JP2006034063A - Method for calculating current prediction value - Google Patents

Method for calculating current prediction value Download PDF

Info

Publication number
JP2006034063A
JP2006034063A JP2004212748A JP2004212748A JP2006034063A JP 2006034063 A JP2006034063 A JP 2006034063A JP 2004212748 A JP2004212748 A JP 2004212748A JP 2004212748 A JP2004212748 A JP 2004212748A JP 2006034063 A JP2006034063 A JP 2006034063A
Authority
JP
Japan
Prior art keywords
current
current value
past
predetermined time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004212748A
Other languages
Japanese (ja)
Inventor
Katsumi Funahara
克己 船原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2004212748A priority Critical patent/JP2006034063A/en
Publication of JP2006034063A publication Critical patent/JP2006034063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly operate power transmission lines by enabling prediction of the transmission current at the specified section of the transmission line in a short time. <P>SOLUTION: The method for calculating a current prediction value comprises a step of checking the current value of a given transmission line at every given period by a current detection means, storing the current value thus detected in a data base, patterning past current change states based on the given time, searching the same pattern in the past from the data base based on the patterns, calculating current amount of change based on the current value when the given period is passed from the reference time of the same pattern in the past, and calculating the current prediction value after the elapse of the given period from the given time based on the current amount of change in the past. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、送電線の通電容量を監視する技術に関する。   The present invention relates to a technique for monitoring a current carrying capacity of a transmission line.

送電線路には定常的、又は短時間に通電し得る許容電流(電力)が予め定められており、許容電流を超えた電力供給は電線に対して熱による機械的な強度低下をおよぼす。   An allowable current (electric power) that can be energized in a steady state or in a short time is determined in advance in the power transmission line, and power supply exceeding the allowable current causes a mechanical strength reduction due to heat to the electric wire.

一方、近年、電力設備投資の抑制に起因する電力系統構成の難しさから夏期等の高需要・高温期に通電容量を超過する送電線路が発生することが多く、その運用に苦慮している実情がある。   On the other hand, in recent years, due to the difficulty in configuring the power system due to restrained investment in power facilities, there are many cases where transmission lines exceeding the current carrying capacity have been generated in high demand and high temperature periods such as in the summer, and the actual situation is difficult to operate. There is.

すなわち、送電線路の電流変化量がより確実に予測できれば、他の送電線路を考慮した的確な送電線の運用管理が可能となることがわかっている。
なお、風の影響を考慮して監視線路の電線温度を測定する先行技術としては、特開2002−238147号公報がある。
特開2002−238147号公報
That is, it is known that if the amount of current change in a transmission line can be predicted more reliably, it is possible to accurately manage the operation of the transmission line in consideration of other transmission lines.
JP-A-2002-238147 discloses a prior art for measuring the wire temperature of a monitoring line in consideration of the influence of wind.
JP 2002-238147 A

ところで、送電線路の運用管理を左右するのは、送電線路上における測定時点以降(未来)の負荷の増減であるが、このような未来の電流変化の予測は難しく、現状は運用者(人間)の勘に頼った運用管理を行っている。   By the way, it is difficult to predict the future current change because it is the increase and decrease of the load after the measurement time (future) on the transmission line that determines the operation management of the transmission line. Operation management that relies on intuition.

また、送電線路の許容電流の増減は、送電線路の設置場所の外気温や風速が影響していることがわかってきている。   In addition, it has been found that the increase or decrease in the allowable current of the transmission line is influenced by the outside air temperature and the wind speed at the place where the transmission line is installed.

そのため、高需要・高温期に、通電許容値を超過する送電線路の特定箇所に設備保守要員が出向き、現地の外気温・風速を測定してそのデータを電話等の口頭情報でセンタに通知し、センタでは当該受信データを考慮して許容電流を算出していた。   Therefore, during high demand and high temperatures, equipment maintenance personnel go to specific locations on the transmission line that exceed the allowable power supply, measure the outside air temperature and wind speed at the site, and notify the center of the data by verbal information such as by telephone. The center calculates the allowable current in consideration of the received data.

しかし、箇所によっては遠方かつ山間部でその送電線路の特定箇所にたどり着くこと自体が困難な場合が多かった。
また、以上のような地理的困難さから、通電許容電流値超過が想定されt味点で予め現地に出向することが必要だった。
However, depending on the location, it is often difficult to reach a specific location on the transmission line at a distance and in a mountainous area.
In addition, due to the geographical difficulty as described above, it was necessary to go to the site in advance at the t taste point, assuming that the allowable energization current value was exceeded.

