JP2006036614A - Method and apparatus for producing crystal - Google Patents

Method and apparatus for producing crystal Download PDF

Info

Publication number
JP2006036614A
JP2006036614A JP2004223197A JP2004223197A JP2006036614A JP 2006036614 A JP2006036614 A JP 2006036614A JP 2004223197 A JP2004223197 A JP 2004223197A JP 2004223197 A JP2004223197 A JP 2004223197A JP 2006036614 A JP2006036614 A JP 2006036614A
Authority
JP
Japan
Prior art keywords
crystal
raw material
material solution
seed crystal
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004223197A
Other languages
Japanese (ja)
Other versions
JP4548031B2 (en
Inventor
Yasuhiko Furuyama
康彦 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004223197A priority Critical patent/JP4548031B2/en
Publication of JP2006036614A publication Critical patent/JP2006036614A/en
Application granted granted Critical
Publication of JP4548031B2 publication Critical patent/JP4548031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a triglycine sulfate (TGS) crystal which is largely grown in a-axis and c-axis directions while suppressing the growth in b-axis direction. <P>SOLUTION: After growing a TGS-based seed crystal C1 to some degree in a first raw material solution 1s, the growing seed crystal C1 is moved into a second raw material solution 2s containing a dopant in a different concentration and grown in the second raw material solution 2s, without continuously growing the seed crystal in the same raw material solution. The seed crystal is largely grown in a specified direction by repeating the process mentioned above. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、結晶製造方法および結晶製造装置に関し、さらに詳しくは、特定方向に大きく成長した結晶を製造することが出来る結晶製造方法および結晶製造装置に関する。   The present invention relates to a crystal manufacturing method and a crystal manufacturing apparatus, and more particularly to a crystal manufacturing method and a crystal manufacturing apparatus that can manufacture a crystal that has grown greatly in a specific direction.

原料溶液の温度を徐々に下げることにより結晶を育成する結晶製造方法が周知である(例えば、非特許文献1参照。)。
他方、TGS(Triglycine Sulfate)系結晶の晶癖について研究がなされている(例えば、非特許文献2,3,4参照。)。
A crystal manufacturing method is known in which crystals are grown by gradually lowering the temperature of the raw material solution (see, for example, Non-Patent Document 1).
On the other hand, studies have been made on the crystal habit of TGS (Triglycine Sulfate) crystals (for example, see Non-Patent Documents 2, 3, and 4).

高須新一郎著「物理工学実験12 結晶育成基礎技術」東京大学出版会、1980年5月30日、p.53−56Shinichiro Takasu “Physical Engineering Experiment 12 Basic Crystal Growth Technology”, University of Tokyo Press, May 30, 1980, p. 53-56 「Ferroelectric Domain Structure and Internal Bias Field in DL-α-Alanine-Doped Triglycine Sulfate」Japanese Journal of Appllied Physics, Vol.30, No.12A, December 1991, pp.3445-3449`` Ferroelectric Domain Structure and Internal Bias Field in DL-α-Alanine-Doped Triglycine Sulfate '' Japanese Journal of Appllied Physics, Vol.30, No.12A, December 1991, pp.3445-3449 「Growth and morphology of triglycine sulfate (TGC) crystals」Journal of Materials Science Letters, 8 (1989), pp.1348-1349`` Growth and morphology of triglycine sulfate (TGC) crystals '' Journal of Materials Science Letters, 8 (1989), pp.1348-1349 B.Brezina, M.Havrankova「L-Alanine Distribution in the Growth Pyramids of TGS Crystal and its Influence on the Growth, Switching and Domain Structure」Crysral Res. TechnolB. Brezina, M. Havrankova `` L-Alanine Distribution in the Growth Pyramids of TGS Crystal and its Influence on the Growth, Switching and Domain Structure '' Crysral Res. Technol

