JP2006035235A - Bending method for metal tube - Google Patents

Bending method for metal tube Download PDF

Info

Publication number
JP2006035235A
JP2006035235A JP2004214438A JP2004214438A JP2006035235A JP 2006035235 A JP2006035235 A JP 2006035235A JP 2004214438 A JP2004214438 A JP 2004214438A JP 2004214438 A JP2004214438 A JP 2004214438A JP 2006035235 A JP2006035235 A JP 2006035235A
Authority
JP
Japan
Prior art keywords
clamp
small
diameter portion
tube
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004214438A
Other languages
Japanese (ja)
Inventor
Hisanari Suzuki
久成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2004214438A priority Critical patent/JP2006035235A/en
Publication of JP2006035235A publication Critical patent/JP2006035235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely form a small-diameter part, which is made eccentric, integrally by applying simple cold plastic working to a metallic tube material. <P>SOLUTION: A method for working a metal tube is used for forming a tapered part 10 and a small-diameter part 9 that is continuously and non-coaxially connected to the part 10 in a metallic tube raw material 7. A main body 8 and the small-diameter part 9 of the metallic tube raw material 7, in which the tapered part 10 and the small-diameter part 9 continuously connected to the part 10 are formed, are firmly held by grasping members 1, 2 respectively. The non-coaxial small-diameter part 9 is formed by relatively moving the grasping members 1, 2 in a direction non-perpendicular to the tube axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は金属管の曲げ加工方法に関する。   The present invention relates to a method for bending a metal tube.

従来、自動車の構造部材等で、本体部の軸芯に対し偏芯した小径部を一体的に有する管状部材が求められる場合がある。このような管状部材の形成方法の一例として、本体、テーパ部(プレス品)、小径部をそれぞれ溶接接続する方法が知られている。しかし、この形成方法ではコストが嵩むとともに、一体品に比べ強度及び軽量化に劣るという問題がある。   Conventionally, there is a case where a tubular member integrally having a small-diameter portion eccentric with respect to an axis of a main body portion is required for a structural member of an automobile. As an example of a method for forming such a tubular member, a method in which a main body, a tapered portion (pressed product), and a small diameter portion are connected by welding is known. However, this forming method has a problem that the cost is increased and the strength and weight are inferior to those of an integrated product.

この問題を解決するために展開状の板材から偏芯管を一体形成する方法、所謂U−O造管法が提案されている(特許文献1参照)。   In order to solve this problem, a method of integrally forming an eccentric tube from a developed plate material, a so-called U-O tube forming method has been proposed (see Patent Document 1).

また、一本のパイプを偏芯、小径化させる工法として、本体部にテーパ部を介して小径加工された管素材における本体部と小径部をそれぞれ把持し、この本体部と小径部を把持している両クランプを管軸に対して直角(図4のY−Y方向)に、かつ相対的に反対方向へ移動させて偏芯小径部を作り、その後、偏芯曲げ部を管軸方向に圧縮することでクランクを形成する工法が提案されている(特許文献2参照)。   In addition, as a method of decentering and reducing the diameter of a single pipe, the main body and the small diameter portion of the pipe material that has been processed into a small diameter through the tapered portion are gripped on the main body, and the main body and the small diameter portion are gripped. Both clamps are moved at right angles to the tube axis (Y-Y direction in FIG. 4) and relatively in opposite directions to make an eccentric small diameter portion, and then the eccentric bending portion is moved in the tube axis direction. A method of forming a crank by compression has been proposed (see Patent Document 2).

更に、管素材の一方の側を第1のクランプで堅持するとともに他方の側を第2のクランプで緩着状(ルーズに)に把持し、管軸に対して斜め方向へ、かつ、相対的に反対方向へ両クランプを移動させて偏芯部を形成する工法が開示されている(特許文献3参照)。
特公平7−63758号公報 特開昭56−36353号公報 特許第3000017号公報
Furthermore, one side of the tube material is firmly held by the first clamp, and the other side is gripped loosely (loosely) by the second clamp, in an oblique direction relative to the tube axis and relative to the tube axis. A construction method is disclosed in which both clamps are moved in the opposite direction to form an eccentric portion (see Patent Document 3).
Japanese Patent Publication No. 7-63758 JP 56-36353 A Japanese Patent No. 3000017

上記特許文献1の形成方法では強度的には満足できるものの、大きな型が必要であるためコストの問題は解消できない。   Although the forming method of Patent Document 1 is satisfactory in terms of strength, the problem of cost cannot be solved because a large mold is required.

また、上記特許文献2の形成方法によれば、実長が短い側のテーパ部に座屈が発生する可能性が極めて高い。これを、図4にて説明すると、偏芯加工前においては図4(a)に示すように反偏芯加工側テーパ部11と偏芯加工側テーパ部12との実長は共にL1である。そして、両クランプがY軸において相対的に反対方向へ移動して図4(b)に示すように偏芯加工すると、前記反偏芯加工側テーパ部11が実長L1からL2に、L4分伸長され、また、偏芯加工側テーパ部12は、偏芯加工途中における本体部8の延長線上に位置した時点ではその実長L3がL3<L1となり、L5の長さだけ縮小し、圧縮される。したがって、反偏芯加工側テーパ部11には伸長力が作用するためその加工上の問題は少ないとしても、偏芯加工側テーパ部12においては圧縮力が働き、その結果、座屈を招く問題がある。   Moreover, according to the formation method of the said patent document 2, possibility that a buckling will generate | occur | produce in the taper part of the short actual length side is very high. This will be described with reference to FIG. 4. Before the eccentric processing, the actual lengths of the anti-eccentric processing side tapered portion 11 and the eccentric processing side tapered portion 12 are both L1, as shown in FIG. 4A. . When both clamps move in the opposite directions on the Y axis and are eccentrically processed as shown in FIG. 4B, the anti-eccentric processing side taper portion 11 is changed from the actual length L1 to L2 to L4. Further, when the eccentric processing side taper portion 12 is positioned on the extension line of the main body portion 8 in the middle of the eccentric processing, the actual length L3 becomes L3 <L1, and is reduced and compressed by the length of L5. . Accordingly, since an extension force acts on the anti-eccentric processing side taper portion 11, even if there are few problems in processing, a compressive force acts on the eccentric processing side taper portion 12, resulting in a problem of buckling. There is.