一方、送電線路に外気温や風速(風向・風力)の測定装置を設けて通信によってセンタにこれらの情報を収集することも考えられるが、収集したこれらの情報をどのように活用すべきかについては的確な提案がなされていないのが現状である。   On the other hand, it is conceivable to install a measuring device for the outside air temperature and wind speed (wind direction / wind force) on the transmission line and collect this information at the center by communication. How should these collected information be used? The current situation is that no accurate proposal has been made.

本発明は、このような点に鑑みてなされたものであり、送電線路の特定箇所の送電電流の短時間予測を可能にして、送電線路の的確な運用を実現することを技術的課題とする。   This invention is made in view of such a point, and makes it a technical subject to enable the short-term prediction of the transmission current of the specific location of a transmission line, and implement | achieve accurate operation of a transmission line. .

前記課題を解決するために、本発明では、以下の手段を採用した。   In order to solve the above problems, the present invention employs the following means.

すなわち、本発明は、所定時間毎の所定の送電線の電流値を電流検出手段より検出し、データベースに蓄積しておき、所定時を基準とした過去の電流変化状態をパターン化し、
前記パターンに基づいて前記データベースから過去の同一パターンを索出し、前記過去の同一パターンの基準時から所定時間経過時の電流値に基づいて電流増減変化量を算出し、前記過去の電流増減変化量に基づいて前記所定時から所定時間経過後の電流値予測値を算出する電流予測値算出方法としたものである。
That is, the present invention detects a current value of a predetermined transmission line every predetermined time from the current detection means, accumulates it in a database, patterns past current change states based on a predetermined time,
The same pattern in the past is searched from the database based on the pattern, a current increase / decrease change amount is calculated based on a current value when a predetermined time elapses from a reference time of the past same pattern, and the past current increase / decrease change amount is calculated. This is a current predicted value calculation method for calculating a current value predicted value after elapse of a predetermined time from the predetermined time.

本発明によれば、電流値の変化状態をパターン化し、過去の同種のパターンと比較してそれと一致するパターンを索出し、過去のパターンのその後の電流増減の変化量に基づいて所定時以降の電流予測値を算出することができる。   According to the present invention, the state of change of the current value is patterned, a pattern that matches the pattern of the same type in the past is searched for, and the amount of change in subsequent current increase / decrease in the past pattern is determined after a predetermined time. A predicted current value can be calculated.

本発明をさらに具体化すれば、所定時間毎の所定の送電線の電流値を電流検出手段より検出し、データベースに蓄積しておき、所定時t0の電流値Ir0と、前記所定時よりもts時間前の電流値Ir1と、ts×2時間前の電流値Ir2とを前記データベースから読み出して、前記各電流値より、電流変化量ΔI1(ΔI1=Ir0−Ir1)およびΔI2(ΔI2=Ir1−Ir2)を算出し、このΔI2からΔI1への変化状態を予めパターン化した数値(電流増減パターン)に変換し、前記データベースより前記電流増減パターンコードと一致する過去の電流増減パターンを索出し、前記過去の電流増減パターンの電流値Ir0に基づいたts時間後の電流値Irを前記データベースから読み出して、この電流増減値をΔIとし、Si=ΔI/tsによりts時間後の電流増減変化係数Siを算出し、Ip=Ir0+(Si×ts)により、所定時からts時間後の電流予測値Ipを算出することができる。   If the present invention is further embodied, the current value of a predetermined transmission line every predetermined time is detected by the current detection means and stored in the database, and the current value Ir0 at the predetermined time t0 and ts than the predetermined time are stored. The current value Ir1 before the time and the current value Ir2 before ts × 2 hours are read from the database, and the current change amounts ΔI1 (ΔI1 = Ir0−Ir1) and ΔI2 (ΔI2 = Ir1-Ir2) are determined from the current values. ) Is converted into a numerical value (current increase / decrease pattern) in which the change state from ΔI2 to ΔI1 is pre-patterned, and a past current increase / decrease pattern that matches the current increase / decrease pattern code is retrieved from the database. The current value Ir after ts time based on the current value Ir0 of the current increase / decrease pattern is read from the database, this current increase / decrease value is set as ΔI, Si = Δ / Calculates the current increase and decrease change coefficient Si after ts time by ts, by Ip = Ir0 + (Si × ts), it is possible to calculate the current prediction value Ip after ts time from a predetermined time.

