JP2006033092A - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator Download PDF

Info

Publication number
JP2006033092A
JP2006033092A JP2004205116A JP2004205116A JP2006033092A JP 2006033092 A JP2006033092 A JP 2006033092A JP 2004205116 A JP2004205116 A JP 2004205116A JP 2004205116 A JP2004205116 A JP 2004205116A JP 2006033092 A JP2006033092 A JP 2006033092A
Authority
JP
Japan
Prior art keywords
voltage
variable capacitance
elements
piezoelectric
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004205116A
Other languages
Japanese (ja)
Inventor
Souyo Yamamoto
壮洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004205116A priority Critical patent/JP2006033092A/en
Publication of JP2006033092A publication Critical patent/JP2006033092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric oscillator adopting a voltage-controlled varactor element of a MOS capacitor type wherein changes in the amount of an oscillated frequency, with respect to the change in an external control voltage is increased and its linearity, is enlarged. <P>SOLUTION: The voltage-controlled piezoelectric oscillator 20 is configured to include a piezoelectric vibrator 51 including a piezoelectric element excited at a prescribed frequency; an oscillation amplifier section 50 for supplying a current to the piezoelectric element to excite it; voltage-controlled varactor elements D1, D2; a feedback resistor Rf for interconnecting the input terminal and the output terminal of the oscillation amplifier section 50 to feed back the signal; a gain control section 58 for applying gain control to an external control voltage (VC) 54; high-resistance elements RA, RB used to apply an output voltage VAFC 59 of the gain control section 58 to the varactor elements D1, D2; capacitors CB1, CB2, CB3 acting as capacitive elements of the oscillation circuit; resistive elements RC, RD for voltage-dividing the output voltage VAFC 59; and an output buffer section 55 for externally outputting the oscillation signal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特に簡単な回路構成によって発振周波数の変化量を直線的に制御することが可能な電圧制御発振器に関するものである。   The present invention relates to a piezoelectric oscillator using a piezoelectric vibrator such as a crystal vibrator, and more particularly to a voltage controlled oscillator capable of linearly controlling the amount of change in oscillation frequency with a simple circuit configuration.

近年、水晶振動子等の圧電振動子に対して発振回路、温度補償回路等を付加した圧電発振器に対しては、周波数安定度は勿論のこと、小型化、低価格化等の要求が厳しく、更には、通信方式のデジタル化が進むにつれて、従来問題とならなかった雑音比特性(C/N特性)の向上が望まれている。
図5は従来の電圧制御型圧電発振器の回路構成を示す図である。この電圧制御型圧電発振器100は、所定の周波数で励振される圧電素子を備えた圧電振動子(水晶振動子)51と、この圧電素子に電流を流して励振させる発振用増幅部50と、電圧制御型の可変容量素子D1、D2と、発振用増幅部50の出力端子と入力端子を接続して信号をフィードバックするフィードバック抵抗Rfと、外部制御電圧54を可変容量素子D1、D2に印加する高抵抗素子52、53と、発振回路の容量素子として働くコンデンサCB1、CB2と、発振信号を外部に出力する出力バッファ部55とを備えて構成される。
この電圧制御型圧電発振器100は、MOS型の可変容量素子D1、D2を配置し、外部から制御電圧54をこの可変容量素子D1、D2に印加することにより回路側の容量を変化させて発振周波数を変化させている。また、可変容量素子D1、D2に印加される電圧のゲインをコントロールして必要な周波数変化量を得る方法も一般的である。
In recent years, for piezoelectric oscillators that add an oscillation circuit, a temperature compensation circuit, etc. to a piezoelectric vibrator such as a crystal vibrator, there is a strict demand for not only frequency stability but also miniaturization and price reduction, Furthermore, with the progress of digitalization of communication systems, it is desired to improve noise ratio characteristics (C / N characteristics) that have not been a problem in the past.
FIG. 5 is a diagram showing a circuit configuration of a conventional voltage-controlled piezoelectric oscillator. This voltage-controlled piezoelectric oscillator 100 includes a piezoelectric vibrator (quartz crystal vibrator) 51 including a piezoelectric element excited at a predetermined frequency, an oscillation amplifying unit 50 that causes current to flow through the piezoelectric element, and a voltage. Control-type variable capacitance elements D1 and D2, a feedback resistor Rf that feeds back a signal by connecting the output terminal and the input terminal of the oscillation amplification unit 50, and an external control voltage 54 that is applied to the variable capacitance elements D1 and D2. Resistor elements 52 and 53, capacitors CB1 and CB2 that function as capacitive elements of the oscillation circuit, and an output buffer unit 55 that outputs an oscillation signal to the outside are configured.
In this voltage controlled piezoelectric oscillator 100, MOS type variable capacitance elements D1 and D2 are arranged, and by applying a control voltage 54 to the variable capacitance elements D1 and D2 from the outside, the capacitance on the circuit side is changed to generate an oscillation frequency. Is changing. Further, a method of obtaining a necessary frequency change amount by controlling the gain of the voltage applied to the variable capacitance elements D1 and D2 is also common.

