノール、2−エトキシエタノール、プロピレングリコールモノメチルエーテル、エチレングリコール、プロピレングリコール、シクロヘキサノール、メチルシクロヘキサノール等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチルtert−ブチルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、1,3−ジオキソラン、ジオキサン等のエーテル系溶媒等が例示される。この中でも、iso−プロピルアルコール、プロピレングリコールモノメチルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテルが好ましい。これらの溶媒は、1種単独で又は2種以上組み合わせて用いることができる。   More specifically, water, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, pentanol, hexanol, heptanol, octanol , 2-ethylhexanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, ethylene glycol, propylene glycol, cyclohexanol, methylcyclohexanol and other alcohol solvents, diethyl ether, diisopropyl ether, dibutyl ether, methyl tert -Butyl ether, dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tet Hydrofuran, 1,3-dioxolane, ether solvents such as dioxane and the like. Among these, iso-propyl alcohol, propylene glycol monomethyl ether, dimethoxyethane, and diethylene glycol dimethyl ether are preferable. These solvents can be used alone or in combination of two or more.

上記溶媒の使用量としては、特に制限されないが、レゾルシンに対して、0.5〜100重量倍程度、好ましくは1〜10重量倍程度である。0.5重量倍未満では原料の溶解が困難となる傾向があり、又、100重量倍を越えて使用してもそれに見合うだけの優位性は見られず、更に反応後の溶媒除去操作が煩雑となり経済的にも好ましくない。   The amount of the solvent used is not particularly limited, but is about 0.5 to 100 times by weight, preferably about 1 to 10 times by weight with respect to resorcin. If it is less than 0.5 times by weight, it tends to be difficult to dissolve the raw material, and even if it is used in excess of 100 times by weight, there is no advantage to meet it, and the solvent removal operation after the reaction is complicated. This is not economically desirable.

金属化合物
本発明の水素化反応において、アルカリ金属化合物及びアルカリ土類金属化合物からなる群から選ばれる少なくとも1種の金属化合物を共存させることにより生成1,3−CHD中のシス体含有率を高めることができる。
Metal Compound In the hydrogenation reaction of the present invention, the cis-isomer content in the produced 1,3-CHD is increased by allowing at least one metal compound selected from the group consisting of alkali metal compounds and alkaline earth metal compounds to coexist. be able to.

アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられ、この中でも、リチウム、ナトリウム、カリウムが好ましい。   Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Among these, lithium, sodium, and potassium are preferable.

アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、この中でも、カルシウム、マグネシウム、バリウムが好ましく、特にカルシウム、バリウムが推奨される。   Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Among these, calcium, magnesium, and barium are preferable, and calcium and barium are particularly recommended.

上記の金属化合物の中でも、水素化反応の選択率が高い点からアルカリ土類金属化合物がより好ましい。   Among the above metal compounds, alkaline earth metal compounds are more preferable because of their high hydrogenation reaction selectivity.

上記のアルカリ金属及びアルカリ土類金属の形態は特に限定されないが、例えば、該金属の、水酸化物、水素化物、炭酸塩、炭酸水素塩、亜硫酸塩、リン酸塩、リン酸水素塩、ホウ酸塩、ホウ酸水素塩、有機酸塩、アルコキシド等が例示される。これらの中でも、水酸化物、炭酸塩、炭酸水素塩、炭素数1〜2の有機酸塩、炭素数1〜2のアルコキシドが好ましく、特に水酸化物が好ましい。   The form of the alkali metal and alkaline earth metal is not particularly limited. For example, hydroxide, hydride, carbonate, bicarbonate, sulfite, phosphate, hydrogen phosphate, boron of the metal. Examples thereof include acid salts, hydrogen borate salts, organic acid salts, and alkoxides. Among these, hydroxides, carbonates, hydrogen carbonates, organic acid salts having 1 to 2 carbon atoms, and alkoxides having 1 to 2 carbon atoms are preferable, and hydroxides are particularly preferable.