本発明によれば、所定時を基準とした未来の電流値を、過去の電流変化状態のパターンに基づいてより確実に予測することが可能となる。   According to the present invention, it is possible to more reliably predict a future current value based on a predetermined time based on a past current change state pattern.

以下、本発明の実施形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態における処理フロー図である。同図における処理は図2および図3に示した電流予測サーバにより実行処理される。   FIG. 1 is a processing flow diagram according to the embodiment of the present invention. The processing in the figure is executed by the current prediction server shown in FIGS.

電流予測サーバは、TCP/IP網(LAN)を介して電流検出システムと、送電線に設置された風向・風速計、温度計とそれぞれ接続されており、送電線の電流値、当該送電線設置場所の風向き、風速、温度等がデータとして入力されるようになっている。   The current prediction server is connected to the current detection system, the wind direction / anemometer, and the thermometer installed on the transmission line via the TCP / IP network (LAN), and the current value of the transmission line and the installation of the transmission line The wind direction, wind speed, temperature, etc. of the place are input as data.

なお、送電線に設けられた前記風向・風速計、温度計のデータはモデム(MODEM)によって電気信号として送信され、光電変換装置(E/O)で光信号に変換されて、ジョイントBOXおよび光ファイバ複合架空地線(OPGW、以下単に光ケーブルという)を介してネットワーク(LAN)側の光電変換装置(O/E)で電気信号に再変換され、モデムを介してTCP/IP網(LAN)に送られるようになっている。なお、送電線側に設けられたモデムおよび光電変換装置(E/O)は、太陽電池又はバッテリにより作動電源を供給されるようになっている。   The data of the wind direction / anemometer and thermometer provided on the transmission line is transmitted as an electrical signal by a modem (MODEM), converted into an optical signal by a photoelectric conversion device (E / O), and the joint BOX and light. It is converted back to an electrical signal by a photoelectric conversion device (O / E) on the network (LAN) side through a fiber composite ground wire (OPGW, hereinafter simply referred to as an optical cable), and converted into a TCP / IP network (LAN) through a modem. It is supposed to be sent. The modem and the photoelectric conversion device (E / O) provided on the power transmission line side are supplied with operating power by a solar cell or a battery.

電流予測サーバは、汎用のコンピュータシステムであり、中央処理装置(CPU)を中心に、メインメモリ(MM)、ハードディスク装置(HD)、表示装置(DISP)、出力装置(KBD)等で構成されている。そして、これらと前記中央処理装置(CPU)とはバス(BUS)によって接続されデータや制御信号が相互に送受信されるようになっている。   The current prediction server is a general-purpose computer system, and is composed of a central processing unit (CPU), a main memory (MM), a hard disk device (HD), a display device (DISP), an output device (KBD), and the like. Yes. These and the central processing unit (CPU) are connected by a bus (BUS) so that data and control signals can be transmitted and received between them.

TCP/IP網(LAN)からの電流値や風向き等の入力データは、ネットワークイン
ターフェース(NW I/F)を介して受信され、中央処理装置(CPU)の制御によってハードディスク装置(HD)内のデータベースに格納されるようになっている。
Input data such as current value and wind direction from the TCP / IP network (LAN) is received via the network interface (NW I / F), and the database in the hard disk device (HD) is controlled by the central processing unit (CPU). To be stored in.

ハードディスク装置(HD)には、オペレーティングシステムと、アプリケーションプログラムと、データベースおよび各種テーブルが登録されるようになっている。   An operating system, application programs, databases, and various tables are registered in the hard disk device (HD).

図1に示した処理は、前記中央処理装置(CPU)がアプリケーションプログラムに基づいて、データベースからのデータを各種テーブルを参照して処理することによって実現される。   The processing shown in FIG. 1 is realized by the central processing unit (CPU) processing data from a database with reference to various tables based on an application program.

データベースには、図5および図8に示すように、日時と電流値がそれぞれ蓄積されている。   As shown in FIG. 5 and FIG. 8, the database stores the date and current values, respectively.

次に、図1に基づく処理手順を説明する。   Next, the processing procedure based on FIG. 1 will be described.

まず、中央処理装置(CPU)は、ハードディスク装置(HD)内に格納されたプログラムをメインメモリ(MM)上に展開し、順次これを読み込んで処理を開始する。   First, the central processing unit (CPU) develops a program stored in the hard disk device (HD) on the main memory (MM), sequentially reads it, and starts processing.