例えば、特開2002−43846公報には、調整のための検査を高精度且つ高速に行うことができる電圧制御型温度補償発振器について開示されている。それによると、温度の3次関数で表される制御電圧を発生する制御電圧発生部、時定数切換可能なRCフィルタ、水晶発振器により構成され、第1の制御入力端子に高レベル電圧を印加すると、PチャネルMOS、NチャネルMOS、他のNチャネルMOSが導通するため、RCフィルタの時定数が小となるとともに、出力バッファの自励発振を含めて水晶発振器は発振停止の状態となる。そして第1の制御入力端子を低レベルの状態にし、第2制御入力端子に高レベル電圧を印加すると、PチャネルMOS、NチャネルMOSが導通し、他のNチャネルMOSが非導通となる。このとき、RCフィルタの時定数が小となり、出力端子からは、発振出力が得られる状態となることが開示されている。
また雑音比特性(C/N特性)を改善した従来例として、特開平11−251836号公報には、制御電圧発生回路から水晶発振回路へ伝達される雑音成分を除去して、位相雑音の少ない温度補償型発振器について開示されている。それによると、温度検出回路と、制御電圧発生回路と、周波数調整回路と、発振回路を備え、温度補償型発振器においては制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分が発振回路の発振出力の位相雑音を増加させるので、制御電圧発生回路と周波数調整回路の間にローパスフィルタを入れて、制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分を除去するとしている。
特開2002−43846公報 特開平11−251836号公報
For example, Japanese Patent Laid-Open No. 2002-43846 discloses a voltage-controlled temperature compensated oscillator that can perform inspection for adjustment with high accuracy and high speed. According to this, it is composed of a control voltage generator that generates a control voltage represented by a cubic function of temperature, an RC filter that can switch the time constant, and a crystal oscillator. When a high level voltage is applied to the first control input terminal, Since the P-channel MOS, the N-channel MOS, and the other N-channel MOS are turned on, the time constant of the RC filter is reduced, and the crystal oscillator including the self-oscillation of the output buffer is stopped. When the first control input terminal is set to a low level and a high level voltage is applied to the second control input terminal, the P-channel MOS and N-channel MOS are turned on, and the other N-channel MOSs are turned off. At this time, it is disclosed that the time constant of the RC filter becomes small and an oscillation output can be obtained from the output terminal.
In addition, as a conventional example in which the noise ratio characteristic (C / N characteristic) is improved, Japanese Patent Laid-Open No. 11-251836 discloses that the noise component transmitted from the control voltage generation circuit to the crystal oscillation circuit is removed, and the phase noise is small. A temperature compensated oscillator is disclosed. According to this, a temperature detection circuit, a control voltage generation circuit, a frequency adjustment circuit, and an oscillation circuit are provided. In a temperature compensated oscillator, a noise component transmitted from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit Increases the phase noise of the oscillation output of the oscillation circuit. Insert a low-pass filter between the control voltage generation circuit and the frequency adjustment circuit to transmit the noise component from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit. Is going to be removed.
JP 2002-43846 A Japanese Patent Application Laid-Open No. 11-251836

しかし、実際のMOS型可変容量素子のC−V特性57は、図6に示すように容量が直線的に変化するゲート電圧領域56は非常に狭く、周波数を直線的に変化させるための制御電圧が狭い範囲に限定されてしまうといった問題がある。また、制御電圧の範囲を狭くしてしまうと、制御電圧に対する周波数電圧感度が高くなってしまうため、発振周波数を制御する電圧に依存するノイズ信号成分によって発生するFM変調ノイズ成分を抑えることが困難になり、その結果、発振器の位相ノイズ特性を劣化してしまうという問題がある。
また特許文献1は、制御電圧発生部からの電圧をRCフィルタを介して供給する場合、RCフィルタの時定数を切替え可能として、検査モードにより時定数を切替えることにより、調整のための検査時間を短縮する発明であり、本願発明における制御電圧のゲインを直線的にコントロールする発明とは根本的に異なるものである。
また特許文献2は、温度補償制御電圧を発振回路のバラクタに印加して、温度補償する方式において、制御電圧から発生するノイズをローパスフィルタにより除去して絶対ノイズを低減することで位相雑音の改善をおこなうものであるが、ローパスフィルタのノイズを低減する能力には限界がある。
本発明は、かかる課題に鑑み、MOS容量型の可変容量素子を用いた電圧制御型発振器において、外部からの制御電圧の変化に対する発振周波数の変化量を大きくすると共に、その直線性を改善した圧電発振器を提供することを目的とする。
However, the CV characteristic 57 of the actual MOS variable capacitance element has a very narrow gate voltage region 56 where the capacitance changes linearly as shown in FIG. 6, and the control voltage for changing the frequency linearly. There is a problem that is limited to a narrow range. In addition, if the range of the control voltage is narrowed, the frequency voltage sensitivity to the control voltage is increased, so that it is difficult to suppress the FM modulation noise component generated by the noise signal component depending on the voltage for controlling the oscillation frequency. As a result, there is a problem that the phase noise characteristic of the oscillator is deteriorated.
Further, in Patent Document 1, when the voltage from the control voltage generator is supplied via the RC filter, the time constant of the RC filter can be switched, and the time constant is switched by the inspection mode, thereby adjusting the inspection time for adjustment. This is a shortened invention, which is fundamentally different from the invention for linearly controlling the gain of the control voltage in the present invention.
Further, in Patent Document 2, in a method of applying temperature compensation control voltage to a varactor of an oscillation circuit and performing temperature compensation, noise generated from the control voltage is removed by a low pass filter to reduce absolute noise, thereby improving phase noise. However, there is a limit to the ability of the low-pass filter to reduce noise.
In view of such a problem, the present invention provides a voltage controlled oscillator using a MOS capacitive variable capacitance element, in which the amount of change in oscillation frequency with respect to a change in external control voltage is increased and the linearity is improved. An object is to provide an oscillator.

