JP2006032801A - Semiconductor device manufacturing process - Google Patents

Semiconductor device manufacturing process Download PDF

Info

Publication number
JP2006032801A
JP2006032801A JP2004212172A JP2004212172A JP2006032801A JP 2006032801 A JP2006032801 A JP 2006032801A JP 2004212172 A JP2004212172 A JP 2004212172A JP 2004212172 A JP2004212172 A JP 2004212172A JP 2006032801 A JP2006032801 A JP 2006032801A
Authority
JP
Japan
Prior art keywords
film
etching
silicon nitride
nitride film
chf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004212172A
Other languages
Japanese (ja)
Inventor
Hideyuki Shoji
秀行 庄司
Mitsuyoshi Seki
三好 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004212172A priority Critical patent/JP2006032801A/en
Publication of JP2006032801A publication Critical patent/JP2006032801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new process with a mask selectivity that ensures a vertical shape and suppresses a dimensional difference in a condensation/rarefaction area during SiN film etching. <P>SOLUTION: This semiconductor manufacturing process forms in order a silicon oxide film and a silicon nitride film on a silicon substrate, and then forms an anti-reflection coating for pattern generation by lithography. Furthermore, it etches the above anti-reflection coating by CHF<SB>3</SB>, CF<SB>4</SB>and O<SB>2</SB>, the above silicon nitride film by CH<SB>3</SB>F, CF<SB>4</SB>and O<SB>2</SB>and inert gas, and the above silicon oxide film by CHF<SB>3</SB>, CF<SB>4</SB>, O<SB>2</SB>and Ar. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体装置の製造方法に係り、特に素子分離工程、ゲート電極形成工程のシリコン窒化膜マスクのパターン形成を改良した半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which pattern formation of a silicon nitride film mask is improved in an element isolation step and a gate electrode formation step.

従来、特にシリコン酸化膜(SiO膜)及びシリコン窒化膜(Si膜)を含む積層膜を、特許文献1に示すように、CF系ガス(C、C、Cのいずれか一つ)、CHF系ガス(CHF、CH、CHFのいずれか一つ)、O、不活性ガス(Ar)の混合ガスを用いてエッチングを行っている。 Conventionally, a laminated film including a silicon oxide film (SiO 2 film) and a silicon nitride film (Si 3 N 4 film), as shown in Patent Document 1, is generally a CF-based gas (C 4 F 8 , C 5 F 8 , Etching using a mixed gas of any one of C 4 F 6 ), CHF gas (any one of CH 3 F, CH 2 F 2 , CHF 3 ), O 2 , and inert gas (Ar). Is going.

ここで用いる混合ガスは、特許文献1に示す如く、ホール形成に適用しているが、ライン系例えばSTI(Shallow−Trench−Isolation)のSiエッチング、及びゲート電極エッチングのマスクに用いられるSiN膜のパターン形成に適用した場合、マスクであるフォトレジストへの選択性は優れているが垂直形状を得ることは困難であること、さらに疎密部の寸法差も大きくなる問題が発生する。   The mixed gas used here is applied to the hole formation as shown in Patent Document 1, but the SiN film used for the mask of the line system, for example, STI (Shallow-Trench-Isolation) Si etching and gate electrode etching. When applied to pattern formation, the selectivity to a photoresist serving as a mask is excellent, but it is difficult to obtain a vertical shape, and the dimensional difference between the sparse and dense portions also increases.

特開2003−86568号公報JP 2003-86568 A

上述したように、特許文献1の従来の方法では、マスクにおいて重要な、垂直性に欠け、更に疎密部の寸法差も大きくなるという問題があった。
本発明は上記従来の問題に対処し、SiN膜等のエッチングにおいてマスク選択性を有し、垂直形状を得ることが可能であり、かつ疎密部での寸法差を抑えた新規なプロセスを提供するものである。
As described above, the conventional method of Patent Document 1 has a problem in that it lacks verticality, which is important for a mask, and further increases the dimensional difference between the sparse and dense portions.
The present invention addresses the above-described conventional problems, and provides a novel process that has mask selectivity in etching of a SiN film and the like, can obtain a vertical shape, and suppresses a dimensional difference in a dense portion. Is.