上記金属化合物の中で、アルカリ金属化合物の好ましい具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、ギ酸リチウム、ギ酸ナトリウム、ギ酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、シュウ酸リチウム、シュウ酸ナトリウム、シュウ酸カリウム、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド等が挙げられ、特に水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムが推奨される。これらアルカリ金属化合物は無水物、水和物のいずれでも構わない。   Among the above metal compounds, preferred specific examples of the alkali metal compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, Lithium formate, sodium formate, potassium formate, lithium acetate, sodium acetate, potassium acetate, lithium oxalate, sodium oxalate, potassium oxalate, lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, Examples include potassium ethoxide, and lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate are particularly recommended. These alkali metal compounds may be either anhydrides or hydrates.

アルカリ土類金属化合物の好ましい具体例としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、ギ酸マグネシウム、ギ酸カルシウム、ギ酸ストロンチウム、ギ酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、シュウ酸マグネシウム、シュウ酸カルシウム、シュウ酸ストロンチウム、蓚酸バリウム、マグネシウムメトキシド、カルシウムメトキシド、ストロンチウムメトキシド、バリウムメトキシド、マグネシウムエトキシド、カルシウムエトキシド、ストロンチウムエトキシド、バリウムエトキシド等が挙げられ、特に、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムが挙げられる。これらアルカリ土類金属化合物は無水物、水和物のいずれでも構わない。   Preferable specific examples of the alkaline earth metal compound include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, magnesium formate, calcium formate, strontium formate, formic acid. Barium, magnesium acetate, calcium acetate, strontium acetate, barium acetate, magnesium oxalate, calcium oxalate, strontium oxalate, barium oxalate, magnesium methoxide, calcium methoxide, strontium methoxide, barium methoxide, magnesium ethoxide, calcium Ethoxide, strontium ethoxide, barium ethoxide, etc., especially magnesium hydroxide, calcium hydroxide, strontium hydroxide , Barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate. These alkaline earth metal compounds may be either anhydrides or hydrates.

上記金属化合物は、単独で又は2種以上を適宜組み合わせて使用することができる。   The said metal compound can be used individually or in combination of 2 or more types as appropriate.

上記金属化合物の使用量としては、通常、レゾルシンに対して0.1〜100モル%程度であり、好ましくは1〜50モル%、更に好ましくは2〜30モル%、特に好ましくは2.5〜10モル%の範囲が推奨される。この範囲内において、十分な生成率と選択率で反応を行うことができる。   The amount of the metal compound used is usually about 0.1 to 100 mol%, preferably 1 to 50 mol%, more preferably 2 to 30 mol%, and particularly preferably 2.5 to mol with respect to resorcin. A range of 10 mol% is recommended. Within this range, the reaction can be carried out with a sufficient production rate and selectivity.

水素化反応は、系内を窒素ガス、アルゴンガス等の不活性ガスで置換した後、水素置換して行なうことが好ましい。   The hydrogenation reaction is preferably carried out by substituting the interior of the system with an inert gas such as nitrogen gas or argon gas and then substituting with hydrogen.

水素化の反応温度は、通常30〜200℃、好ましくは50〜150℃の範囲である。この温度範囲より低い場合には十分な反応速度が得られず、また、高い場合には副反応や分解反応を伴うため収率が低下する傾向が見られ、経済的にも好ましくない。   The reaction temperature of hydrogenation is usually in the range of 30 to 200 ° C, preferably 50 to 150 ° C. When the temperature is lower than this temperature range, a sufficient reaction rate cannot be obtained, and when the temperature is higher, a side reaction and a decomposition reaction are accompanied, so that the yield tends to decrease, which is not economically preferable.

反応圧力としては、水素分圧で、通常0.5〜30MPa程度、好ましくは2〜20MPa程度の範囲である。1MPa未満では実用的な反応速度が得られにくく、一方、20MPaを越えても顕著な有意性は認められず、また特殊な耐圧設備が必要となり経済的にも不利である。   The reaction pressure is a hydrogen partial pressure, usually in the range of about 0.5 to 30 MPa, preferably about 2 to 20 MPa. If it is less than 1 MPa, it is difficult to obtain a practical reaction rate. On the other hand, if it exceeds 20 MPa, no significant significance is observed, and a special pressure-resistant facility is required, which is economically disadvantageous.