本発明はかかる課題を解決するために、請求項1は、所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して励振させる発振用増幅器と、第1及び第2の電圧制御型の可変容量素子とを備えた圧電発振器であって、容量が直線的に変化する時の前記第1及び第2の可変容量素子のゲートとバックゲート間電圧をVGBとし、周波数を変化させるための外部制御電圧を変化させた時に、前記第1及び第2の可変容量素子に印加する電圧が前記VGBの範囲内になるように構成したことを特徴とする。
可変容量素子のゲート電圧Vに対する容量Cの変化を示すC−V特性は、一般的にS字カーブを示す。即ち、ゲート電圧Vに対して容量Cが低い値で一定となり、急激に直線的に変化して再び高い値で一定となる特性を示す。しかも直線的に変化する領域は非常に狭く、この狭い直線領域でゲート電圧を印加しなければリニアな特性を得ることができない。そこで本発明では、第1及び第2の可変容量素子に印加する電圧を容量Cが直線的に変化する範囲内になるように構成するものである。
尚、本明細書において、圧電素子とは、圧電基板の主面に励振電極、リード端子を形成した素子を指称し、圧電振動子とは、この圧電素子自体、或いは圧電素子を気密封止した電子部品を指称する。
請求項2は、前記第1の可変容量素子のゲート端子を前記発振用増幅器の入力側に接続し、前記第2の可変容量素子のゲート端子を前記発振用増幅器の出力側に接続し、更に前記第1の可変容量素子および第2の可変容量素子のバックゲート端子を共通の容量素子を介して接地することにより発振回路を構成し、前記第1の可変容量素子および第2の可変容量素子のゲート側には、前記外部制御電圧に対して負極性を有する電圧を抵抗素子を介して印加すると共に、前記負極性を有する電圧を抵抗分圧して前記第1の可変容量素子および第2の可変容量素子のバックゲート端子に印加することを特徴とする。
本発明の回路構成は、2つの可変容量素子を備え、第1の可変容量素子のゲート端子側は発振用増幅器の入力側に接続し、第2の可変容量素子のゲート端子側は発振用増幅器の出力側に接続する。また、2つの可変容量素子のバックゲート端子はコンデンサの一端に接続し、コンデンサの他の一端は接地することにより発振回路を構成する。更に、外部制御電圧に対して負極性を有する電圧を高抵抗を介して印加すると共に、その電圧を抵抗分圧して2つの可変容量素子のバックゲートに接続する。従って、外部制御電圧が2つの可変容量素子のゲートに印加され、バックゲートには分圧電圧が印加されるので、夫々の可変容量素子の両端には外部制御電圧と分圧電圧の差電圧が印加されることになる。
In order to solve the above problems, the present invention provides a piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency, an oscillation amplifier for exciting the piezoelectric element by flowing current, And a second voltage-controlled variable capacitance element, wherein the voltage between the gate and the back gate of the first and second variable capacitance elements when the capacitance changes linearly is VGB. When the external control voltage for changing the frequency is changed, the voltage applied to the first and second variable capacitance elements is set within the range of the VGB.
A CV characteristic indicating a change in the capacitance C with respect to the gate voltage V of the variable capacitance element generally shows an S-curve. In other words, the capacitance C is constant at a low value with respect to the gate voltage V, changes rapidly and linearly, and becomes constant at a high value again. Moreover, the linearly changing region is very narrow, and a linear characteristic cannot be obtained unless a gate voltage is applied in this narrow linear region. Therefore, in the present invention, the voltage applied to the first and second variable capacitance elements is configured to be within a range in which the capacitance C changes linearly.
In this specification, the term “piezoelectric element” refers to an element in which excitation electrodes and lead terminals are formed on the main surface of the piezoelectric substrate, and the term “piezoelectric vibrator” refers to the piezoelectric element itself or the piezoelectric element hermetically sealed. An electronic component is designated.
According to a second aspect of the present invention, the gate terminal of the first variable capacitance element is connected to the input side of the oscillation amplifier, the gate terminal of the second variable capacitance element is connected to the output side of the oscillation amplifier, An oscillation circuit is configured by grounding back gate terminals of the first variable capacitance element and the second variable capacitance element via a common capacitance element, and the first variable capacitance element and the second variable capacitance element A voltage having a negative polarity with respect to the external control voltage is applied to the gate side of the first control capacitor element and the second variable voltage element by dividing the voltage having the negative polarity by resistance. It is applied to the back gate terminal of the variable capacitance element.
The circuit configuration of the present invention includes two variable capacitance elements, the gate terminal side of the first variable capacitance element is connected to the input side of the oscillation amplifier, and the gate terminal side of the second variable capacitance element is the oscillation amplifier. Connect to the output side of. The back gate terminals of the two variable capacitance elements are connected to one end of a capacitor, and the other end of the capacitor is grounded to constitute an oscillation circuit. Furthermore, a voltage having a negative polarity with respect to the external control voltage is applied via a high resistance, and the voltage is divided by resistance to be connected to the back gates of the two variable capacitance elements. Therefore, since the external control voltage is applied to the gates of the two variable capacitance elements and the divided voltage is applied to the back gate, a difference voltage between the external control voltage and the divided voltage is applied to both ends of each variable capacitance element. Will be applied.