TGS系結晶は、分極方向がb軸方向であるため、そのa軸方向,c軸方向を面方向とし且つb軸方向を厚さ方向とする平板形状(つまり、b面が広い平板形状)にして、焦電素子として利用される。TGS結晶においては、a軸,c軸方向に大きくても、b軸方向に大きくても、どちらでも等価な結晶が得られる。
しかし、TGSにL−α−アラニンを不純物としてドープしたLATGSやDLATGS結晶の場合、結晶が種結晶に対してどの領域で成長したかにより、a軸方向,c軸方向を面方向とし且つb軸方向を厚さ方向とした平板形状の結晶でも、特性が異なる。これについては、非特許文献2に記載されている(但し、非特許文献2でDLATGSと称する結晶はD−α−アラニンおよびL−α−アラニンをドーパントとしたTGS系結晶であり、本願におけるキュリー温度を上昇させるために水素を重水素に置換したDLATGSとは異なる)。
L−α−アラニンをドープする目的は安定した分極状態を得ることであり、それはL−α−アラニンにより結晶内部に発生する内部バイアスに拠る。このことについては非特許文献2および非特許文献4に記載されている。そして、内部バイアスが大きくなるような成長領域は限られた領域であり、(0,−1,0)軸に垂直な面に成長した領域で特に大きな内部バイアスが得られる。
すなわち、育成する結晶の内部バイアスをより大きくする(ドーパントを入れる効果を効率良く導き出す)ためには、(0,−1,0)軸に垂直な面を種結晶として、その上の領域に結晶成長させることが肝要である。よって、このような結晶を効率良く得るためには、(0,−1,0)軸に垂直な面の面積を大きくすることが求められる。
そこで、本発明の目的は、特定方向に大きく成長した結晶を製造することが出来る結晶製造方法および結晶製造装置を提供することにある。
Since the polarization direction of the TGS-based crystal is the b-axis direction, the TGS-based crystal has a flat plate shape in which the a-axis direction and the c-axis direction are plane directions and the b-axis direction is a thickness direction (that is, a flat plate shape having a wide b-plane). And used as a pyroelectric element. In the TGS crystal, an equivalent crystal can be obtained regardless of whether it is large in the a-axis and c-axis directions or large in the b-axis direction.
However, in the case of a LATGS or DLATGS crystal in which TGS is doped with L-α-alanine as an impurity, the a-axis direction and the c-axis direction are set as the plane direction and the b-axis depending on in which region the crystal grows with respect to the seed crystal. Even in the case of a plate-shaped crystal whose direction is the thickness direction, the characteristics are different. This is described in Non-Patent Document 2 (however, the crystal called DLATGS in Non-Patent Document 2 is a TGS-based crystal having D-α-alanine and L-α-alanine as dopants, Unlike DLATGS, where hydrogen is replaced with deuterium to increase the temperature).
The purpose of doping L-α-alanine is to obtain a stable polarization state, which depends on the internal bias generated inside the crystal by L-α-alanine. This is described in Non-Patent Document 2 and Non-Patent Document 4. The growth region where the internal bias becomes large is a limited region, and a particularly large internal bias can be obtained in a region grown on a plane perpendicular to the (0, -1, 0) axis.
That is, in order to further increase the internal bias of the crystal to be grown (to efficiently derive the effect of introducing a dopant), a plane perpendicular to the (0, -1, 0) axis is used as a seed crystal, and a crystal is formed in a region above it. It is important to grow. Therefore, in order to obtain such a crystal efficiently, it is required to increase the area of the plane perpendicular to the (0, -1, 0) axis.
Accordingly, an object of the present invention is to provide a crystal manufacturing method and a crystal manufacturing apparatus capable of manufacturing a crystal that has grown greatly in a specific direction.

第1の観点では、本発明は、第1原料溶液に種結晶を入れて結晶成長させ、次に第1原料溶液と組成が異なる第2原料溶液に成長中種結晶を移してさらに結晶成長させることを特徴とする結晶製造方法を提供する。
本願発明者が鋭意研究したところ、原料溶液中に種結晶を入れると、最初は特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低いが、晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。さらに、最初の原料溶液と組成が異なる原料溶液中へ成長中種結晶を移すと、再び特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低くなり、やがて晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。
そこで、上記第1の観点による結晶製造方法では、同一原料溶液中で種結晶を育成し続けるのではなく、第1原料溶液中で種結晶をある程度育成すると、組成が異なる第2原料溶液中へ成長中種結晶を移して育成する。これにより、特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低い状態を維持して結晶を育成できるから、特定方向に大きく成長した結晶を効率良く製造することが出来る。
なお、第2原料溶液中で成長中種結晶をある程度育成すると、さらに組成が異なる第3原料溶液中へ成長中種結晶を移して育成する、というように同種操作を繰り返しても良い。また、第2原料溶液中で成長中種結晶をある程度育成すると、元の第1原料溶液中へ成長中種結晶を戻して育成する、というように同種操作を繰り返しても良い。
According to a first aspect, the present invention provides a seed crystal in a first raw material solution for crystal growth, and then transfers the growing seed crystal to a second raw material solution having a composition different from that of the first raw material solution for further crystal growth. A crystal production method is provided.
As a result of intensive research by the present inventor, when a seed crystal is put in a raw material solution, the growth rate in a specific crystal axis direction is initially high and the growth rate in other crystal axis directions is low, but after the crystal habit appears. It was found that the growth rate in each crystal axis direction maintained the crystal habit. Furthermore, when the growing seed crystal is transferred into a raw material solution having a composition different from that of the first raw material solution, the growth rate in a specific crystal axis direction is increased again, the growth rate in the other crystal axis direction is decreased, and the crystal habit is eventually reduced. After appearing, it was found that the growth rate in each crystal axis direction maintained the crystal habit.
Therefore, in the crystal manufacturing method according to the first aspect, when seed crystals are grown to some extent in the first raw material solution instead of continuing to grow seed crystals in the same raw material solution, the second raw material solution having a different composition is introduced. Transfer and grow seed crystals during growth. As a result, it is possible to grow a crystal while maintaining a high growth rate in a specific crystal axis direction and a low growth rate in other crystal axis directions. Therefore, it is possible to efficiently produce a crystal that has grown greatly in a specific direction. .
The same kind of operation may be repeated such that when the growing seed crystal is grown to some extent in the second raw material solution, the growing seed crystal is transferred and grown in the third raw material solution having a different composition. Further, the same kind of operation may be repeated such that when the growing seed crystal is grown to some extent in the second raw material solution, the growing seed crystal is grown back into the original first raw material solution.