したがって、管軸に対して直角かつ相対的に反対方向へクランプを移動させる工法では、形成できる偏芯小径部は偏芯量の少ないごく限られた形状になってしまい、実用的ではない。   Therefore, in the construction method in which the clamp is moved in a direction perpendicular to and relatively opposite to the tube axis, the eccentric small diameter portion that can be formed has a very limited shape with a small amount of eccentricity, which is not practical.

更に、上記特許文献3の形成方法によれば、本体に対し偏芯部分の長さを際限なく形成可能であるが、偏芯部分も同径でなければ成立しないので、上記の問題の解決にはならない。   Furthermore, according to the formation method of Patent Document 3, the length of the eccentric portion can be formed without limit with respect to the main body. However, since the eccentric portion is not formed unless the diameter is the same, the above problem is solved. Must not.

以上のことから、簡単な冷間塑性加工によって偏芯小径部を一体形成できる技術が望まれており、更には、偏芯に限らず傾斜や捩れの関係も形成できればなお望ましい。   From the above, a technique capable of integrally forming the eccentric small-diameter portion by simple cold plastic working is desired, and further, it is more desirable if not only the eccentricity but also the relationship of inclination and twist can be formed.

そこで本発明は上記の問題を解決し、上記の要望に応えることができる金属管の曲げ加工方法を提案することを目的とするものである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to propose a method for bending a metal tube that can solve the above-described problems and meet the above-mentioned demands.

前記の課題を解決するために、請求項1記載の発明は、金属製の管素材にテーパ部とそれに連続し非同軸の小径部を形成する金属管の加工方法であって、テーパ部とそれに連続する同軸の小径部が形成された管素材の本体部と小径部を各々把持部材にて堅持し、両把持部材を管軸と非直角方向へ相対的に移動させて非同軸の小径部を形成することを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is a method of processing a metal pipe in which a tapered portion and a non-coaxial small-diameter portion continuous with the tapered portion are formed in a metal pipe material, the tapered portion and The main body and the small-diameter portion of the tube material in which the continuous coaxial small-diameter portions are formed are firmly held by the gripping members, and both the gripping members are moved relative to the tube axis in a direction not perpendicular to the non-coaxial small-diameter portions. It is characterized by forming.

本発明においては、中間素材である管素材の本体部と小径部を堅持した両把持部材を管軸と非直角方向へ相対的に移動させることによって、テーパ部における偏芯加工側の実長を短くすることなく、すなわち圧縮力を働かせることなく、非同軸の小径部を形成することができる。   In the present invention, the actual length of the taper portion on the eccentric processing side can be increased by moving both gripping members that hold the main body portion and the small-diameter portion of the intermediate material relative to the tube axis in a non-perpendicular direction. A non-coaxial small-diameter portion can be formed without shortening, that is, without applying a compressive force.

請求項2記載の発明は、請求項1記載の発明において、前記本体部と小径部の少なくとも一方にマンドレルを内挿し、該マンドレルを、把持部材と同期して移動させることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, a mandrel is inserted into at least one of the main body portion and the small diameter portion, and the mandrel is moved in synchronization with the gripping member. is there.

本発明においては、マンドレルによる内側からの管素材への規制によって、テーパ部以外の部分の断面変形を防止できる。   In the present invention, the deformation of the cross section of the portion other than the tapered portion can be prevented by the restriction to the tube material from the inside by the mandrel.

請求項1記載の発明によれば、管素材に簡単な冷間塑性加工を施すことによって、テーパ部に座屈を招くことなく、本体部に対して偏芯した小径部を確実に一体成形できる。   According to the first aspect of the present invention, by performing a simple cold plastic working on the tube material, it is possible to reliably integrally form the small diameter portion eccentric to the main body portion without causing buckling of the tapered portion. .

また、単なる偏芯(平行)形状はもちろん、傾斜や捩れを伴う偏芯形状も形成可能である。   Moreover, not only a simple eccentric (parallel) shape but also an eccentric shape with inclination or twist can be formed.

請求項2の発明によれば、マンドレルを挿入することにより、テーパ部以外の管部の内側への流動を防止し、より正確な形状を成形することができる。   According to the invention of claim 2, by inserting the mandrel, it is possible to prevent the flow to the inside of the pipe part other than the taper part and to form a more accurate shape.

本発明を実施するための最良の形態を図に示す実施例に基づいて説明する。
本発明で加工される中間素材である管素材7、すなわち、本発明で加工される前の金属管は、本体部である大径部8とテーパ部10と小径部9からなり、これらの管軸は共通(同軸)で一体に形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described based on an embodiment shown in the drawings.
The tube material 7 which is an intermediate material processed according to the present invention, that is, the metal tube before being processed according to the present invention is composed of a large diameter portion 8, a taper portion 10 and a small diameter portion 9 which are main body portions. The shaft is common (coaxial) and formed integrally.

該中間素材である管素材7は、本発明の工程の前工程において、ダイス圧接工法等により、本体部である大径の管へテーパ面を有するダイスを管素材7の軸方向から圧接して、管素材7にテーパ部10と小径部9を形成することで、図4(a)に示すような、大径部8と小径部9とテーパ部10が一体でかつ同軸である管素材7を形成している。また、この管素材7の材質としてはSTKM11Aを使用したが、この材質に限らず金属管なら他の物でも構わない。   The tube material 7 which is the intermediate material is pressed from the axial direction of the tube material 7 with a die having a taper surface to a large diameter tube which is a main body portion by a die pressure welding method or the like in the pre-process of the process of the present invention. By forming the taper portion 10 and the small diameter portion 9 in the tube material 7, the tube material 7 in which the large diameter portion 8, the small diameter portion 9, and the taper portion 10 are integrated and coaxial as shown in FIG. Is forming. Further, although STKM11A is used as the material of the tube material 7, it is not limited to this material, and other materials may be used as long as it is a metal tube.

また、本実施例では、大径部8の径をφ54、小径部をφ37、板厚をt1.4とした。   In this embodiment, the diameter of the large diameter portion 8 is φ54, the small diameter portion is φ37, and the plate thickness is t1.4.