中央処理装置(CPU)は、当該プログラムに基づいて、まず、所定時Ir0を基準として、それぞれ1時間前の電流値Ir1と2時間前の電流値Ir2とを電流値データベース(図5参照)から読み出す。   Based on the program, the central processing unit (CPU) first determines the current value Ir1 one hour ago and the current value Ir2 two hours ago from the current value database (see FIG. 5) based on the predetermined time Ir0. read out.

そして、Ir1からIr0に至る電流の変化量ΔI1と、Ir2からIr1に至る電流の変化量ΔI2とを算出する(S101)。図5に示すデータの場合、ΔI1=Ir0−Ir1=200、ΔI2=Ir1−Ir2=−100となる。   Then, a current change amount ΔI1 from Ir1 to Ir0 and a current change amount ΔI2 from Ir2 to Ir1 are calculated (S101). In the case of the data shown in FIG. 5, ΔI1 = Ir0−Ir1 = 200 and ΔI2 = Ir1−Ir2 = −100.

次に、電流変化量による増減を図6に示したしきい値テーブルを参照してパターン値を決定する(S102)。この例では、送電線定格電流Ico=600とし、Ico×0.05=30なので、Ij=10となるので、a1=2、a2=0となり、02のパターンとなる。   Next, the pattern value is determined with reference to the threshold value table shown in FIG. In this example, since the transmission line rated current Ico = 600 and Ico × 0.05 = 30, Ij = 10, so a1 = 2 and a2 = 0, resulting in a pattern of 02.

次に、中央処理装置(CPU)は、Dx日前の電流値を電流値データベースから読み出す(S103)。このとき、基準時の属する日とDx日前とが平日か、土曜日か、祝・日曜日で一致しているか否かを吟味する(S104)。一致しない場合には、Dxに1を加算して再吟味を行う(S105)。このように基準時が属する日と同じ属性の日のデータを検索対象としている。   Next, the central processing unit (CPU) reads out the current value Dx days ago from the current value database (S103). At this time, it is examined whether the day to which the reference time belongs and the day before Dx coincide on weekdays, Saturdays, holidays, and Sundays (S104). If they do not match, 1 is added to Dx and reexamined (S105). In this way, data having the same attribute as the day to which the reference time belongs is set as the search target.

このように同じ属性の曜日に該当する場合には、電流値データベースから当該Dx日前の同時刻における電流値をそれぞれ読み出す。   In this way, when corresponding to the day of the week having the same attribute, current values at the same time before Dx days are read from the current value database.

そして、Dx日前の同時刻における電流変化量をS101と同じ計算式にて算出する(S106)。そして、これらの電流変化量による増減について、S102で行ったのと同様の方法でパターン値を決定する(S107)。この例ではa1=2、a2=0となり、02のパターンとなる。   Then, the current change amount at the same time before Dx days is calculated by the same calculation formula as S101 (S106). Then, the pattern value is determined by the same method as that performed in S102 for the increase / decrease due to the current change amount (S107). In this example, a1 = 2 and a2 = 0, and the pattern is 02.

次に、中央処理装置(CPU)は、当該Dx日前の同時刻における電流増減パターンが前記基準時における電流増減パターンと一致するか否かを判定する(S108)。そして、不一致である場合には、そのDx日前が365日前の同日であるか否かを判定し(S109)、365日前の同日でない場合にはさらにDxに1を加算してS103の処理に戻る。また、S109で365日前と判断した場合には、過去365日内の同時刻に一致す
るパターンはないものとみなし、当日所定値直近の電流変化量ΔI1が直近未来を継続するものとみなして、ΔIにΔI1を代入する(S111)。
Next, the central processing unit (CPU) determines whether or not the current increase / decrease pattern at the same time before Dx days matches the current increase / decrease pattern at the reference time (S108). If they do not match, it is determined whether or not the day before Dx is the same day before 365 days (S109). If it is not the same day before 365 days, 1 is further added to Dx and the process returns to S103. . If it is determined in S109 that it is 365 days ago, it is considered that there is no pattern that coincides with the same time in the past 365 days, and the current change amount ΔI1 closest to the predetermined value on that day is assumed to continue in the immediate future, and ΔI Is substituted for ΔI1 (S111).