第2の観点では、本発明は、上記構成の結晶製造方法において、前記第2原料溶液は、前記第1原料溶液と結晶成分またはドーパントの濃度が異なることを特徴とする結晶製造方法を提供する。
本願発明者が鋭意研究したところ、原料溶液中に種結晶を入れると、最初は特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低いが、晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。さらに、最初の原料溶液と結晶成分またはドーパントの濃度が異なる原料溶液中へ成長中種結晶を移すと、再び特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低くなり、やがて晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。
そこで、上記第2の観点による結晶製造方法では、同一原料溶液中で種結晶を育成し続けるのではなく、第1原料溶液中で種結晶をある程度育成すると、結晶成分又はドーパントの濃度が異なる第2原料溶液中へ成長中種結晶を移して育成する。これにより、特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低い状態を維持して結晶を育成できるから、特定方向に大きく成長した結晶を効率良く製造することが出来る。
In a second aspect, the present invention provides the crystal manufacturing method having the above structure, wherein the second raw material solution has a crystal component or dopant concentration different from that of the first raw material solution. .
As a result of intensive research by the present inventor, when a seed crystal is put in a raw material solution, the growth rate in a specific crystal axis direction is initially high and the growth rate in other crystal axis directions is low, but after the crystal habit appears. It was found that the growth rate in each crystal axis direction maintained the crystal habit. Furthermore, when the growing seed crystal is transferred into a raw material solution having a different concentration of crystal component or dopant from the initial raw material solution, the growth rate in a specific crystal axis direction is increased again, while the growth rate in the other crystal axis direction is decreased. After the crystal habit appeared, it was found that the growth rate in each crystal axis direction maintained the crystal habit.
Therefore, in the crystal manufacturing method according to the second aspect, when the seed crystal is grown to some extent in the first raw material solution instead of continuing to grow the seed crystal in the same raw material solution, the concentration of the crystal component or dopant differs. 2 The seed crystal is grown and grown in the raw material solution. As a result, it is possible to grow a crystal while maintaining a high growth rate in a specific crystal axis direction and a low growth rate in other crystal axis directions. Therefore, it is possible to efficiently produce a crystal that has grown greatly in a specific direction. .

第3の観点では、本発明は、硫酸三グリシン(TGS)系結晶成分およびドーパントを含む第1原料溶液にTGS系結晶の種結晶を入れて結晶成長させ、次に第1原料溶液と結晶成分またはドーパントの濃度が異なる第2原料溶液に成長中種結晶を移してさらに結晶成長させることを特徴とする結晶製造方法を提供する。
本願発明者が鋭意研究したところ、原料溶液中に種結晶を入れると、最初は特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低いが、晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。さらに、最初の原料溶液と結晶成分またはドーパントの濃度が異なる原料溶液中へ成長中種結晶を移すと、再び特定の結晶軸方向の成長速度が高く、他の結晶軸方向の成長速度は低くなり、やがて晶癖が現れた後は、その晶癖を維持するような各結晶軸方向の成長速度になることが判った。
そこで、上記第3の観点による結晶製造方法では、同一原料溶液中で種結晶を育成し続けるのではなく、第1原料溶液中でTGS系種結晶をある程度育成すると、結晶成分又はドーパントの濃度が異なる第2原料溶液中へ成長中種結晶を移して育成する。これにより、a軸方向,c軸軸方向の成長速度が高く、b軸方向の成長速度は低い状態を維持して結晶を育成できるから、a軸方向,c軸軸方向に大きく成長したTGS系結晶を効率良く製造することが出来る。すなわち、焦電素子として利用するのに好適なTGS系結晶を効率良く製造することが出来る。
なお、第2原料溶液中で成長中種結晶をある程度育成すると、さらに組成が異なる第3原料溶液中へ成長中種結晶を移して育成する、というように同種操作を繰り返しても良い。また、第2原料溶液中で成長中種結晶をある程度育成すると、元の第1原料溶液中へ成長中種結晶を戻して育成する、というように同種操作を繰り返しても良い。
なお、ドーパントを加えることにより、分極方向を制御することが出来る。
In a third aspect, the present invention provides a TGS-based crystal seed crystal in a first raw material solution containing a triglycine sulfate (TGS) -based crystal component and a dopant for crystal growth, and then the first raw material solution and the crystal component. Alternatively, the present invention provides a crystal manufacturing method characterized in that a seed crystal during growth is transferred to a second raw material solution having a different dopant concentration and further crystal growth is performed.
As a result of intensive research by the present inventor, when a seed crystal is put in a raw material solution, the growth rate in a specific crystal axis direction is initially high and the growth rate in other crystal axis directions is low, but after the crystal habit appears. It was found that the growth rate in each crystal axis direction maintained the crystal habit. Furthermore, when the growing seed crystal is transferred into a raw material solution having a different concentration of crystal component or dopant from the initial raw material solution, the growth rate in a specific crystal axis direction is increased again, while the growth rate in the other crystal axis direction is decreased. After the crystal habit appeared, it was found that the growth rate in each crystal axis direction maintained the crystal habit.
Therefore, in the crystal manufacturing method according to the third aspect, if the TGS seed crystal is grown to some extent in the first raw material solution rather than continuing to grow the seed crystal in the same raw material solution, the concentration of the crystal component or dopant is increased. The growing seed crystal is transferred and grown in a different second raw material solution. As a result, a crystal can be grown while maintaining a high growth rate in the a-axis direction and the c-axis direction and a low growth rate in the b-axis direction. Therefore, a TGS system that has grown greatly in the a-axis direction and the c-axis direction. Crystals can be produced efficiently. That is, a TGS crystal suitable for use as a pyroelectric element can be efficiently produced.
The same kind of operation may be repeated such that when the growing seed crystal is grown to some extent in the second raw material solution, the growing seed crystal is transferred and grown in the third raw material solution having a different composition. Further, the same kind of operation may be repeated such that when the growing seed crystal is grown to some extent in the second raw material solution, the growing seed crystal is grown back into the original first raw material solution.
Note that the polarization direction can be controlled by adding a dopant.