反応時間としては、触媒量や諸条件によって異なるが、通常0.5〜50時間程度、工業的な観点からは1〜20時間になるように条件などを適宜選択することが好ましい。   The reaction time varies depending on the amount of the catalyst and various conditions, but it is preferable to appropriately select the conditions so as to be usually about 0.5 to 50 hours, and 1 to 20 hours from an industrial viewpoint.

本発明の反応方式としては、水素化触媒を反応溶液中に分散させて行う液相懸濁床による方法、水素化触媒を反応器中に固定させ、これに反応液を作用させる固定床流通反応による方法などが採用される。   The reaction method of the present invention includes a method using a liquid phase suspension bed in which a hydrogenation catalyst is dispersed in a reaction solution, a fixed bed flow reaction in which a hydrogenation catalyst is fixed in a reactor and a reaction solution is allowed to act on this. The method by is adopted.

反応終了後は、濾過、遠心分離等公知の方法により触媒を分離除去した後、必要に応じて溶媒を留去し、抽出、蒸留、昇華、晶析、クロマトグラフィー等の慣用方法により1,3−CHDを得ることができる。その際、反応時に添加したアルカリ金属化合物及びアルカリ金属化合物を除去する方法として上記方法以外に、炭酸ガスを吹き込み該当する金属の炭酸塩として析出させそれを濾過して除去する方法、イオン交換樹脂で処理する方法等が挙げられる。更に高純度のシス体が必要な場合は、蒸留、昇華、再結晶、クロマトグラフィー等の慣用方法により更にシス体純度を高めることも可能である。   After completion of the reaction, the catalyst is separated and removed by a known method such as filtration or centrifugation, and then the solvent is distilled off if necessary. 1,3 by a conventional method such as extraction, distillation, sublimation, crystallization, chromatography or the like. -CHD can be obtained. At that time, in addition to the above method as a method for removing the alkali metal compound and alkali metal compound added at the time of reaction, a method of blowing carbon dioxide and depositing it as a carbonate of the corresponding metal and filtering it off, an ion exchange resin The method of processing etc. are mentioned. If a cis-isomer with higher purity is required, the purity of the cis-isomer can be further increased by conventional methods such as distillation, sublimation, recrystallization, and chromatography.

上記の水素化方法に従って、レゾルシンを水素することにより、得られる1,3−CHD中のシス1,3−CHDの含有率が、少なくとも60%以上、好ましくは70%以上、特に好ましくは、75%以上の1,3−CHDを得ることができる。   By hydrogenating resorcin according to the above hydrogenation method, the content of cis 1,3-CHD in 1,3-CHD obtained is at least 60% or more, preferably 70% or more, particularly preferably 75 % Or more of 1,3-CHD can be obtained.

以下に実施例を掲げて本発明を詳しく説明するが、本発明はこれら実施例に限定されるものではない。尚、各実施例及び比較例の転化率、CHD選択率及びシス選択率はガスクロマトグラフィー(GC)により分析し、下記式を用いて算出した。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In addition, the conversion, CHD selectivity, and cis selectivity of each Example and Comparative Example were analyzed by gas chromatography (GC) and calculated using the following formula.

GCサンプル調製
反応終了後の反応液を少量分取し、希塩酸を添加して酸性化した後にメタノールで希釈し調製した。
A small amount of the reaction solution after completion of the GC sample preparation reaction was taken, acidified by adding dilute hydrochloric acid, and then diluted with methanol for preparation.

転化率
転化率(%)=100−Sres
Sres:レゾルシンの残存率(GC面積%)
Conversion rate Conversion rate (%) = 100−Sres
Sres: Resorcin remaining rate (GC area%)

CHD選択率
CHD選択率(%)=(Scis+Strans)/転化率x100
Scis:シス−1,3−CHDの生成率(GC面積%)
Strans:トランス−1,3−CHDの生成率(GC面積%)
CHD selectivity CHD selectivity (%) = (Scis + Strans) / conversion rate × 100
Scis: Production rate of cis-1,3-CHD (GC area%)
Strans: Trans-1,3-CHD production rate (GC area%)