請求項3は、前記抵抗分圧する抵抗素子は、前記負極性を有する電圧側に接続する抵抗素子RCと接地側に接続する抵抗素子RDとを直列接続することにより構成され、前記外部制御電圧をVCとし、前記第1の可変容量素子および第2の可変容量素子の容量が直線的に変化する時のゲートとバックゲート間の電圧VGBがVGB1からVGB2の範囲である場合、前記第1の可変容量素子および第2の可変容量素子のゲート側に印加する負極性を有する電圧VAFCに対して、前記電圧VGBが前記VGB1からVGB2の範囲内で、且つ前記VCが最小値のときVGB2となり、前記VCが最大値のときVGB1となるように、前記抵抗素子RCおよびRDの定数を設定することを特徴とする。
本発明では外部制御電圧が2つの可変容量素子のゲートに印加され、バックゲートには分圧電圧が印加されるので、夫々の可変容量素子の両端には外部制御電圧と分圧電圧の差電圧が印加されることになる。即ち、外部制御電圧が最小値のときは夫々の可変容量素子の両端には最も大きな電位差が発生し、外部制御電圧が最大値のときは夫々の可変容量素子の両端には最も小さな電位差が発生する。そして、これらの電位差がそれぞれVGB2とVGB1になるように抵抗素子RCとRDの定数を決定すれば、分圧電圧の勾配が定められて外部制御電圧の変化に対してリニアにVGBを印加することができる。
請求項4は、前記可変容量素子として、バラクタ、可変容量ダイオード若しくは、印加電圧により容量が可変する半導体デバイスを用いたことを特徴とする。
容量が外部の印加電圧により変化すれば可変容量素子として、可変容量ダイオード、接合型FETのゲート・ソース又はゲート・ドレイン容量、MOS型FETのゲート・ソース又はゲート・ドレイン容量、バイポーラトランジスタのベース・エミッタ容量、又はベース・コレクタ容量を用いても本発明の発振器を構成することができる。
According to a third aspect of the present invention, the resistance element that divides the resistance is configured by connecting in series a resistance element RC that is connected to the negative voltage side and a resistance element RD that is connected to the ground side. If the voltage VGB between the gate and the back gate when the capacitances of the first variable capacitance element and the second variable capacitance element change linearly is in the range of VGB1 to VGB2, the first variable capacitance element is VC. With respect to the voltage VAFC having a negative polarity applied to the gate side of the capacitive element and the second variable capacitive element, when the voltage VGB is in the range of VGB1 to VGB2 and the VC is the minimum value, VGB2 is obtained. The constants of the resistance elements RC and RD are set so that VGB1 is obtained when VC is the maximum value.
In the present invention, the external control voltage is applied to the gates of the two variable capacitance elements, and the divided voltage is applied to the back gate. Therefore, the difference voltage between the external control voltage and the divided voltage is applied to both ends of each variable capacitance element. Will be applied. That is, when the external control voltage is the minimum value, the largest potential difference is generated at both ends of each variable capacitance element, and when the external control voltage is the maximum value, the smallest potential difference is generated at both ends of each variable capacitance element. To do. If the constants of the resistance elements RC and RD are determined so that these potential differences are VGB2 and VGB1, respectively, the gradient of the divided voltage is determined, and VGB is applied linearly with respect to the change in the external control voltage. Can do.
According to a fourth aspect of the present invention, a varactor, a variable capacitance diode, or a semiconductor device whose capacitance is variable by an applied voltage is used as the variable capacitance element.
If the capacitance is changed by an external applied voltage, a variable capacitance diode, a junction FET gate-source or gate-drain capacitance, a MOS FET gate-source or gate-drain capacitance, a bipolar transistor base- The oscillator of the present invention can also be configured using an emitter capacitor or a base-collector capacitor.