第4の観点では、本発明は、上記構成の結晶製造方法において、前記ドーパントが、L−α−アラニンであることを特徴とする結晶製造方法を提供する。
上記第4の観点による結晶製造方法では、同一原料溶液中で種結晶を育成し続けるのではなく、ドーパントとしてL−α−アラニンを含む第1原料溶液中でTGS系種結晶をある程度育成すると、L−α−アラニンを含まないか又はその濃度が異なる第2原料溶液中へ成長中種結晶を移して育成する。これにより、a軸方向,c軸軸方向の成長速度が高く、b軸方向の成長速度は低い状態を維持して結晶を育成できるから、a軸方向,c軸軸方向に大きく成長したTGS系結晶を効率良く製造することが出来る。すなわち、焦電素子として利用するのに好適なTGS系結晶を効率良く製造することが出来る。
In a fourth aspect, the present invention provides a crystal manufacturing method, wherein the dopant is L-α-alanine in the crystal manufacturing method having the above-described configuration.
In the crystal manufacturing method according to the fourth aspect, instead of continuing to grow seed crystals in the same raw material solution, when a TGS seed crystal is grown to some extent in the first raw material solution containing L-α-alanine as a dopant, The seed crystal during growth is transferred and grown in a second raw material solution that does not contain L-α-alanine or has a different concentration. As a result, a crystal can be grown while maintaining a high growth rate in the a-axis direction and the c-axis direction and a low growth rate in the b-axis direction. Therefore, a TGS system that has grown greatly in the a-axis direction and the c-axis direction. Crystals can be produced efficiently. That is, a TGS crystal suitable for use as a pyroelectric element can be efficiently produced.

第5の観点では、本発明は、第1原料溶液を貯留する第1槽と、前記第1原料溶液と組成が異なる第2原料溶液を貯留する第2槽と、前記第1原料溶液中に種結晶を入れて保持する種結晶保持手段と、成長中種結晶を前記第1原料溶液中から前記第2原料溶液中へ移す原料溶液変更手段と、前記原料溶液の温度を制御する温度制御手段とを具備することを特徴とする結晶製造装置を提供する。
上記第5の観点による結晶製造装置では、上記構成の結晶製造方法を好適に実施できる。
In a fifth aspect, the present invention provides a first tank for storing a first raw material solution, a second tank for storing a second raw material solution having a composition different from that of the first raw material solution, and the first raw material solution. Seed crystal holding means for holding a seed crystal; raw material solution changing means for transferring a growing seed crystal from the first raw material solution to the second raw material solution; and temperature control means for controlling the temperature of the raw material solution A crystal manufacturing apparatus is provided.
In the crystal manufacturing apparatus according to the fifth aspect, the crystal manufacturing method having the above configuration can be suitably implemented.