シス選択率
シス選択率(%)=Scis/(Scis+Strans)x100
Scis:シス−1,3−CHDの生成率(GC面積%)
Strans:トランス−1,3−CHDの生成率(GC面積%)
Cis selectivity cis selectivity (%) = Scis / (Scis + Strans) × 100
Scis: Production rate of cis-1,3-CHD (GC area%)
Strans: Trans-1,3-CHD production rate (GC area%)

下記実施例におけるスポンジメタル型触媒は展開後に水中保存されているものを金属純分で所定の重量となるように測り採った後、傾斜分離して上澄水を分離した含水状態のものを使用した。   The sponge metal-type catalyst in the following examples was used in a water-containing state in which the water stored after development was measured to have a predetermined weight with pure metal, and then the supernatant water was separated by gradient separation. .

実施例1
電磁誘導撹拌装置を備え付けた500mlオートクレーブに、レゾルシン30g(0.27モル)、イソプロピルアルコール(以下、「IPA」と略記する。)120g、展開スポンジニッケル触媒(NDT−90、川研ファインケミカル社製)1.5g、水酸化ナトリウム0.54g(0.014モル)を入れ、オートクレーブ内を水素で置換した後、ゲージ圧力5.0MPa、100℃で水素化反応を行った。尚、反応は、消費された水素を補充しながら行い、圧力減少が見られなくなるまで継続した。反応終了後、冷却して触媒を減圧濾過により濾別し、得られた無色透明液体をガスクロマトグラフィーにより分析した。その結果を表1に示した。
Example 1
In a 500 ml autoclave equipped with an electromagnetic induction stirrer, resorcin 30 g (0.27 mol), isopropyl alcohol (hereinafter abbreviated as “IPA”) 120 g, developed sponge nickel catalyst (NDT-90, manufactured by Kawaken Fine Chemical Co., Ltd.) After 1.5 g and 0.54 g (0.014 mol) of sodium hydroxide were added and the inside of the autoclave was replaced with hydrogen, a hydrogenation reaction was performed at a gauge pressure of 5.0 MPa and 100 ° C. The reaction was performed while replenishing the consumed hydrogen, and continued until no pressure decrease was observed. After completion of the reaction, the reaction mixture was cooled and the catalyst was removed by filtration under reduced pressure. The resulting colorless and transparent liquid was analyzed by gas chromatography. The results are shown in Table 1.

実施例2
IPAに代えて、ジエチレングリコールジメチルエーテル(以下、「ジグライム」と略記する。)120gを使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 2
The same procedure as in Example 1 was performed except that 120 g of diethylene glycol dimethyl ether (hereinafter abbreviated as “diglyme”) was used instead of IPA. The results are shown in Table 1.

実施例3
水酸化ナトリウムの使用量を2.18g(0.055モル)とした他は、実施例1と同様に実施した。その結果を表1に示した。
Example 3
The same operation as in Example 1 was conducted except that the amount of sodium hydroxide used was 2.18 g (0.055 mol). The results are shown in Table 1.

実施例4
水酸化ナトリウムに代えて、水酸化リチウム一水和物0.57g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 4
The same procedure as in Example 1 was performed except that 0.57 g (0.014 mol) of lithium hydroxide monohydrate was used instead of sodium hydroxide. The results are shown in Table 1.

実施例5
水酸化ナトリウムに代えて、水酸化カリウム0.90g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 5
The same procedure as in Example 1 was performed except that 0.90 g (0.014 mol) of potassium hydroxide was used instead of sodium hydroxide. The results are shown in Table 1.

実施例6
水酸化ナトリウムに代えて、水酸化カルシウム0.90g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 6
The same procedure as in Example 1 was performed except that 0.90 g (0.014 mol) of calcium hydroxide was used instead of sodium hydroxide. The results are shown in Table 1.

実施例7
水酸化ナトリウムに代えて、水酸化バリウム八水和物4.29g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 7
The same procedure as in Example 1 was performed except that 4.29 g (0.014 mol) of barium hydroxide octahydrate was used instead of sodium hydroxide. The results are shown in Table 1.

実施例8
水酸化ナトリウムに代えて、水酸化バリウム八水和物4.29g(0.014モル)を用い、IPAに代えて、ジグライム120gを使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 8
The same procedure as in Example 1 was performed except that 4.29 g (0.014 mol) of barium hydroxide octahydrate was used instead of sodium hydroxide, and 120 g of diglyme was used instead of IPA. The results are shown in Table 1.