請求項1の発明によれば、可変容量素子の容量が直線的に変化する時の2つの可変容量素子のゲートとバックゲート間電圧をVGBとしたとき、周波数を変化させるための外部制御電圧を変化させた時に、2つの可変容量素子に印加する電圧が直線領域であるVGBの範囲内になるように構成することにより、簡単な回路構成で外部制御電圧を広い範囲に亘ってリニアに周波数を変化させることができる。
また請求項2では、夫々の可変容量素子の両端には外部制御電圧と分圧電圧の差電圧が印加されるように回路が構成されるので、分圧抵抗の定数を決定すれば一義的に制御電圧に対してリニアに分圧電圧を変化させることができる。
また請求項3では、外部制御電圧と分圧電圧の電位差がそれぞれVGB2とVGB1になるように抵抗素子RCとRDの定数を決定するので、分圧電圧の勾配が決定されて外部制御電圧の変化に対してリニアにVGBを印加することができる。
また請求項4では、可変容量素子として可変容量ダイオードや印加電圧により容量が可変する半導体デバイスを用いることもできるので、回路構成に幅が拡がり、それに伴って回路特性のバリエーションが広くなる。
According to the first aspect of the present invention, when the voltage between the gate and the back gate of the two variable capacitance elements when the capacitance of the variable capacitance element changes linearly is VGB, the external control voltage for changing the frequency is By changing the voltage applied to the two variable capacitance elements within the range of VGB, which is a linear region, the frequency of the external control voltage can be linearly increased over a wide range with a simple circuit configuration. Can be changed.
In the second aspect of the present invention, the circuit is configured so that the differential voltage between the external control voltage and the divided voltage is applied to both ends of each variable capacitance element. The divided voltage can be changed linearly with respect to the control voltage.
Further, in claim 3, the constants of the resistance elements RC and RD are determined so that the potential difference between the external control voltage and the divided voltage becomes VGB2 and VGB1, respectively, so that the gradient of the divided voltage is determined and the change of the external control voltage In contrast, VGB can be applied linearly.
According to the fourth aspect of the present invention, a variable capacitance diode or a semiconductor device whose capacitance can be changed by an applied voltage can be used as the variable capacitance element. Therefore, the circuit configuration is widened, and accordingly, variations in circuit characteristics are widened.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の電圧制御型圧電発振器の回路構成を示す図である。図5と同じ構成要素には同じ参照番号を付して説明する。
この電圧制御型圧電発振器20は、所定の周波数で励振される圧電素子を備えた圧電振動子(水晶振動子)51と、この圧電素子に電流を流して励振させる発振用増幅部50と、電圧制御型の可変容量素子D1、D2と、発振用増幅部50の出力端子と入力端子を接続して信号をフィードバックするフィードバック抵抗Rfと、外部制御電圧(VC)54をゲインコントロールするゲインコントロール部58と、ゲインコントロール部58の出力電圧VAFC59を可変容量素子D1、D2に印加する高抵抗素子RA、RBと、発振回路の容量素子として働くコンデンサCB1、CB2、CB3と、出力電圧VAFC59を分圧する抵抗素子RC、RDと、発振信号を外部に出力する出力バッファ部55とを備えて構成される。
この電圧制御型圧電発振器20は、MOS型の可変容量素子D1、D2を配置し、可変容量素子D1のゲート端子側D1gはコンデンサCB1を介して発振用増幅部50の入力側50aに接続され、また、可変容量素子D2のゲート端子側D2gはコンデンサCB2を介して発振用増幅部50の出力側50bに接続される。更に、可変容量素子D1のバックゲート端子側D1bgと可変容量素子D2のバックゲート端子側D2bgは接続されてコンデンサCB3を介して接地される。また、ゲインコントロール部58の出力電圧VAFC59は、高抵抗素子RAを介して可変容量素子D1のゲート端子側D1gに接続されると共に、高抵抗素子RBを介して可変容量素子D2のゲート端子側D2gに接続される。更に、分圧抵抗素子RCとRDを直列接続した回路を接地し、その一端をゲインコントロール部58の出力電圧VAFC59に接続し、中点Aと可変容量素子D1のバックゲート端子側D1bgと可変容量素子D2のバックゲート端子側D2bgの接続点とを接続する。
このように可変容量素子D1、D2の容量が直線的に変化する時の2つの可変容量素子のゲートとバックゲート間電圧をVGBとしたとき、周波数を変化させるための外部制御電圧54を変化させた時に、2つの可変容量素子に印加する電圧が直線領域であるVGB56の範囲内になるように構成することにより、簡単な回路構成で外部制御電圧を広い範囲に亘ってリニアに周波数を変化させることができる。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a diagram showing a circuit configuration of a voltage controlled piezoelectric oscillator according to the present invention. The same components as those in FIG. 5 are described with the same reference numerals.
The voltage-controlled piezoelectric oscillator 20 includes a piezoelectric vibrator (quartz crystal vibrator) 51 including a piezoelectric element excited at a predetermined frequency, an oscillation amplification unit 50 that causes current to flow through the piezoelectric element, and a voltage. Control-type variable capacitance elements D 1 and D 2, a feedback resistor Rf that feeds back a signal by connecting the output terminal and the input terminal of the oscillation amplification section 50, and a gain control section 58 that controls the gain of the external control voltage (VC) 54. And high resistance elements RA and RB that apply the output voltage VAFC59 of the gain control unit 58 to the variable capacitance elements D1 and D2, capacitors CB1, CB2, and CB3 that function as the capacitance elements of the oscillation circuit, and a resistance that divides the output voltage VAFC59. Elements RC and RD and an output buffer unit 55 that outputs an oscillation signal to the outside are configured.
The voltage controlled piezoelectric oscillator 20 includes MOS type variable capacitance elements D1 and D2, and the gate terminal side D1g of the variable capacitance element D1 is connected to the input side 50a of the oscillation amplification unit 50 via the capacitor CB1. The gate terminal side D2g of the variable capacitance element D2 is connected to the output side 50b of the oscillation amplification unit 50 through the capacitor CB2. Further, the back gate terminal side D1bg of the variable capacitance element D1 and the back gate terminal side D2bg of the variable capacitance element D2 are connected and grounded via the capacitor CB3. The output voltage VAFC 59 of the gain control unit 58 is connected to the gate terminal side D1g of the variable capacitance element D1 through the high resistance element RA, and is also connected to the gate terminal side D2g of the variable capacitance element D2 through the high resistance element RB. Connected to. Further, a circuit in which the voltage dividing resistor elements RC and RD are connected in series is grounded, and one end thereof is connected to the output voltage VAFC 59 of the gain control unit 58, and the midpoint A, the back gate terminal side D1bg of the variable capacitance element D1, and the variable capacitance The connection point of the back gate terminal side D2bg of the element D2 is connected.
Thus, when the voltage between the gate and back gate of the two variable capacitance elements when the capacitance of the variable capacitance elements D1 and D2 changes linearly is VGB, the external control voltage 54 for changing the frequency is changed. In this case, the voltage applied to the two variable capacitance elements is configured to be within the range of the VGB 56 which is a linear region, so that the frequency of the external control voltage is linearly changed over a wide range with a simple circuit configuration. be able to.