管素材7を本発明によって加工するための加工装置は、図5に示すような、管素材7の大径部8を外側から把持する把持部材である第1のクランプ1と、図6に示すような、管素材7の小径部9を外側から把持する把持部材である第2のクランプ2で構成されており、該両クランプは割型となっている。   A processing apparatus for processing the tube material 7 according to the present invention is shown in FIG. 5 as a first clamp 1 which is a gripping member for gripping the large-diameter portion 8 of the tube material 7 from the outside. The second clamp 2 is a gripping member that grips the small-diameter portion 9 of the tube material 7 from the outside, and both the clamps are split.

図5において、第1のクランプ1の一方の型1aは管素材7の大径部8を半円分把持できるように半円状の溝16aが管素材7の軸方向に沿って形成されている。他方の型1bにも溝16bが対称的に形成されている。この両型1a,1bを半円状の溝16a,16bが合わさるように接することで管素材7の軸方向に向かって貫通する把持穴4を形成し大径部8を強固に把持するようになっている。   In FIG. 5, one mold 1 a of the first clamp 1 has a semicircular groove 16 a formed along the axial direction of the tube material 7 so that the large diameter portion 8 of the tube material 7 can be gripped by a semicircle. Yes. The groove 16b is also formed symmetrically in the other mold 1b. The two molds 1a and 1b are brought into contact with each other so that the semicircular grooves 16a and 16b are combined, so that a gripping hole 4 penetrating in the axial direction of the tube material 7 is formed and the large-diameter portion 8 is firmly gripped. It has become.

また、第2のクランプ2も同様に、図6に示すように形成されており、一方の型2aと他方の型2bには管素材7を半円分把持できるように半円状の溝17a,17bが管素材の軸方向に沿って形成されており、両型が2a,2bを半円状の溝17a,17bが合わさるように接することで管素材7の軸方向に向かって貫通する把持穴5を形成し、小径部9を強固に把持するようになっている。   Similarly, the second clamp 2 is also formed as shown in FIG. 6, and a semicircular groove 17a is formed in one mold 2a and the other mold 2b so that the tube material 7 can be gripped by a semicircle. , 17b are formed along the axial direction of the tube material, and the two molds hold the 2a, 2b so that the semicircular grooves 17a, 17b are joined together and penetrate the tube material 7 in the axial direction. A hole 5 is formed to firmly grip the small diameter portion 9.

したがって、上記第1のクランプ1と第2のクランプ2において管素材7が両把持穴4,5に渡って挿入された状態で把持されるようになっている。   Therefore, the tube material 7 is gripped by the first clamp 1 and the second clamp 2 in a state of being inserted across the gripping holes 4 and 5.

前記第1のクランプ1と第2のクランプ2の相互に接する摺動面1c、2cは、図1、図5及び図6に示すように、管軸と同一の軸芯X−Xと直交する一方向の面Zに対して所定の角度α傾斜した平面に形成されている。なお、両摺動面1c,2cは同方向に傾斜している。この所定の角度αは実施例では7.3度に設定した。そして、両クランプ1,2が摺動面1c、2cに沿って相互に相反する方向に摺動できるようになっている。   The sliding surfaces 1c and 2c in contact with each other of the first clamp 1 and the second clamp 2 are orthogonal to the same axis XX as the tube axis, as shown in FIGS. It is formed in a plane inclined by a predetermined angle α with respect to the surface Z in one direction. Both sliding surfaces 1c and 2c are inclined in the same direction. The predetermined angle α is set to 7.3 degrees in the embodiment. Both the clamps 1 and 2 can slide in directions opposite to each other along the sliding surfaces 1c and 2c.

更に、前記第1のクランプ1の摺動面1c側には、該摺動面1cに開口する空隙6が把持穴4に向かって所定量に、かつ、軸芯部から管の偏芯加工側に向って形成されており、管の偏芯加工における管の変形時に空隙6の存在によって管が第1のクランプ1に干渉しないようになっている。   Further, on the sliding surface 1c side of the first clamp 1, a gap 6 opened to the sliding surface 1c is provided in a predetermined amount toward the gripping hole 4 and from the shaft core portion to the eccentric side of the tube. The tube is prevented from interfering with the first clamp 1 due to the presence of the gap 6 when the tube is deformed in the eccentric processing of the tube.

また、前記第2のクランプ2は図示しない駆動手段により図1において摺動面1c,2c(なお、図1乃至図3において、摺動面1cと2cとからなる摺動面を符号3で示す)に沿って昇降移動するようになっている。なお、第1のクランプ1側を図示しない駆動手段により図1において摺動面1c,2cに沿って昇降移動するようにしてもよい。   The second clamp 2 is driven by a driving means (not shown) in FIG. 1 with sliding surfaces 1c and 2c (in FIG. 1 to FIG. 3, the sliding surface made up of the sliding surfaces 1c and 2c is denoted by reference numeral 3). ) To move up and down. The first clamp 1 may be moved up and down along the sliding surfaces 1c and 2c in FIG. 1 by driving means (not shown).

次に管素材からの偏芯加工工程について説明する。
まず、第1のクランプ1と第2のクランプ2を、その把持穴4,5(管軸)が同軸になる位置に配置し、かつ、それぞれの割型を左右に離反した状態で維持する。そして、図1(a)に示すように、第1のクランプ1の割型間に管素材7の大径部8を挿入位置させ、第2のクランプ2の割型間に管素材7の小径部9を挿入位置させ、第1のクランプ1における空隙6に管素材7のテーパ部10を挿入位置させて、前記各割型を図示しない駆動手段で閉じ、図1(a)に示すように、管素材7の大径部8の外周面を第1のクランプ1の両型1a,1bにおける両溝16a,16bで堅固に把持し、管素材7の小径部9の外周面を第2のクランプ2の両型2a,2bにおける両溝17a、17bで堅固に把持する。なお、両クランプ1と2は摺動面1cと2cとで接している。
Next, the eccentric processing step from the tube material will be described.
First, the 1st clamp 1 and the 2nd clamp 2 are arrange | positioned in the position where the holding holes 4 and 5 (tube axis) become coaxial, and each split mold is maintained in the state which left | separated right and left. 1A, the large diameter portion 8 of the tube material 7 is inserted between the split molds of the first clamp 1, and the small diameter of the tube material 7 is inserted between the split molds of the second clamp 2. The portion 9 is inserted, the taper portion 10 of the tube material 7 is inserted into the gap 6 in the first clamp 1, and the split molds are closed by driving means (not shown), as shown in FIG. The outer peripheral surface of the large-diameter portion 8 of the tube material 7 is firmly held by both grooves 16a and 16b in both molds 1a and 1b of the first clamp 1, and the outer peripheral surface of the small-diameter portion 9 of the tube material 7 is second The clamps 2 are firmly held by both grooves 17a and 17b in both molds 2a and 2b. Both clamps 1 and 2 are in contact with sliding surfaces 1c and 2c.