実施例9
水酸化ナトリウムに代えて、炭酸ナトリウム1.44g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示した。
Example 9
The same procedure as in Example 1 was performed except that 1.44 g (0.014 mol) of sodium carbonate was used instead of sodium hydroxide. The results are shown in Table 1.

実施例10
水酸化ナトリウムに代えて、炭酸カルシウム1.36g(0.014モル)を使用した他は、実施例1と同様に実施した。その結果を表1に示すした。
Example 10
The same procedure as in Example 1 was performed except that 1.36 g (0.014 mol) of calcium carbonate was used instead of sodium hydroxide. The results are shown in Table 1.

実施例11
電磁誘導撹拌装置を備え付けた500mlオートクレーブに、安定化ニッケル触媒(N103、日揮化学社製)1.5g、IPA120gを入れ、オートクレーブ内を水素で置換した後、150℃、ゲージ圧力5MPaで2.5時間加熱撹拌し触媒の活性化を行った。冷却後、レゾルシン30g、水酸化ナトリウム0.54gを添加し、オートクレーブ内を水素で置換した後、ゲージ圧力5.0MPa、100℃で水素化反応を行った。反応は、消費された水素を補充しながら圧力減少が見られなくなるまで継続した。反応終了後、冷却して触媒を減圧濾過により濾別し、得られた無色透明液体をGCにより分析した。その結果を表1に示した。
Example 11
A 500 ml autoclave equipped with an electromagnetic induction stirrer was charged with 1.5 g of a stabilized nickel catalyst (N103, manufactured by JGC Chemical Co., Ltd.) and 120 g of IPA, and the inside of the autoclave was replaced with hydrogen. The catalyst was activated by heating and stirring for a period of time. After cooling, 30 g of resorcin and 0.54 g of sodium hydroxide were added, the inside of the autoclave was replaced with hydrogen, and then a hydrogenation reaction was performed at a gauge pressure of 5.0 MPa and 100 ° C. The reaction continued until no pressure reduction was seen while replenishing the consumed hydrogen. After completion of the reaction, the reaction mixture was cooled and the catalyst was filtered off under reduced pressure. The resulting colorless transparent liquid was analyzed by GC. The results are shown in Table 1.

実施例12
スポンジニッケル触媒に代えて、展開スポンジコバルト触媒(ODHT−60、川研ファインケミカル社製)1.5gを使用した他は、実施例1と同様に実施した。分析結果を表1に示した。
Example 12
The same procedure as in Example 1 was performed except that 1.5 g of a developed sponge cobalt catalyst (ODHT-60, manufactured by Kawaken Fine Chemical Co., Ltd.) was used instead of the sponge nickel catalyst. The analysis results are shown in Table 1.

比較例1
水酸化ナトリウムを用いない他は、実施例1と同様に実施した。その結果を表1に示した。
Comparative Example 1
The same operation as in Example 1 was performed except that sodium hydroxide was not used. The results are shown in Table 1.

比較例2
水酸化ナトリウムを用いない他は、実施例11と同様に実施した。その結果を表1に示した。
Comparative Example 2
The same operation as in Example 11 was performed except that sodium hydroxide was not used. The results are shown in Table 1.

Figure 2006036653
Figure 2006036653

本発明の方法により製造される1,3−CHDは、医薬、農薬、高分子化合物等の合成中間体原料として好適に使用することができる。

特許出願人 新日本理化株式会社
1,3-CHD produced by the method of the present invention can be suitably used as a raw material for synthetic intermediates such as pharmaceuticals, agricultural chemicals and polymer compounds.

Patent applicant New Nippon Rika Co., Ltd.