また、S108において、当該Dx日前の同時刻における電流増減パターンが前記基準時における電流増減パターンと一致する場合には、前記過去の基準時に該当する電流値Ir0を基準にしてts分後の電流増減変化量(傾きSI)をSI=ΔI/tsにより算出する(図9参照:S112)。これは具体的には過去に発生した同様の電流増減パターンを読み出してその後の電流の増減変化量(SI)を求め、これを現在、すなわち所定時を基準としたts分後の電流値を予測計算に用いることを意味している。   In S108, if the current increase / decrease pattern at the same time before the Dx day coincides with the current increase / decrease pattern at the reference time, the current increase / decrease after ts minutes with reference to the current value Ir0 corresponding to the past reference time. The amount of change (slope SI) is calculated from SI = ΔI / ts (see FIG. 9: S112). Specifically, a similar current increase / decrease pattern that occurred in the past is read to determine the current increase / decrease change amount (SI), and the current value, that is, the current value after ts minutes based on the predetermined time is predicted. It means to use for calculation.

そして、最終的にはIp=Ir0+(Si×ts)によりts分後の予測電流値Ipを算出することができる(S113)。   Finally, the predicted current value Ip after ts minutes can be calculated from Ip = Ir0 + (Si × ts) (S113).

なお、以上の説明では、電流値データベースに基づいて電流の予測を行う場合で説明したが、図10に示すように、温度予測にも適用できる。   In the above description, the case where the current is predicted based on the current value database has been described. However, the present invention can also be applied to temperature prediction as shown in FIG.

本発明は、電力事業分野における送電線の電流予測等に適用できる。   The present invention can be applied to power line current prediction in the electric power business field.

本発明の実施形態における処理フロー図(1)Process flow diagram in embodiment of the present invention (1) 本発明の全体のシステム構成図Overall system configuration diagram of the present invention 電流予測サーバのハードウエア構成図Hardware diagram of current prediction server 電流検出システムで検出された電流と時間の関係の一例を示すグラフ図The graph which shows an example of the relationship between the electric current detected with the electric current detection system, and time 電流値記録データベースの内容を示す図The figure which shows the contents of the current value record database 電流増減判断のしきい値テーブルの内容を示す図The figure which shows the contents of threshold value table of current increase / decrease judgment 電流増減パターンテーブルの内容を示す図Figure showing the contents of the current increase / decrease pattern table 過去の電流値記録データベースの内容を示す図The figure which shows the contents of the past current value record database 所定時から所定時間経過後の予測電流算出を説明するためのグラフ図Graph for explaining calculation of predicted current after elapse of a predetermined time from a predetermined time 本発明の実施形態における処理フロー図(2)Processing flow diagram (2) in the embodiment of the present invention

符号の説明Explanation of symbols

CPU 中央処理装置
MM メインメモリ
BUS バス
HD ハードディスク装置
DISP 表示装置
KBD 入力装置
O/E,E/O 光電変換装置
OPGW 光ファイバ複合架空地線(光ケーブル)
CPU Central processing unit MM Main memory BUS Bus HD Hard disk device DISP Display device KBD Input device O / E, E / O Photoelectric conversion device OPGW Optical fiber composite ground wire (optical cable)

Claims (2)

所定時間毎の所定の送電線の電流値を電流検出手段より検出し、データベースに蓄積しておき、
所定時を基準とした過去の電流変化状態をパターン化し、
前記パターンに基づいて前記データベースから過去の同一パターンを索出し、
前記過去の同一パターンの基準時から所定時間経過時の電流値に基づいて電流増減変化量を算出し、
前記過去の電流増減変化量に基づいて前記所定時から所定時間経過後の電流値予測値を算出する電流予測値算出方法。
The current value of a predetermined transmission line for each predetermined time is detected by the current detection means and stored in the database,
Pattern the past current change state based on a predetermined time,
Based on the pattern, the past same pattern is retrieved from the database,
Calculate the current increase / decrease change amount based on the current value when a predetermined time has elapsed from the reference time of the same pattern in the past,
A predicted current value calculation method for calculating a predicted current value after a predetermined time has elapsed from the predetermined time based on the past current increase / decrease change amount.
所定時間毎の所定の送電線の電流値を電流検出手段より検出し、データベースに蓄積しておき、
所定時t0の電流値Ir0と、前記所定時よりもts時間前の電流値Ir1と、ts×2時間前の電流値Ir2とを前記データベースから読み出して、
前記各電流値より、以下の式に基づいて電流変化量ΔI1およびΔI2を算出し、
ΔI1=Ir0−Ir1
ΔI2=Ir1−Ir2
前記ΔI2からΔI1への変化状態を予めパターン化した数値(電流増減パターン)に変換し、
前記データベースより前記電流増減パターンコードと一致する過去の電流増減パターンを索出し、
前記過去の電流増減パターンの電流値Ir0に基づいたts時間後の電流値Irを前記データベースから読み出して、この電流増減値をΔIとし、下記の式に基づいてts時間後の電流増減変化係数SIを算出し、
Si=ΔI/ts
前記所定時からts時間後の電流予測値Ipを以下の式で算出することを特徴とする送電線の電流予測値算出方法。
Ip=Ir0+(Si×ts)
The current value of a predetermined transmission line for each predetermined time is detected by the current detection means and stored in the database,
The current value Ir0 at a predetermined time t0, the current value Ir1 ts time before the predetermined time, and the current value Ir2 ts × 2 hours before are read from the database,
From the current values, current change amounts ΔI1 and ΔI2 are calculated based on the following formulas,
ΔI1 = Ir0−Ir1
ΔI2 = Ir1−Ir2
The change state from ΔI2 to ΔI1 is converted into a pre-patterned numerical value (current increase / decrease pattern),
Search the current increase / decrease pattern that matches the current increase / decrease pattern code from the database,
The current value Ir after ts time based on the current value Ir0 of the past current increase / decrease pattern is read from the database, and this current increase / decrease value is set as ΔI. To calculate
Si = ΔI / ts
A method for calculating a predicted current value of a power transmission line, wherein a predicted current value Ip after ts time from the predetermined time is calculated by the following formula.
Ip = Ir0 + (Si × ts)
JP2004212748A 2004-07-21 2004-07-21 Method for calculating current prediction value Pending JP2006034063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212748A JP2006034063A (en) 2004-07-21 2004-07-21 Method for calculating current prediction value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212748A JP2006034063A (en) 2004-07-21 2004-07-21 Method for calculating current prediction value