次に、図1の(b)に示すように、小径部9を堅持する第2のクランプ2を摺動面1c,2cに沿ってB方向へ、図示しない駆動手段によって少し摺動する。これにより小径部9は堅固に把持されたまま図1(a)の状態から右斜め下方向(管軸と非直角方向B)へ管軸を水平に維持した状態で引っ張られる。このときテーパ部10の反偏芯加工側テーパ部11は小径部9を右斜め下方向に引っ張る力により塑性変形して伸びる。また、テーパ部10の偏芯加工側テーパ部12は図4(b)に示すように、基部Pを中心として先部Q1が右斜め下方向に移動し、その先部Q1は前記したようにY軸から小径部9側へ移動する。このとき、前記のように第2のクランプ2が第1のクランプ1と反対方向に移動することにより先部Q1の移動が許容され、偏芯加工側テーパ部12は、実長を保持して、変形するか、或いは少量だけ引っ張られて延び、圧縮されることなく下方向へ塑性変形する。   Next, as shown in FIG. 1B, the second clamp 2 that holds the small-diameter portion 9 is slightly slid along the sliding surfaces 1c and 2c in the B direction by a driving means (not shown). As a result, the small-diameter portion 9 is pulled in a state where the tube axis is maintained horizontally from the state shown in FIG. 1 (a) obliquely downward to the right (non-perpendicular to the tube axis B) while being firmly held. At this time, the anti-eccentric processing side taper portion 11 of the taper portion 10 is plastically deformed and extended by a force pulling the small diameter portion 9 diagonally downward to the right. Further, as shown in FIG. 4B, the taper portion 10 of the taper portion 10 has a tip portion Q1 that moves obliquely downward to the right about the base portion P, and the tip portion Q1 is as described above. Move from the Y-axis to the small diameter portion 9 side. At this time, as described above, the second clamp 2 moves in the direction opposite to the first clamp 1 to allow the movement of the tip portion Q1, and the eccentric processing side tapered portion 12 maintains the actual length. , Or stretched by being pulled by a small amount and plastically deformed downward without being compressed.

これにより、小径部9は右斜め下方向に平行移動し、管軸はOF1だけ偏芯する。なお、平行移動するのは、摺動面3が平面だからである。   As a result, the small-diameter portion 9 is translated in the diagonally downward direction to the right, and the tube axis is decentered by OF1. The reason why the translation is performed is that the sliding surface 3 is a flat surface.

次に、図1の(c)に示すように、前記工程と同じ操作で、さらに大きな平行移動を行う。これにより偏芯量OF2を得る。この操作で、偏芯加工側テーパ部12は、大径部8の偏芯側部13と小径部9の偏芯側部14に対してほぼ面一となった状態まで変形する。このとき、偏芯加工側テーパ部12の先部Q1は、実長L1のまま変形して図4(b)に示すQ2の位置になりY軸からL5の量だけ小径部9側へ移動する。このL5分の移動は第2のクランプ2が前記のように第1のクランプ1と反対方向に移動することにより許容され、偏芯加工側テーパ部12は、これに圧縮力が生じることなく実長L1を保持して実長L6(L1=L6)となり、偏芯加工側テーパ部12の座屈は生じない。   Next, as shown in FIG. 1C, a larger parallel movement is performed by the same operation as the above-described step. Thereby, the eccentricity OF2 is obtained. By this operation, the eccentric processing side taper portion 12 is deformed to a state where it is substantially flush with the eccentric side portion 13 of the large diameter portion 8 and the eccentric side portion 14 of the small diameter portion 9. At this time, the tip portion Q1 of the eccentric processing side taper portion 12 is deformed with the actual length L1 and becomes the position of Q2 shown in FIG. 4B, and moves from the Y axis to the small diameter portion 9 side by the amount of L5. . This movement for L5 is allowed by the movement of the second clamp 2 in the opposite direction to the first clamp 1 as described above, and the eccentric processing side taper portion 12 is actually realized without generating a compression force. The length L1 is maintained to become the actual length L6 (L1 = L6), and the eccentric processing side tapered portion 12 does not buckle.

更に、図1の(d)に示すように、前記工程と同じ操作で摺動を進行させて、OF3まで偏芯させる。この状態ではテーパ部10の下側に設けられた空隙6によって、テーパ部10の偏芯加工側テーパ部12が第1のクランプ1に干渉することなく下方に傾斜でき、大径部8の偏芯側部(下面)13よりも小径部9の偏芯側部(下面)14が下方に位置できる。その結果、大径部8の外周面から移動幅C(図4(b)参照)だけ張り出した状態となる。このようにして、大偏芯量OF3の金属管を形成することができる。   Further, as shown in FIG. 1 (d), the sliding is advanced by the same operation as the above-described process to decenter to OF3. In this state, the eccentric processing side taper portion 12 of the taper portion 10 can be inclined downward without interfering with the first clamp 1 by the gap 6 provided on the lower side of the taper portion 10, and the large diameter portion 8 can be deviated. The eccentric side portion (lower surface) 14 of the small diameter portion 9 can be positioned below the core side portion (lower surface) 13. As a result, a state in which the movement width C (see FIG. 4B) protrudes from the outer peripheral surface of the large diameter portion 8 is obtained. In this way, a metal tube having a large eccentricity OF3 can be formed.