Claims (4)

レゾルシンを、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選ばれる少なくとも1種を含有する卑金属触媒存在下に水素化して1,3−シクロヘキサンジオールを製造するに際し、該水素化反応をアルカリ金属化合物及びアルカリ土類金属化合物からなる群から選ばれる少なくとも1種の金属化合物の存在下で行うことを特徴とする製造方法。   In producing 1,3-cyclohexanediol by hydrogenating resorcin in the presence of a base metal catalyst containing at least one selected from the group consisting of iron, cobalt, nickel, copper and zinc, the hydrogenation reaction is carried out with an alkali metal. The manufacturing method characterized by performing in presence of the at least 1 sort (s) of metal compound chosen from the group which consists of a compound and an alkaline-earth metal compound. 前記金属化合物を、レゾルシンに対して1〜50モル%用いることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the metal compound is used in an amount of 1 to 50 mol% with respect to resorcin. 卑金属触媒が、ニッケル及びコバルトからなる群から選ばれる少なくとも一種を含有する卑金属触媒である請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the base metal catalyst is a base metal catalyst containing at least one selected from the group consisting of nickel and cobalt. 前記金属化合物が、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム及び炭酸バリウムからなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の製造方法。


The metal compound is lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, magnesium hydroxide, calcium hydroxide, strontium hydroxide, The production method according to claim 1, which is at least one selected from the group consisting of barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate and barium carbonate.


JP2004215063A 2004-07-23 2004-07-23 Method for producing 1,3-cyclohexanediol Active JP4349227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215063A JP4349227B2 (en) 2004-07-23 2004-07-23 Method for producing 1,3-cyclohexanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215063A JP4349227B2 (en) 2004-07-23 2004-07-23 Method for producing 1,3-cyclohexanediol

Publications (2)

Publication Number Publication Date
JP2006036653A true JP2006036653A (en) 2006-02-09
JP4349227B2 JP4349227B2 (en) 2009-10-21

Family

ID=35902033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215063A Active JP4349227B2 (en) 2004-07-23 2004-07-23 Method for producing 1,3-cyclohexanediol

Country Status (1)

Country Link
JP (1) JP4349227B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101968A1 (en) * 2011-12-30 2013-07-04 E. I. Du Pont De Nemours And Company Process for the production of hexanediols
US8846984B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of α,ω-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962894B2 (en) 2011-12-30 2015-02-24 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
WO2013101968A1 (en) * 2011-12-30 2013-07-04 E. I. Du Pont De Nemours And Company Process for the production of hexanediols
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8981130B2 (en) 2011-12-30 2015-03-17 E I Du Pont De Nemours And Company Process for the production of hexanediols
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8846984B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of α,ω-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8846985B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9181157B2 (en) 2012-04-27 2015-11-10 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9670118B2 (en) 2012-04-27 2017-06-06 E I Du Pont De Nemours And Company Production of alpha, omega-diols

Also Published As

Publication number Publication date
JP4349227B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
EP3419955B1 (en) Process for preparing a mixture of terpene alcohols
US5942645A (en) Hydrogenation of aromatic compounds in which at least one hydroxyl group is bonded to an aromatic ring
KR20120005018A (en) Method for producing 1,6-hexanediol
EP2781498A1 (en) Method for producing alkanediol
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
JP2012144491A (en) Method for producing glycol from multihydric alcohol
US20120059196A1 (en) Method for preparing a terpenylcyclohexanol
JP6200417B2 (en) Method for producing hydroxyphenylcyclohexanol compound
EP3533779B1 (en) Production method for trans-bis(2-hydroxyalkyl) cyclohexanedicarboxylate, and bis(2-hydroxyalkyl) cyclohexanedicarboxylate
JP2014047214A (en) Method for preparing menthol
US6548716B1 (en) Process for preparing a 1,3-diol
US20090112025A1 (en) Catalytic hydrogenation process and novel catalyst for it
WO2009128347A1 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
JP4472063B2 (en) Method for producing dicyclohexane derivative
US8507727B2 (en) Method for producing cyclohexyl alkyl ketones
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JP2014047215A (en) Method for preparing menthol
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP4761024B2 (en) Method for producing alicyclic diamine compound
JP3089772B2 (en) Method for producing diol compound having cyclohexane ring
JP2004216337A (en) Catalyst and method of making epoxy compound
JP2007022962A (en) Method for producing alicyclic diol
JP2005022982A (en) Method for producing cyclohexanecarbaldehyde
JP2001089413A (en) METHOD OF PRODUCING trans-4-(4&#39;-OXOCYCLOHEXYL) CYCLOHEXANOLS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250