本発明の結晶製造方法および結晶製造装置によれば、特定方向に大きく成長した結晶を製造することが出来る。例えば、焦電素子として利用するのに好適な、a軸方向,c軸軸方向に大きく成長したTGS系結晶を効率良く製造することが出来る。   According to the crystal manufacturing method and the crystal manufacturing apparatus of the present invention, it is possible to manufacture a crystal that has grown greatly in a specific direction. For example, it is possible to efficiently produce a TGS-based crystal that is suitable for use as a pyroelectric element and has grown greatly in the a-axis direction and the c-axis direction.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る結晶製造装置100を示す構成説明図である。
この結晶製造装置100は、第1原料溶液1sを貯留する半円筒形状の第1槽1vと、第1原料溶液1vと組成が異なる第2原料溶液2sを貯留する半円筒形状の第2槽2vと、第1槽1v内を攪拌する第1攪拌機1rと、第2槽2v内を攪拌する第2攪拌機2rと、第1種結晶C1を保持する第1保持具1hと、第2種結晶C2を保持する第2保持具2hと、第1保持具1hを上下移動させる第1リフト1fと、第2保持具2hを上下移動させる第2リフト2fと、第1原料溶液1sおよび第2原料溶液2sの温度を制御するための温調槽4、温調槽4の上部の温度を下げないためのヒータ3と、第1槽1vおよび第2槽2vを合わせた円筒形状の中心軸を回転軸として水平面内で回転しうると共に第1リフト1fおよび第2リフト2fを支持するターンテーブル5と、ターンテーブル5を回転可能に支持する支持台6とを具備して構成される。
FIG. 1 is a configuration explanatory view showing a crystal manufacturing apparatus 100 according to the first embodiment.
The crystal manufacturing apparatus 100 includes a semicylindrical first tank 1v that stores a first raw material solution 1s, and a semicylindrical second tank 2v that stores a second raw material solution 2s having a composition different from that of the first raw material solution 1v. A first stirrer 1r that stirs the first tank 1v, a second stirrer 2r that stirs the second tank 2v, a first holder 1h that holds the first seed crystal C1, and a second seed crystal C2. A second holding tool 2h that holds the first holding tool 1h, a second lift 2f that moves the second holding tool 2h up and down, a first raw material solution 1s, and a second raw material solution. The temperature control tank 4 for controlling the temperature of 2 s, the heater 3 for not lowering the temperature of the upper part of the temperature control tank 4, and the central axis of the cylindrical shape combining the first tank 1v and the second tank 2v are the rotation axes As well as the first lift 1f and the second lift 2f. A turntable 5 which lifting, and comprises a support base 6 which rotatably supports the turntable 5.

図2は、実施例1に係る結晶製造処理を示すフロー図である。
ステップS1では、下端が原料溶液に浸からない位置まで第1保治具1hおよび第2保治具2hを引き上げた状態にして、ターンテーブル5を外す。
FIG. 2 is a flowchart illustrating the crystal manufacturing process according to the first embodiment.
In step S1, the first holding jig 1h and the second holding jig 2h are pulled up to a position where the lower end is not immersed in the raw material solution, and the turntable 5 is removed.

ステップS2では、第1保治具1hの下端に第1種結晶C1を保持し、第2保治具2hの下端に第2種結晶C2を保持する。
例えば、第1種結晶C1および第2種結晶は、ある程度の面積の(0−10)面を持ったDLATGS系結晶である。具体例を挙げると、a軸方向の長さ10mm×c軸方向の長さ10mm×b軸方向の厚さ0.8mmの平板形状にしたDLATGS系結晶である。これらを粘着テープで貼り付ける。
In step S2, the first seed crystal C1 is held at the lower end of the first holding jig 1h, and the second seed crystal C2 is held at the lower end of the second holding jig 2h.
For example, the first seed crystal C1 and the second seed crystal are DLATGS crystals having a (0-10) plane with a certain area. As a specific example, it is a DLATGS crystal having a flat plate shape having a length in the a-axis direction of 10 mm × a length in the c-axis direction of 10 mm × a thickness in the b-axis direction of 0.8 mm. Adhere these with adhesive tape.

ステップS3では、第1槽1vに第1原料溶液1sを入れ、第2槽2vに第2原料溶液2sを入れる。
例えば、第1原料溶液1sは、モル比がグリシン:硫酸=3:1であるようにTGS系結晶成分を含むと共にドーパントとしてL−α−アラニンを5mol%含む水溶液である。また、第2原料溶液2sは、モル比がグリシン:硫酸=3:1であるようにTGS系結晶成分を含むと共にドーパントとしてL−α−アラニンを30mol%含む水溶液である。
In step S3, the 1st raw material solution 1s is put into the 1st tank 1v, and the 2nd raw material solution 2s is put into the 2nd tank 2v.
For example, the first raw material solution 1s is an aqueous solution containing a TGS crystal component such that the molar ratio is glycine: sulfuric acid = 3: 1 and 5 mol% of L-α-alanine as a dopant. The second raw material solution 2s is an aqueous solution containing a TGS crystal component such that the molar ratio is glycine: sulfuric acid = 3: 1 and 30 mol% of L-α-alanine as a dopant.