また、成形後の金属管を取り出す際には、堅固に金属管を把持している第1のクランプ1と第2のクランプ2の割型を左右に離反することで容易に取り出すことができる。なお、両クランプ1,2の摺動面1c、2cの傾斜角αは、前記L1とL6の関係が、前記のようにL1=L6となるか或いはL1<L6となるように設定する。   Moreover, when taking out the metal tube after shaping | molding, it can take out easily by separating apart the split type of the 1st clamp 1 and the 2nd clamp 2 which are holding the metal tube firmly. The inclination angle α of the sliding surfaces 1c and 2c of the clamps 1 and 2 is set so that the relationship between L1 and L6 is L1 = L6 as described above or L1 <L6.

前記の一連の工程において、テーパ部10の偏芯加工側テーパ部12が座屈することなく変形できるのは、前記のように、第2のクランプ2が第1のクランプ1と反対方向の右斜め下方向に平行移動することで、テーパ部10の最短部位PとQ1間(L1)よりも常に最長部位PとQ2間(L6)の方が長いか、もしくは等しい(=短くなることがない)関係を維持して曲げ加工を施すからである。また、反偏芯加工側テーパ部11は常に引張り力が作用して延ばされる。このため、加工過程におけるテーパ部10において延びだけの塑性流動で円滑に行われ、座屈や破断を招くことが希少となる。なお、L1の長さとL6の長さの比率(延び率)は数%〜10%程度が望ましい。   In the series of steps described above, the eccentric processing side taper portion 12 of the taper portion 10 can be deformed without buckling. As described above, the second clamp 2 is inclined rightward in the direction opposite to the first clamp 1. By translating in the downward direction, the distance between the longest part P and Q2 (L6) is always longer than or equal to the distance between the shortest part P and Q1 (L1) of the tapered portion 10 (= not shortened). This is because bending is performed while maintaining the relationship. Moreover, the anti-eccentricity processing side taper part 11 is always extended by a tensile force. For this reason, it is performed smoothly by the plastic flow only extending in the taper part 10 in a process, and it is rare to cause buckling or fracture. The ratio (elongation rate) between the length of L1 and the length of L6 is preferably about several to 10%.

図2は、実施例2を示すもので、実施例1において、大径部8側内にマンドレル18を、小径部9側内にマンドレル19をそれぞれ内挿し、加工工程における大径部8と小径部9の断面変形を防止した例である。   FIG. 2 shows the second embodiment. In the first embodiment, the mandrel 18 is inserted into the large diameter portion 8 side, and the mandrel 19 is inserted into the small diameter portion 9 side. This is an example in which the cross-sectional deformation of the portion 9 is prevented.

このマンドレル18とマンドレル19は図2(a)に示すように、管素材7を第1のクランプ1と第2のクランプ2に挿入する際に、管素材7の大径部8の開口端からマンドレル18を管内部へ挿入し、大径部8からテーパ部10へ屈曲する位置まで挿入し保持する。小径部9側も同様に小径部9の開口端からマンドレル19を小径部9からテーパ部10へ屈曲する位置まで挿入して保持する。この状態で、前記加工工程と同様の操作を行い、偏芯管を成形する。このとき、移動する側のクランプ、図の実施例では第2のクランプ2と同期してマンドレル19も移動させる。   As shown in FIG. 2A, the mandrel 18 and the mandrel 19 are inserted from the opening end of the large diameter portion 8 of the tube material 7 when the tube material 7 is inserted into the first clamp 1 and the second clamp 2. The mandrel 18 is inserted into the inside of the tube, and inserted and held up to a position where the mandrel 18 is bent from the large diameter portion 8 to the tapered portion 10. Similarly, on the small diameter portion 9 side, the mandrel 19 is inserted and held from the opening end of the small diameter portion 9 to a position where the mandrel 19 is bent from the small diameter portion 9 to the tapered portion 10. In this state, an operation similar to that in the processing step is performed to form an eccentric tube. At this time, the mandrel 19 is also moved in synchronism with the moving clamp, in the illustrated embodiment, the second clamp 2.

このマンドレル18とマンドレル19による内側からの規制によって、偏芯加工時においても大径部8と小径部9の(断面)形状は正確に確定される。しかし、図4(b)において符号20及びQ2に示す最も延びが要求される最大延び部への素材流動(供給)が悪化するため、この部分の破断を招かぬよう留意する必要がある。   By the restriction from the inside by the mandrel 18 and the mandrel 19, the (cross-sectional) shapes of the large-diameter portion 8 and the small-diameter portion 9 are accurately determined even during eccentric processing. However, since the material flow (supply) to the maximum extension portion indicated by reference numerals 20 and Q2 shown in FIG. 4 (b) where the maximum extension is required deteriorates, care must be taken not to cause breakage of this portion.

なお、マンドレル18を挿入しない場合の大径部8からテーパ部10への屈曲部の加工後の部分20の形状は大きな曲面となるが、製品機能として問題がなければ、この形状の方がマンドレルがない分加工が簡易かつ破断の惧れも少ない。また加工後の部分Q2の形状も同様である。   When the mandrel 18 is not inserted, the shape of the bent portion 20 from the large-diameter portion 8 to the tapered portion 10 is a large curved surface. If there is no problem as a product function, this shape is more suitable for the mandrel. Since there is no material, machining is simple and there is little risk of breakage. The shape of the processed part Q2 is also the same.

以上のようにマンドレル18と19は、図2に示すような大径部8と小径部9の両方の使用でも、また図3に示すような小径部9側の片方の使用でも良く、更に、大径部8側の片方の使用でも良く、また、どちらとも使用しなくても構わない。   As described above, the mandrels 18 and 19 may be used for both the large diameter portion 8 and the small diameter portion 9 as shown in FIG. 2, or may be used for one of the small diameter portions 9 as shown in FIG. One of the large-diameter portions 8 may be used, or neither of them may be used.

次に、上記実施例の適用例を図7により説明する。
図7は自動車の構造部材である、インパネ・リインフォースメントへの適用例である。
Next, an application example of the above embodiment will be described with reference to FIG.
FIG. 7 shows an application example to instrument panel reinforcement, which is a structural member of an automobile.

この部品は、特公平7―63758号公報に記載のように、ステアリングを取り付ける運転席側のみ大径であって、それ以外は小径の管材により一体に構成されるのが通例である。   As described in Japanese Examined Patent Publication No. 7-63758, this part is usually configured to have a large diameter only on the side of the driver's seat to which the steering is attached, and the other parts are integrally formed by a small diameter pipe material.