図2は、可変容量素子であるMOS型の可変容量素子に於ける、端子間の印加電圧値と可変容量の関係を表す図である。縦軸に可変容量値(C)、横軸に印加電圧値(V)を表す。この図はMOS型の可変容量素子の基本的な特性を表しており、印加電圧値(V)を直線的に変化させると、可変容量値(C)は図のように非線形に変化する(特性57)。つまり、MOS型の可変容量素子への印加電圧値(V)が、マイナス電位となると可変容量値(C)が減少して所定の電位から略一定の容量となり、電圧変化に対して容量変化がほとんど無くなる。また、印加電圧値(V)がプラス電位となると、可変容量値(C)が増加して所定の電位から略一定の容量となり、電圧変化に対して容量変化がほとんど無くなる。ここで容量が直線的に変化するときの可変容量素子D1、D2のゲートとバックゲート間の電圧VGBを、図2のVGB1〜VGB2の領域56としたとき、外部制御電圧(VC)54を変化させたときに可変容量素子D1、D2に印加される電圧が領域56の範囲内にあれば可変容量値(C)が直線的に大きく変化するため、周波数変化を直線的に大きくすることができる。   FIG. 2 is a diagram illustrating a relationship between a voltage value applied between terminals and a variable capacitance in a MOS variable capacitance element which is a variable capacitance element. The vertical axis represents the variable capacitance value (C), and the horizontal axis represents the applied voltage value (V). This figure shows the basic characteristics of a MOS type variable capacitance element. When the applied voltage value (V) is changed linearly, the variable capacitance value (C) changes nonlinearly as shown in the figure (characteristics). 57). In other words, when the applied voltage value (V) to the MOS type variable capacitance element becomes a negative potential, the variable capacitance value (C) decreases and becomes a substantially constant capacitance from a predetermined potential. Almost disappear. Further, when the applied voltage value (V) becomes a positive potential, the variable capacitance value (C) increases to become a substantially constant capacitance from a predetermined potential, and there is almost no capacitance change with respect to the voltage change. Here, when the voltage VGB between the gates and back gates of the variable capacitance elements D1 and D2 when the capacitance changes linearly is the region 56 of VGB1 to VGB2 in FIG. 2, the external control voltage (VC) 54 changes. When the voltage applied to the variable capacitance elements D1 and D2 is within the range of the region 56, the variable capacitance value (C) greatly changes linearly, so that the frequency change can be increased linearly. .

図3は外部制御電圧(VC)と可変容量素子D1、D2に印加される電圧との関係を表す図である。縦軸は可変容量素子D1、D2に印加される電圧を表し、横軸は外部制御電圧(VC)を表す。図1のように、可変容量素子D1、D2のゲート端子D1g、D2gには、外部制御電圧(VC)をゲインコントロール部58によりゲインコントロールして外部制御電圧(VC)に対して負極性を有する電圧VAFCを高抵抗RA、RBを介して印加すると共に、抵抗素子RC、RDで電圧VAFCを抵抗分圧した電圧を互いの可変容量素子D1、D2のバックゲート端子D1bg、D2bgに印加する。このとき、可変容量素子D1、D2のゲート端子D1g、D2gに印加する電圧VAFCに対して、ゲートとゲートバック間の電圧VGBがVGB1〜VGB2の範囲内に収まり、且つVCがMinのときVGB2になり、VCがMaxのときVGB1となるように抵抗素子RC、RDの定数を設定し、抵抗分圧比を最適化しておく。
即ち、電圧VAFCが直線71、抵抗分圧した電圧(A点の電圧)が直線70の場合、外部制御電圧(VC)Minとそれぞれの直線との交点R、Pとし、同じく外部制御電圧(VC)Maxとそれぞれの直線との交点S、Qとすると、外部制御電圧(VC)Minのときに交点P、R間の電圧差がVGB2となるようにP点を設定し、同じく外部制御電圧(VC)Maxのときに交点S、Q間の電圧差がVGB1となるようにQ点を設定すれば、点Pと点Qを結んだ直線70の勾配が決定して分圧抵抗RC、RDが一義的に決定される。
FIG. 3 is a diagram showing the relationship between the external control voltage (VC) and the voltage applied to the variable capacitance elements D1 and D2. The vertical axis represents the voltage applied to the variable capacitance elements D1 and D2, and the horizontal axis represents the external control voltage (VC). As shown in FIG. 1, the gate terminals D1g and D2g of the variable capacitance elements D1 and D2 have a negative polarity with respect to the external control voltage (VC) by gain control of the external control voltage (VC) by the gain control unit 58. The voltage VAFC is applied via the high resistances RA and RB, and the voltage obtained by dividing the voltage VAFC by the resistance elements RC and RD is applied to the back gate terminals D1bg and D2bg of the variable capacitance elements D1 and D2. At this time, the voltage VGB between the gate and the gate back falls within the range of VGB1 to VGB2 with respect to the voltage VAFC applied to the gate terminals D1g and D2g of the variable capacitance elements D1 and D2, and the voltage VGB2 is VGB2 when VC is Min. Thus, the constants of the resistance elements RC and RD are set so as to be VGB1 when VC is Max, and the resistance voltage dividing ratio is optimized.
That is, when the voltage VAFC is the straight line 71 and the resistance-divided voltage (the voltage at the point A) is the straight line 70, the external control voltage (VC) Min and the intersections R and P of the respective straight lines are the same. ) If intersections S and Q between Max and the respective straight lines are set, point P is set so that the voltage difference between intersections P and R becomes VGB2 at the external control voltage (VC) Min. VC) If the Q point is set so that the voltage difference between the intersections S and Q becomes VGB1 at Max, the gradient of the straight line 70 connecting the point P and the point Q is determined, and the voltage dividing resistors RC and RD are It is determined uniquely.