ステップS4では、ターンテーブル5を支持台6に載せるように温調槽4上にセットし、温調槽4内の温度を所定温度にする。
例えば、温度は40℃である。
In step S4, the turntable 5 is set on the temperature control tank 4 so as to be placed on the support base 6, and the temperature in the temperature control tank 4 is set to a predetermined temperature.
For example, the temperature is 40 ° C.

ステップS5では、第1保治具1hおよび第2保治具2hを引き下げ、図1に示すように、第1種結晶C1を第1原料溶液1sに入れ、第2種結晶C2を第2原料溶液2sに入れる。   In step S5, the first holding jig 1h and the second holding jig 2h are pulled down, and as shown in FIG. 1, the first seed crystal C1 is put into the first raw material solution 1s, and the second seed crystal C2 is put into the second raw material solution 2s. Put in.

ステップS6では、温調槽4内の温度を下げながら結晶を育成する。また、適宜、第1攪拌機1rで第1原料溶液1sを攪拌し、第2攪拌機2rで第2原料溶液2sを攪拌する。
例えば、温度を下げる速度は0.03℃/day〜0.3℃/dayである。
ステップS7では、成長中の種結晶C1,C2のいずれかに晶癖が現れるまでステップS6を継続し、晶癖が現れたらステップS8へ進む。
例えば、ステップS2で例示した平板形状のTGS系種結晶の場合、成長中結晶の平板が広がる方向の成長速度を監視し、その成長速度が鈍ってきたら、晶癖が現れたと判定し、ステップS8へ進む。
In step S6, crystals are grown while the temperature in the temperature control tank 4 is lowered. Moreover, the 1st raw material solution 1s is stirred with the 1st stirrer 1r suitably, and the 2nd raw material solution 2s is stirred with the 2nd stirrer 2r.
For example, the rate of lowering the temperature is 0.03 ° C./day to 0.3 ° C./day.
In step S7, step S6 is continued until crystal habit appears in any of the growing seed crystals C1 and C2, and if crystal habit appears, the process proceeds to step S8.
For example, in the case of the tabular TGS-based seed crystal exemplified in step S2, the growth rate in the direction in which the growing crystal plate expands is monitored, and when the growth rate slows down, it is determined that crystal habit has appeared, and step S8. Proceed to

ステップS8では、図3に示すように下端が原料溶液に浸からない位置まで第1保治具1hおよび第2保治具2hを引き上げ、図4に示すようにターンテーブル5を180゜回転させ、図5に示すように下端が原料溶液に浸かる位置まで第1保治具1hおよび第2保治具2hを引き下げる。つまり、成長中の第1種結晶C1を第2原料溶液2sに入れ、成長中の第2種結晶C2を第1原料溶液1sに入れる。
なお、ヒータ3は、第1保治具1hおよび第2保治具2hを引き上げた時に、温度差で、成長中の種結晶C1,C2が割れないようにするために、温調槽4の上部を暖めている。第1保治具1hおよび第2保治具2hを引き上げた時に温度差で成長中の種結晶C1,C2が割れないように温度管理できるならば、ヒータ3を省略してもよい。
In step S8, the first holding jig 1h and the second holding jig 2h are pulled up to a position where the lower end is not immersed in the raw material solution as shown in FIG. 3, and the turntable 5 is rotated 180 ° as shown in FIG. As shown in FIG. 5, the first holding jig 1h and the second holding jig 2h are pulled down to a position where the lower end is immersed in the raw material solution. That is, the growing first seed crystal C1 is put in the second raw material solution 2s, and the growing second seed crystal C2 is put in the first raw material solution 1s.
Note that the heater 3 has an upper portion of the temperature control tank 4 to prevent the growing seed crystals C1 and C2 from cracking due to a temperature difference when the first holding jig 1h and the second holding jig 2h are pulled up. It is warm. If the temperature can be controlled so that the growing seed crystals C1 and C2 are not broken by the temperature difference when the first holding jig 1h and the second holding jig 2h are pulled up, the heater 3 may be omitted.

ステップS9では、ヒータ3により温調槽4内の温度を下げながら結晶を育成する。また、適宜、第1攪拌機1rで第1原料溶液1sを攪拌し、第2攪拌機2rで第2原料溶液2sを攪拌する。
ステップS10では、成長中の種結晶C1,C2のいずれかに晶癖が現れるまでステップS9を継続し、晶癖が現れたらステップS11へ進む。
In step S9, the crystal is grown while lowering the temperature in the temperature control tank 4 by the heater 3. Moreover, the 1st raw material solution 1s is stirred with the 1st stirrer 1r suitably, and the 2nd raw material solution 2s is stirred with the 2nd stirrer 2r.
In step S10, step S9 is continued until a crystal habit appears in any of the growing seed crystals C1 and C2, and if a crystal habit appears, the process proceeds to step S11.