本適用例のような大径部30と小径部31を一体的に構成するパイプ材であって、大径部30と小径部31の軸芯が偏芯している場合、図7(b)のように大径部30に管材のテーパ部32を介して小径部31を偏芯させると良い。そして、前記の小径部31に、相手側部品を嵌合して溶接する。   When the pipe material is configured integrally with the large-diameter portion 30 and the small-diameter portion 31 as in this application example, and the shaft centers of the large-diameter portion 30 and the small-diameter portion 31 are eccentric, FIG. As described above, the small-diameter portion 31 is preferably eccentric from the large-diameter portion 30 via the tapered portion 32 of the pipe material. Then, the counterpart part is fitted and welded to the small diameter part 31.

このようなテーパ部32を介して小径部31が偏芯するインパネ・リインフォースメントの製造に本発明の曲げ加工方法は好適である。   The bending method of the present invention is suitable for manufacturing instrument panel reinforcement in which the small-diameter portion 31 is eccentric through the tapered portion 32.

また、本発明を自動車の排気系部品の製造に適用しても良い。
例えば、特開2003−314240号公報の図1に記載のマフラーケースのように、長い管状部材の両端が小径で偏芯している部品の製造に本発明の曲げ加工方法は好適である。
Further, the present invention may be applied to manufacture of automobile exhaust system parts.
For example, the bending method of the present invention is suitable for manufacturing a part in which both ends of a long tubular member are eccentric with a small diameter, such as the muffler case described in FIG. 1 of JP-A-2003-314240.

図8は、実施例3で、把持部材である第1のクランプ41の摺動面41cがその第1のクランプ41側に凹の一次曲面とし、把持部材である第2のクランプ42の摺動面42cを第1のクランプ41側に凸の一次曲面とした例である。また、両摺動面41c,42cの円弧の中心01は、管素材7の大径部8の軸芯Xよりも反偏芯加工側に距離L7分偏芯して設けられている。また、第1のクランプ41には前記空隙6と同様の空隙46が形成され、更に第2のクランプ42も把持穴43の周りに空隙47が形成されている。図8は加工工程終了時の状態を示す。管素材7及び両クランプ41,42のその他の構造は前記実施例と同様である。   FIG. 8 shows a sliding surface 41c of the first clamp 41, which is a gripping member, is a concave primary surface on the first clamp 41 side in Example 3, and the sliding of the second clamp 42, which is a gripping member. This is an example in which the surface 42c is a primary curved surface convex toward the first clamp 41 side. Further, the arc centers 01 of the sliding surfaces 41c and 42c are provided eccentrically by a distance L7 on the side opposite to the eccentricity processing side from the axis X of the large diameter portion 8 of the tube material 7. Further, the first clamp 41 is formed with a gap 46 similar to the gap 6, and the second clamp 42 is also formed with a gap 47 around the holding hole 43. FIG. 8 shows a state at the end of the machining process. Other structures of the tube material 7 and the clamps 41 and 42 are the same as in the above embodiment.

加工工程において第2のクランプ42は前記図1(a)に示すような大径部8と小径部9が同軸状の状態から、図の下方に曲面状の摺動面41c,42cを摺動しつつ反時計方向の左回りの回転をし、図8に示すように小径部9を偏芯かつ傾斜させる。すなわち、第2のクランプ42が曲面である摺動面41c,42cを摺動することで、回転中心が第2のクランプ42の右側で、かつ、管素材7の軸芯Xより上側に位置した状態で、第2のクランプ42は下方へ回転する。これにより、第2のクランプ42内に形成された把持穴43は第1のクランプ41と反対側に向かって、つまり図8の左斜め下方に傾動する。このとき、把持穴43の軸芯も下方へ偏芯する。   In the machining step, the second clamp 42 slides on the curved sliding surfaces 41c and 42c downward from the drawing from the state where the large diameter portion 8 and the small diameter portion 9 are coaxial as shown in FIG. While rotating counterclockwise counterclockwise, the small diameter portion 9 is eccentric and inclined as shown in FIG. In other words, the second clamp 42 slides on the curved sliding surfaces 41c and 42c, so that the center of rotation is located on the right side of the second clamp 42 and above the axis X of the tube material 7. In the state, the second clamp 42 rotates downward. As a result, the gripping hole 43 formed in the second clamp 42 tilts toward the opposite side of the first clamp 41, that is, diagonally downward to the left in FIG. At this time, the axis of the gripping hole 43 is also eccentric downward.

この把持穴43に把持された小径部9は把持穴43の移動に従って変形し、下方にオフセット(非平行)しつつ、管軸に対してDだけ右上がりに傾斜した形状となる。   The small-diameter portion 9 gripped by the gripping hole 43 is deformed as the gripping hole 43 is moved, and has a shape inclined upward by D with respect to the tube axis while being offset downward (non-parallel).

この実施例においても、第2のクランプ42の回転中心01がL7だけ偏芯していることにより、管素材7における偏芯加工側テーパ部12が前記実施例1と同様に同一長を保持するか或いは引張られて変形し、その座屈や破断が防止される。   Also in this embodiment, since the rotation center 01 of the second clamp 42 is eccentric by L7, the eccentric processing side taper portion 12 in the tube material 7 maintains the same length as in the first embodiment. Or it is pulled and deformed, and its buckling and breaking are prevented.

図9は、把持部材である第1のクランプ51の摺動面51cを、その第2のクランプ52側に凸の一次曲面とし、把持部材である第2のクランプ52の摺動面52cを第2のクランプ52側に凹の一次曲面とした例である。また、両摺動面51c,52cの円弧の中心02は、管素材7の大径部8の軸芯Xよりも偏芯加工側に距離L8分偏芯して設けられている。また、第1のクランプ51には前記空隙6と同様の空隙56が形成され、更に第2のクランプ52も把持穴5の周りに空隙57が形成されている。管素材7及び両クランプ51,52のその他の構造は前記実施例と同様である。図9は加工工程終了時の状態を示す。   In FIG. 9, the sliding surface 51c of the first clamp 51, which is a gripping member, is a primary curved surface convex toward the second clamp 52, and the sliding surface 52c of the second clamp 52, which is a gripping member, is This is an example in which a concave surface is formed on the second clamp 52 side. Further, the arc centers 02 of the sliding surfaces 51c and 52c are provided eccentrically by a distance L8 on the eccentric processing side from the axis X of the large diameter portion 8 of the tube material 7. The first clamp 51 is formed with a gap 56 similar to the gap 6, and the second clamp 52 is also formed with a gap 57 around the holding hole 5. Other structures of the tube material 7 and the clamps 51 and 52 are the same as in the above embodiment. FIG. 9 shows a state at the end of the machining process.