Publications (1)

Publication Number Publication Date
JP2006034063A true JP2006034063A (en) 2006-02-02

Family

ID=35899728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212748A Pending JP2006034063A (en) 2004-07-21 2004-07-21 Method for calculating current prediction value

Country Status (1)

Country Link
JP (1) JP2006034063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088910A (en) * 2010-10-19 2012-05-10 Yokogawa Electric Corp Energy saving effect calculation device
JP2018074778A (en) * 2016-10-31 2018-05-10 住友電気工業株式会社 Wire monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088910A (en) * 2010-10-19 2012-05-10 Yokogawa Electric Corp Energy saving effect calculation device
JP2018074778A (en) * 2016-10-31 2018-05-10 住友電気工業株式会社 Wire monitoring system
JP2020145925A (en) * 2016-10-31 2020-09-10 住友電気工業株式会社 Wire monitoring system

Similar Documents

Publication Publication Date Title
US7742897B2 (en) Systems and methods for monitoring and diagnosing the power generated by renewable power systems
US9069338B2 (en) Systems and methods for statistical control and fault detection in a building management system
US8359248B2 (en) Systems, methods, and devices for managing emergency power supply systems
US8190395B2 (en) Comparible diagnostics for renewable energy power systems
US9395712B2 (en) Building energy usage reduction by automation of optimized plant operation times and sub-hourly building energy forecasting to determine plant faults
JP5492848B2 (en) Power demand forecasting system and method
US11774124B2 (en) Systems and methods for managing building signature intelligent electronic devices
EP2551990B1 (en) Situational awareness for an electrical distribution system
CN103748620A (en) Systems and methods for analyzing energy usage
US11035092B2 (en) System and method of monitoring a utility structure
JP2009050064A (en) Distribution system status estimating device
US11521609B2 (en) Voice command system and voice command method
CN101447669A (en) Method for monitoring safety and stability of electric network based on stable rule information model
JP2010213507A (en) Natural energy integrated power storage system and natural energy integrated power storage method
JP2009153252A (en) Demand monitoring system
JP2005151781A (en) Power demand prediction system and load frequency control method in power system
WO2005072407A2 (en) Method for the automated quantification of power production, resource utilization and wear of turbines
JP2006034063A (en) Method for calculating current prediction value
KR102088234B1 (en) A maintenance system based pre-emptive predication used data analsys indedx for power plants and method it
JPWO2021117127A1 (en) Power generation amount prediction device
EP3690794A1 (en) Facility management system and facility management method
KR101557184B1 (en) Method and apparatus for predicting consumption of building based on correlation
CN117911196B (en) Ring main unit full-period operation data supervision system and method based on artificial intelligence
Rosewater et al. Electrical Energy Storage Data Submission Guidelines, Version 2
Dagsa et al. IoT-Enabled Energy Consumption Monitoring and Control System for a Single-Phase Building