夫々の可変容量素子の両端には外部制御電圧54と分圧電圧(A点の電圧)の差電圧が印加されるように回路が構成されるので、分圧抵抗の定数を決定すれば一義的に制御電圧71に対してリニアに分圧電圧70を変化させることができる。更に、電圧VAFC59に重畳したノイズは、分圧抵抗にて分圧され、可変容量素子D1、D2のそれぞれ両端子に印加されるが、可変容量素子の両端に印加されたノイズが同位相であるから、可変容量素子の端子間電圧はノイズの影響により大きく変動してしまうことがなく、この結果、発振器のノイズ特性は優れたものとなる。
図4は図3の関係になるように分圧抵抗RC、RDを設定した場合の周波数制御特性の図である。図4から明らかなように、良好な直線性を保ったまま周波数可変量を大きくとることが可能となる。即ち、理想的な特性(点線73)に対してVGB1とVGB2の範囲では略理想的な特性と一致している(実線72)。尚、一般的には電圧VAFCを分圧するための抵抗RC、RDの抵抗値の大きさはRC<RDという関係になり、本実施例では抵抗比率をRC:RD=1:2.8程度に設定した。
Since the circuit is configured such that the difference voltage between the external control voltage 54 and the divided voltage (point A voltage) is applied to both ends of each variable capacitance element, it is unambiguous if the constant of the voltage dividing resistor is determined. In addition, the divided voltage 70 can be changed linearly with respect to the control voltage 71. Further, the noise superimposed on the voltage VAFC 59 is divided by a voltage dividing resistor and applied to both terminals of the variable capacitance elements D1 and D2, but the noise applied to both ends of the variable capacitance element has the same phase. Therefore, the voltage between the terminals of the variable capacitance element does not fluctuate greatly due to the influence of noise, and as a result, the noise characteristics of the oscillator are excellent.
FIG. 4 is a diagram of frequency control characteristics when the voltage dividing resistors RC and RD are set so as to have the relationship of FIG. As is clear from FIG. 4, it is possible to increase the frequency variable amount while maintaining good linearity. That is, the ideal characteristic (dotted line 73) is substantially equal to the ideal characteristic in the range of VGB1 and VGB2 (solid line 72). In general, the resistance values of the resistors RC and RD for dividing the voltage VAFC have a relationship of RC <RD, and in this embodiment, the resistance ratio is about RC: RD = 1: 2.8. Set.

本発明の電圧制御型圧電発振器の回路構成を示す図。The figure which shows the circuit structure of the voltage control type piezoelectric oscillator of this invention. 可変容量素子であるMOS型の可変容量素子に於ける、端子間の印加電圧値と可変容量の関係を表す図。The figure showing the relationship between the applied voltage value between terminals and variable capacitance in the MOS type variable capacitance element which is a variable capacitance element. 外部制御電圧(VC)と可変容量素子D1、D2に印加される電圧との関係を表す図。The figure showing the relationship between an external control voltage (VC) and the voltage applied to the variable capacitance elements D1 and D2. 図3の関係になるように分圧抵抗RC、RDを設定した場合の周波数制御特性の図。The figure of the frequency control characteristic at the time of setting voltage dividing resistance RC and RD so that it may become the relationship of FIG. 従来の電圧制御型圧電発振器の回路構成を示す図。The figure which shows the circuit structure of the conventional voltage control type piezoelectric oscillator. 実際のMOS型可変容量素子のC−V特性を示す図。The figure which shows the CV characteristic of an actual MOS type variable capacitance element.

符号の説明Explanation of symbols

20 電圧制御型圧電発振器、50 発振用増幅部、51 圧電振動子(水晶振動子)、54 外部制御電圧(VC)、55 出力バッファ部、58 ゲインコントロール部、59 出力電圧VAFC、D1、D2 電圧制御型の可変容量素子、Rf フィードバック抵抗、RA、RB 高抵抗素子、CB1、CB2、CB3 コンデンサ、RC、RD 抵抗素子 20 Voltage Control Type Piezoelectric Oscillator, 50 Oscillation Amplifier, 51 Piezoelectric Vibrator (Quartz Crystal Vibrator), 54 External Control Voltage (VC), 55 Output Buffer Unit, 58 Gain Control Unit, 59 Output Voltage VAFC, D1, D2 Voltage Control type variable capacitance element, Rf feedback resistance, RA, RB high resistance element, CB1, CB2, CB3 capacitor, RC, RD resistance element

Claims (4)