加工工程において第2のクランプ52は前記図1(a)に示すような大径部8と小径部9が同軸状の状態から、図の下方に曲面状の摺動面51c,52cを摺動しつつ時計方向の右回りの回転をし、図9に示すように小径部9を偏芯かつ傾斜させる。すなわち、第2のクランプ52が曲面である摺動面51c,52cを摺動することで、回転中心を第1のクランプ51の左側で、かつ、管素材7の軸芯Xより下側に位置した状態で、第2のクランプ52は下方へ回転する。これにより、第2のクランプ52内に形成された把持穴53は第1のクランプ51と反対側に向かって、つまり図9の右斜め下方に傾斜する。このとき、把持穴53の軸芯も下方へ偏芯する。   In the processing step, the second clamp 52 slides on the curved sliding surfaces 51c and 52c downward from the drawing from the state where the large diameter portion 8 and the small diameter portion 9 are coaxial as shown in FIG. While rotating clockwise, the small diameter portion 9 is eccentric and inclined as shown in FIG. That is, the second clamp 52 slides on the curved sliding surfaces 51 c and 52 c, so that the center of rotation is positioned on the left side of the first clamp 51 and below the axis X of the tube material 7. In this state, the second clamp 52 rotates downward. As a result, the gripping hole 53 formed in the second clamp 52 is inclined toward the opposite side of the first clamp 51, that is, diagonally downward to the right in FIG. At this time, the axis of the gripping hole 53 is also eccentric downward.

この把持穴53に把持された小径部9は把持穴53の移動に従って変形し下方にオフセット(非平行)しつつ、管軸に対してEだけ右下がりに傾斜した形状となる。   The small-diameter portion 9 gripped in the grip hole 53 is deformed as the grip hole 53 moves and is offset downward (non-parallel) and has a shape inclined to the right by E with respect to the tube axis.

この実施例においても、第2のクランプ52の回転中心02がL8だけ偏芯していることにより、管素材7における偏芯加工側テーパ部12が前記実施例1と同様に同一長を保持するか或いは引張られて変形し、その座屈や破断が防止される。   Also in this embodiment, since the rotation center 02 of the second clamp 52 is eccentric by L8, the eccentric processing side taper portion 12 in the tube material 7 maintains the same length as in the first embodiment. Or it is pulled and deformed, and its buckling and breaking are prevented.

また、上記実施例3と実施例4のどちらの例においても、最短実長のテーパ部が伸びないようにレイアウトすることが肝要である。   In both the third and fourth embodiments, it is important to lay out so that the shortest actual length taper portion does not extend.

さらに、図示しないが、実施例5として、前記摺動面41c,42c,51c,52cを二次曲面とし、第2のクランプ42,52に、一次曲面側と2次曲面側に駆動する駆動手段を設けてもよい。
すなわち、両クランプの摺動面41c,42c,51c,52cを図8及び図9において、第2のクランプ42,52が、紙面上を回転するとともに紙面に対し直角方向にも回転できるように形成してもよい、このように2方向に摺動することにより大径部管軸と小径部管軸が、同一平面上にない、捩れの関係を有する偏芯管を形成することができる。
Further, although not shown in the drawings, as the fifth embodiment, the sliding surfaces 41c, 42c, 51c, 52c are formed as secondary curved surfaces, and the second clamps 42, 52 are driven to drive the primary curved surface side and the secondary curved surface side. May be provided.
That is, the sliding surfaces 41c, 42c, 51c, and 52c of both clamps are formed so that the second clamps 42 and 52 can rotate on the paper surface and also in a direction perpendicular to the paper surface in FIGS. Alternatively, by sliding in two directions in this way, it is possible to form an eccentric tube having a twisted relationship in which the large-diameter tube shaft and the small-diameter tube shaft are not on the same plane.

なお、この実施例5のクランプと製造工程の図示は省略するが、本実施例5によれば例えば図10のような大径部8、テーパ部10及び捩れを有する小径部9からなる管状部材を得ることができる。   Although the illustration of the clamp and the manufacturing process of the fifth embodiment is omitted, according to the fifth embodiment, for example, a tubular member comprising a large diameter portion 8, a tapered portion 10 and a small diameter portion 9 having a twist as shown in FIG. Can be obtained.

なお、上記実施例3、実施例4、実施例5においても、マンドレルを挿入して加工過程における大径部と小径部のの断面変形を防止するようにしてもよい。   In the third embodiment, the fourth embodiment, and the fifth embodiment, a mandrel may be inserted to prevent cross-sectional deformation of the large diameter portion and the small diameter portion in the processing process.

また、本発明は、金属製の管素材を偏芯させるものであれば適用できるもので、自動車の構成部材・排気系部材に限らず、全ての金属管状物の加工に適用可能である。   In addition, the present invention can be applied as long as the metal pipe material is eccentric, and is applicable not only to automobile components and exhaust system members but also to processing of all metal tubular objects.