ステップS11では、ステップS8と逆の操作で、成長中の第1種結晶C1を第1原料溶液1sに入れ、成長中の第2種結晶C2を第2原料溶液2sに入れる。そして、ステップS6に戻る。   In step S11, the growing first seed crystal C1 is put in the first raw material solution 1s and the growing second seed crystal C2 is put in the second raw material solution 2s by the reverse operation of step S8. Then, the process returns to step S6.

なお、ステップS6〜S11を繰り返し、成長中の種結晶C1,C2が必要な大きさまで成長したら処理を終了し、成長した結晶を取り出す。   Note that Steps S6 to S11 are repeated, and when the growing seed crystals C1 and C2 are grown to a required size, the process is terminated, and the grown crystals are taken out.

上記結晶製造装置100によれば、特定方向に大きく成長した結晶を効率良く製造することが出来る。例えば、焦電素子として利用するのに好適な、a軸方向,c軸軸方向に大きく成長したTGS系結晶を効率良く製造することが出来る。   According to the crystal manufacturing apparatus 100, a crystal greatly grown in a specific direction can be efficiently manufactured. For example, it is possible to efficiently produce a TGS-based crystal that is suitable for use as a pyroelectric element and has grown greatly in the a-axis direction and the c-axis direction.

種結晶を上下・回転移動するのではなく、原料溶液を上下・回転移動させてもよい。   Instead of moving the seed crystal up and down and rotating, the raw material solution may be moved up and down and rotating.

組成の異なる原料溶液を3以上用意し、循環的に種結晶を移しながら成長させてもよい。   Three or more raw material solutions having different compositions may be prepared and grown while cyclically transferring seed crystals.

LATGS結晶の外に、DLATGS結晶,TGSP結晶などの結晶の製造にも本発明を適用できる。   In addition to the LATGS crystal, the present invention can also be applied to the production of crystals such as DLATGS crystal and TGSP crystal.

本発明の結晶製造方法および結晶製造装置は、焦電素子として好適な形状のTGS系結晶を製造するのに利用できる。   The crystal production method and the crystal production apparatus of the present invention can be used to produce a TGS crystal having a shape suitable as a pyroelectric element.

実施例1に係る結晶製造装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory view showing a crystal manufacturing apparatus according to Example 1; 実施例1に係る結晶製造処理を示すフロー図である。FIG. 3 is a flowchart showing a crystal manufacturing process according to Example 1. 種結晶を引き上げた状態を示す説明図である。It is explanatory drawing which shows the state which pulled up the seed crystal. 種結晶を回転移動させた状態を示す説明図である。It is explanatory drawing which shows the state which rotated the seed crystal. 種結晶を引き下げた状態を示す説明図である。It is explanatory drawing which shows the state which pulled down the seed crystal.

符号の説明Explanation of symbols

1s 第1原料溶液
1v 第1槽
1h 第1保治具
2s 第2原料溶液
2v 第2槽
2h 第2保治具
3 ヒータ
4 温調槽
5 ターンテーブル
6 支持台
C1 第1種結晶
C2 第2種結晶
100 結晶製造装置
DESCRIPTION OF SYMBOLS 1s 1st raw material solution 1v 1st tank 1h 1st jig 2s 2nd 2nd raw material solution 2v 2nd tank 2h 2nd jig 3 Heater 4 Temperature control tank 5 Turntable 6 Support stand C1 1st seed crystal C2 2nd seed crystal 100 Crystal production equipment

Claims (5)