所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して励振させる発振用増幅器と、第1及び第2の電圧制御型の可変容量素子と、を備えた圧電発振器であって、
容量が直線的に変化する時の前記第1及び第2の可変容量素子のゲートとバックゲート間電圧をVGBとし、周波数を変化させるための外部制御電圧を変化させた時に、前記第1及び第2の可変容量素子に印加する電圧が前記VGBの範囲内になるように構成したことを特徴とする圧電発振器。
A piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, an oscillation amplifier for exciting the piezoelectric element by flowing a current, and first and second voltage-controlled variable capacitance elements were provided. A piezoelectric oscillator,
The voltage between the gate and back gate of the first and second variable capacitance elements when the capacitance changes linearly is VGB, and when the external control voltage for changing the frequency is changed, the first and second variable capacitance elements are changed. 2. A piezoelectric oscillator characterized in that the voltage applied to the two variable capacitance elements is in the range of VGB.
前記第1の可変容量素子のゲート端子を前記発振用増幅器の入力側に接続し、前記第2の可変容量素子のゲート端子を前記発振用増幅器の出力側に接続し、更に前記第1の可変容量素子および第2の可変容量素子のバックゲート端子を共通の容量素子を介して接地することにより発振回路を構成し、
前記第1の可変容量素子および第2の可変容量素子のゲート側には、前記外部制御電圧に対して負極性を有する電圧を抵抗素子を介して印加すると共に、前記負極性を有する電圧を抵抗分圧して前記第1の可変容量素子および第2の可変容量素子のバックゲート端子に印加することを特徴とする請求項1に記載の圧電発振器。
The gate terminal of the first variable capacitance element is connected to the input side of the oscillation amplifier, the gate terminal of the second variable capacitance element is connected to the output side of the oscillation amplifier, and the first variable capacitance element is further connected. An oscillation circuit is configured by grounding the back gate terminals of the capacitive element and the second variable capacitive element through a common capacitive element,
A voltage having a negative polarity with respect to the external control voltage is applied to the gate sides of the first variable capacitance element and the second variable capacitance element via a resistance element, and the negative voltage is applied as a resistance. 2. The piezoelectric oscillator according to claim 1, wherein the piezoelectric oscillator is divided and applied to back gate terminals of the first variable capacitor and the second variable capacitor.
前記抵抗分圧する抵抗素子は、前記負極性を有する電圧側に接続する抵抗素子RCと接地側に接続する抵抗素子RDとを直列接続することにより構成され、前記外部制御電圧をVCとし、前記第1の可変容量素子および第2の可変容量素子の容量が直線的に変化する時のゲートとバックゲート間の電圧VGBがVGB1からVGB2の範囲である場合、
前記第1の可変容量素子および第2の可変容量素子のゲート側に印加する負極性を有する電圧VAFCに対して、前記電圧VGBが前記VGB1からVGB2の範囲内で、且つ前記VCが最小値のときVGB2となり、前記VCが最大値のときVGB1となるように、前記抵抗素子RCおよびRDの定数を設定することを特徴とする請求項1又は2に記載の圧電発振器。
The resistance element that divides the resistance is configured by connecting in series a resistance element RC connected to the negative voltage side and a resistance element RD connected to the ground side, and the external control voltage is VC, When the voltage VGB between the gate and the back gate when the capacitances of the first variable capacitor and the second variable capacitor linearly change is in the range of VGB1 to VGB2,
The voltage VGB is within the range of VGB1 to VGB2 and the VC is the minimum value with respect to the voltage VAFC having a negative polarity applied to the gate sides of the first variable capacitor and the second variable capacitor. 3. The piezoelectric oscillator according to claim 1, wherein constants of the resistance elements RC and RD are set so that VGB <b> 2 when Vc <b> 2 and VGB <b> 1 when VC is a maximum value.
前記可変容量素子として、バラクタ、可変容量ダイオード若しくは、印加電圧により容量が可変する半導体デバイスを用いたことを特徴とする請求項1乃至3の何れか一項に記載の圧電発振器。
4. The piezoelectric oscillator according to claim 1, wherein a varactor, a variable capacitance diode, or a semiconductor device whose capacitance is changed by an applied voltage is used as the variable capacitance element. 5.
JP2004205116A 2004-07-12 2004-07-12 Piezoelectric oscillator Pending JP2006033092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205116A JP2006033092A (en) 2004-07-12 2004-07-12 Piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205116A JP2006033092A (en) 2004-07-12 2004-07-12 Piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2006033092A true JP2006033092A (en) 2006-02-02

Family

ID=35898960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205116A Pending JP2006033092A (en) 2004-07-12 2004-07-12 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2006033092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187426A (en) * 2007-01-30 2008-08-14 Epson Toyocom Corp Voltage-controlled piezoelectric oscillator
JP2008211763A (en) * 2007-01-30 2008-09-11 Epson Toyocom Corp Piezoelectric oscillator
US7847640B2 (en) 2005-09-27 2010-12-07 Epson Toyocom Corporation Voltage controlled oscillator
CN104753465A (en) * 2013-12-25 2015-07-01 精工爱普生株式会社 Oscillation circuit, oscillator, electronic apparatus, and moving object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847640B2 (en) 2005-09-27 2010-12-07 Epson Toyocom Corporation Voltage controlled oscillator
JP2008187426A (en) * 2007-01-30 2008-08-14 Epson Toyocom Corp Voltage-controlled piezoelectric oscillator
JP2008211763A (en) * 2007-01-30 2008-09-11 Epson Toyocom Corp Piezoelectric oscillator
CN104753465A (en) * 2013-12-25 2015-07-01 精工爱普生株式会社 Oscillation circuit, oscillator, electronic apparatus, and moving object
JP2015126280A (en) * 2013-12-25 2015-07-06 セイコーエプソン株式会社 Oscillation circuit, oscillator, electronic apparatus and mobile

Similar Documents

Publication Publication Date Title
US8127603B2 (en) Physical quantity sensor
US7852164B2 (en) Piezoelectric oscillator
KR100817954B1 (en) Temperature compensation oscillator
JP2594585B2 (en) Operational amplifier circuit
JP4670406B2 (en) Temperature compensated piezoelectric oscillator
US7675377B2 (en) Voltage controlled oscillator
JPH03167915A (en) Signal processing unit
US7268636B2 (en) Voltage controlled oscillator
GB2362276A (en) A low power clock oscillator with regulated amplitude
US20070222532A1 (en) Temperature-compensated crystal oscillator
JP2006033092A (en) Piezoelectric oscillator
KR20060042200A (en) Regulator circuit
US20030132806A1 (en) Voltage controlled oscillator with reference current generator
JP3308393B2 (en) Voltage controlled oscillator
KR20000068068A (en) Oscillator frequency-drift compensation
US20090219103A1 (en) Oscillator Arrangement and Method for Operating an Oscillating Crystal
JP2008211763A (en) Piezoelectric oscillator
JP2002135051A (en) Piezoelectric oscillator
JP2002026658A (en) Quartz oscillator circuit
JP2009124530A (en) Piezoelectric oscillator
JP3325732B2 (en) Voltage controlled piezoelectric oscillator
JP2010041449A (en) Oscillation circuit
JP2513767B2 (en) Voltage controlled oscillator
JP4374892B2 (en) Variable capacitance circuit
JPH07297641A (en) Clock oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070611

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126