(a)〜(b)は本発明の実施例1の曲げ加工方法の工程を示す縦断面図。(A)-(b) is a longitudinal cross-sectional view which shows the process of the bending method of Example 1 of this invention. (a)〜(b)は図1の工程においてマンドレルを大径部と小径部に挿入した実施例2の工程を示す縦断面図。(A)-(b) is a longitudinal cross-sectional view which shows the process of Example 2 which inserted the mandrel in the large diameter part and the small diameter part in the process of FIG. (a)〜(b)は図1の工程においてマンドレルを小径部のみに挿入した状態の工程を示す縦断面図。(A)-(b) is a longitudinal cross-sectional view which shows the process of the state which inserted the mandrel only in the small diameter part in the process of FIG. 本発明の実施例における被加工材のテーパ部の変形過程を示した縦断面図。The longitudinal cross-sectional view which showed the deformation | transformation process of the taper part of the workpiece in the Example of this invention. 本発明の実施例における大径部側のクランプを示すもので、(a)は側面図、(b)は平面図、(c)は正面図。The large diameter part side clamp in the Example of this invention is shown, (a) is a side view, (b) is a top view, (c) is a front view. 本発明の実施例における小径部のクランプを示すもので、(a)は側面図、(b)は平面図、(c)は正面図。The clamp of the small diameter part in the Example of this invention is shown, (a) is a side view, (b) is a top view, (c) is a front view. 本発明の加工対象の例を示すもので、(a)は平面図、(b)は側面図(c)は正面図。The example of the process target of this invention is shown, (a) is a top view, (b) is a side view (c) is a front view. 本発明の実施例3を示すクランプの縦断面図。The longitudinal cross-sectional view of the clamp which shows Example 3 of this invention. 本発明の実施例3を示すクランプの縦断面図。The longitudinal cross-sectional view of the clamp which shows Example 3 of this invention. 本発明の実施例5により製造された物品を示すもので、(a)は側面図、(b)は正面図。The articles | goods manufactured by Example 5 of this invention are shown, (a) is a side view, (b) is a front view.

符号の説明Explanation of symbols

1,2,41,42,51,52 クランプ(把持部材)
7 管素材
8 大径部(本体部)
9 小径部
10 テーパ部
18,19 マンドレル
1, 2, 41, 42, 51, 52 Clamp (gripping member)
7 Tube material 8 Large diameter part (main part)
9 Small diameter part 10 Taper part 18, 19 Mandrel

Claims (2)

金属製の管素材にテーパ部とそれに連続し非同軸の小径部を形成する金属管の加工方法であって、テーパ部とそれに連続する同軸の小径部が形成された管素材の本体部と小径部を各々把持部材にて堅持し、両把持部材を管軸と非直角方向へ相対的に移動させて非同軸の小径部を形成することを特徴とする金属管の曲げ加工方法。   A metal tube processing method for forming a tapered portion and a non-coaxial small-diameter portion continuous with the tapered portion in a metal tube material, the main body portion and the small-diameter of the tube material in which the tapered portion and the coaxial small-diameter portion continuous therewith are formed. A method of bending a metal tube, characterized in that each portion is firmly held by a gripping member, and both gripping members are moved relative to the tube axis in a non-perpendicular direction to form a non-coaxial small diameter portion. 前記本体部と小径部の少なくとも一方にマンドレルを内挿し、該マンドレルを、把持部材と同期して移動させることを特徴とする請求項1記載の金属管の曲げ加工方法。   The metal pipe bending method according to claim 1, wherein a mandrel is inserted into at least one of the main body part and the small diameter part, and the mandrel is moved in synchronization with the gripping member.
JP2004214438A 2004-07-22 2004-07-22 Bending method for metal tube Pending JP2006035235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214438A JP2006035235A (en) 2004-07-22 2004-07-22 Bending method for metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214438A JP2006035235A (en) 2004-07-22 2004-07-22 Bending method for metal tube

Publications (1)

Publication Number Publication Date
JP2006035235A true JP2006035235A (en) 2006-02-09

Family

ID=35900778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214438A Pending JP2006035235A (en) 2004-07-22 2004-07-22 Bending method for metal tube

Country Status (1)

Country Link
JP (1) JP2006035235A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052730A (en) * 1996-08-12 1998-02-24 Nippon Light Metal Co Ltd End part angle working machine for truss chord member
JPH11285737A (en) * 1998-04-01 1999-10-19 Mitsuba Corp Method for bending cylindrical body and device therefor
JP2000210722A (en) * 1999-01-21 2000-08-02 Sango Co Ltd Working method for bending tube stock
JP2002239639A (en) * 2001-02-14 2002-08-27 Sankei Kogyo Kk Method and device for bending pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052730A (en) * 1996-08-12 1998-02-24 Nippon Light Metal Co Ltd End part angle working machine for truss chord member
JPH11285737A (en) * 1998-04-01 1999-10-19 Mitsuba Corp Method for bending cylindrical body and device therefor
JP2000210722A (en) * 1999-01-21 2000-08-02 Sango Co Ltd Working method for bending tube stock
JP2002239639A (en) * 2001-02-14 2002-08-27 Sankei Kogyo Kk Method and device for bending pipe

Similar Documents

Publication Publication Date Title
EP3202503A1 (en) Method of manufacturing press-formed product, and press-formed product
JP6256660B2 (en) Method for manufacturing hollow tube material
JP4993951B2 (en) Pipe bending method and apparatus
CN103958084A (en) Tube end forming method
US11072373B2 (en) Vehicle structural member and method for producing same
WO2004041458A1 (en) Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product
JP3000017B1 (en) Pipe material bending method
JP2006035235A (en) Bending method for metal tube
CN107107157B (en) It is flared the manufacturing method of metal tube
JP2001334316A (en) Tubular product of special form and its manufacturing method
CN110325298B (en) Mandrel bar, bent pipe, and method and apparatus for manufacturing the same
JP4270921B2 (en) Bottomed tube and method for forming the same
JP2002263738A (en) Non-circular tube bending method, and bending device therefor
US6807837B1 (en) Method and apparatus for producing variable wall thickness tubes and hollow shafts
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP2008006448A (en) Method of bending special shaped tube and worked automotive parts
JP3736865B2 (en) Instrument panel reinforcement and instrument panel manufacturing method
JP2010070161A (en) Method of manufacturing gas conduit for pretensioner
JPS6313625A (en) Necking method for circular pipe
JP2007275929A (en) Tubular article bending device and tubular article bending method
JP3938979B2 (en) Pipe end processing method
JPWO2019188002A1 (en) Steel plate edge bending method and device, and steel pipe manufacturing method and equipment
JP4456489B2 (en) Rotating draw bending method
JPWO2019188001A1 (en) Steel plate edge bending method and device, and steel pipe manufacturing method and equipment
JP2000271630A (en) Metal stock drawing method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070509

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090701

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921