第1原料溶液に種結晶を入れて結晶成長させ、次に第1原料溶液と組成が異なる第2原料溶液に成長中種結晶を移してさらに結晶成長させることを特徴とする結晶製造方法。   A method for producing a crystal, comprising putting a seed crystal in a first raw material solution and growing the crystal, and then transferring the growing seed crystal to a second raw material solution having a composition different from that of the first raw material solution to further grow the crystal. 請求項1に記載の結晶製造方法において、前記第2原料溶液は、前記第1原料溶液と結晶成分またはドーパントの濃度が異なることを特徴とする結晶製造方法。   2. The crystal manufacturing method according to claim 1, wherein the second raw material solution has a concentration of a crystal component or a dopant different from that of the first raw material solution. 硫酸三グリシン(TGS)系結晶成分およびドーパントを含む第1原料溶液にTGS系結晶の種結晶を入れて結晶成長させ、次に第1原料溶液と結晶成分またはドーパントの濃度が異なる第2原料溶液に成長中種結晶を移してさらに結晶成長させることを特徴とする結晶製造方法。   A TGS-based crystal seed crystal is put into a first raw material solution containing a triglycine sulfate (TGS) -based crystal component and a dopant to grow a crystal, and then a second raw material solution having a concentration of the crystal component or dopant different from that of the first raw material solution A method for producing a crystal, comprising transferring a seed crystal during growth to crystal growth. 請求項3に記載の結晶製造方法において、前記ドーパントが、L−α−アラニンであることを特徴とする結晶製造方法。   The crystal manufacturing method according to claim 3, wherein the dopant is L-α-alanine. 第1原料溶液を貯留する第1槽と、前記第1原料溶液と組成が異なる第2原料溶液を貯留する第2槽と、前記第1原料溶液中に種結晶を入れて保持する種結晶保持手段と、成長中種結晶を前記第1原料溶液中から前記第2原料溶液中へ移す原料溶液変更手段と、前記原料溶液の温度を制御する温度制御手段とを具備することを特徴とする結晶製造装置。   A first tank for storing a first raw material solution, a second tank for storing a second raw material solution having a composition different from that of the first raw material solution, and a seed crystal holding for holding a seed crystal in the first raw material solution Characterized by comprising: means; a raw material solution changing means for transferring the seed crystal during growth from the first raw material solution into the second raw material solution; and a temperature control means for controlling the temperature of the raw material solution. Manufacturing equipment.
JP2004223197A 2004-07-30 2004-07-30 Crystal manufacturing method and crystal manufacturing apparatus Active JP4548031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223197A JP4548031B2 (en) 2004-07-30 2004-07-30 Crystal manufacturing method and crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223197A JP4548031B2 (en) 2004-07-30 2004-07-30 Crystal manufacturing method and crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006036614A true JP2006036614A (en) 2006-02-09
JP4548031B2 JP4548031B2 (en) 2010-09-22

Family

ID=35901999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223197A Active JP4548031B2 (en) 2004-07-30 2004-07-30 Crystal manufacturing method and crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4548031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531635A1 (en) * 2010-02-01 2012-12-12 Michael Krautter Device for crystal growth at intermediate temperatures using controlled semi-active cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503879B1 (en) * 1968-02-21 1975-02-12
JPS6051695A (en) * 1983-08-29 1985-03-23 Hitachi Cable Ltd Liquid-phase epitaxial crystal growing method and its apparatus
JPH09283811A (en) * 1996-04-08 1997-10-31 Shimadzu Corp Manufacture of pyroelectric sensor and pyroelectric-sensor manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503879B1 (en) * 1968-02-21 1975-02-12
JPS6051695A (en) * 1983-08-29 1985-03-23 Hitachi Cable Ltd Liquid-phase epitaxial crystal growing method and its apparatus
JPH09283811A (en) * 1996-04-08 1997-10-31 Shimadzu Corp Manufacture of pyroelectric sensor and pyroelectric-sensor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531635A1 (en) * 2010-02-01 2012-12-12 Michael Krautter Device for crystal growth at intermediate temperatures using controlled semi-active cooling
EP2531635A4 (en) * 2010-02-01 2014-01-01 Michael Krautter Device for crystal growth at intermediate temperatures using controlled semi-active cooling

Also Published As

Publication number Publication date
JP4548031B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CN107002281B (en) The manufacturing method and monocrystalline silicon carbide substrate of single-crystal silicon carbide
US4046618A (en) Method for preparing large single crystal thin films
CN107611004A (en) A kind of method for preparing Free-standing GaN backing material
JP2006117520A (en) Iridium oxide nanotube and method of forming the same
JP2010099829A (en) Method for manufacturing nanotube of piezoelectric material and nanotube of piezoelectric material
WO2007094155A1 (en) PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
CN106558475A (en) Wafer scale monolayer molybdenum bisuphide film and preparation method thereof
CN107287578A (en) A kind of chemical gas-phase deposition process for preparing of a wide range of uniform double-deck molybdenum disulfide film
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN110128134B (en) Preparation method of lead titanate film with niobium-doped strontium titanate as substrate
JP6097989B2 (en) Gallium oxide single crystal and gallium oxide single crystal substrate
TW201200645A (en) Sapphire seed and manufacturing method thereof, and manufacturing method of sapphire single crystal
JP4548031B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
CN112750919B (en) Perovskite nanowire heterojunction and preparation method thereof
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
KR101830524B1 (en) Two-dimensional large-area metal chalcogenide single crystals and method for manufactruing the same
JP2011190138A (en) Method for producing multiferroic single crystal
JP2012051746A (en) Method for producing group iii nitride single crystal
JP2004342487A (en) Method for making ferroelectric thin film and ferroelectric thin film
JP5419116B2 (en) Bulk crystal growth method
GB2482915A (en) Growing Silicon by Plasma Enhanced Chemical Vapour Deposition
CN115125616B (en) Preparation method of perovskite single crystal film with controllable thickness by vapor-assisted variable temperature growth
CN110036143A (en) Monocrystalline silicon manufacturing method and silicon single crystal wafer
CN108441964B (en) Ga2S3Method for producing single crystal and use of single crystal in ferroelectric material, piezoelectric device and thermoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R151 Written notification of patent or utility model registration

Ref document number: 4548031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3