本発明は、シリコン基板上にシリコン酸化膜、シリコン窒化膜を順に形成し、この後に反射防止膜を形成してリソグラフィ技術によりパターン形成を行い、しかる後、前記反射防止膜を、CHF、CF及びOにより、前記シリコン窒化膜をCHF、CF、O及び不活性ガスにより、前記シリコン酸化膜をCHF、CF、O及びArによりエッチングすることを特徴とする。
ここで、シリコン窒化膜のエッチングに用いる不活性ガスは、Ar、Ne、He、KrまたはXeから選ばれて少なくとも1つであることが望ましい。
また、反射防止膜をエッチングする時のガスの割合は、CHF:CF:O=1:20〜25:1〜1.5、圧力が12〜14.7Pa(90〜110mTorr)であることが望ましい。
さらに、シリコン窒化膜をエッチングする時のガスの割合は、CHF:CF:O:Ar=1:12〜13:1.6〜1.8:50〜55、圧力が16〜20Pa(120〜150mTorr)であることが望ましい。
さらにまた、シリコン酸化膜をエッチングする時のガスの割合は、CHF:CF:O:Ar=2:5:1:40、圧力が5.3〜8Pa(40〜60mTorr)であることが望ましい。
また、前記シリコン基板をエッチングする際、シリコン基板温度を80〜100℃とした方がよい。
In the present invention, a silicon oxide film and a silicon nitride film are sequentially formed on a silicon substrate, and thereafter an antireflection film is formed, and pattern formation is performed by a lithography technique. Thereafter, the antireflection film is formed using CHF 3 , CF the 4 and O 2, the silicon nitride film CH 3 F, the CF 4, O 2 and inert gas, characterized by etching by the silicon oxide film CHF 3, CF 4, O 2 and Ar.
Here, the inert gas used for etching the silicon nitride film is preferably at least one selected from Ar, Ne, He, Kr or Xe.
The ratio of the gas when etching the antireflection film is CHF 3 : CF 4 : O 2 = 1: 20 to 25: 1 to 1.5, and the pressure is 12 to 14.7 Pa (90 to 110 mTorr). It is desirable.
Furthermore, the ratio of the gas when etching the silicon nitride film is as follows: CH 3 F: CF 4 : O 2 : Ar = 1: 12 to 13: 1.6 to 1.8: 50 to 55, and the pressure is 16 to 20 Pa. (120 to 150 mTorr) is desirable.
Furthermore, the gas ratio when etching the silicon oxide film is CHF 3 : CF 4 : O 2 : Ar = 2: 5: 1: 40, and the pressure is 5.3 to 8 Pa (40 to 60 mTorr). Is desirable.
Further, when the silicon substrate is etched, the silicon substrate temperature is preferably set to 80 to 100 ° C.

また、本発明の方法は、シリコン基板上にシリコン酸化膜、ポリシリコン膜、シリコン窒化膜を順に形成し、この後反射防止膜を形成して、リソグラフィ技術によりパターン形成を行い、前記反射防止膜をCF、Oの混合ガスまたはN、O混合ガス、によりエッチングを行い、シリコン窒化膜をCHF、CF、O、不活性ガスによりエッチングすることを特徴とする。 In the method of the present invention, a silicon oxide film, a polysilicon film, and a silicon nitride film are sequentially formed on a silicon substrate, and then an antireflection film is formed, and pattern formation is performed by a lithography technique. Is etched with a mixed gas of CF 4 and O 2 or a mixed gas of N 2 and O 2 , and the silicon nitride film is etched with CH 3 F, CF 4 , O 2 , and an inert gas.

本発明の方法によれば、SiN膜のエッチングにおいてマスク選択性を有し、垂直形状を得ることが可能であり、かつ疎密部での寸法差を抑えることができる。   According to the method of the present invention, it is possible to obtain a vertical shape with mask selectivity in etching of a SiN film, and to suppress a dimensional difference in a sparse / dense portion.

本発明の実施形態につき、図1及び図2を用いて詳細に説明する。   An embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

(第1の実施形態)
図1は、本発明の第1の実施形態として、STI形成のSiエッチングのマスク形成に用いた時の半導体装置の製造方法を説明するための工程断面図である。
(First embodiment)
FIG. 1 is a process cross-sectional view for explaining a method of manufacturing a semiconductor device when used for forming a mask for STI-formed Si etching as a first embodiment of the present invention.

まず、図1(a)に示すようにシリコン基板101にシリコン酸化膜102、シリコン窒化膜103を順に成長し、反射防止膜104を塗布する。次にフォトレジスト105を塗布し公知のリソグラフィ技術にてパターン形成を行う。   First, as shown in FIG. 1A, a silicon oxide film 102 and a silicon nitride film 103 are sequentially grown on a silicon substrate 101, and an antireflection film 104 is applied. Next, a photoresist 105 is applied and a pattern is formed by a known lithography technique.

次に、図1(b)に示すように反射防止膜104をCHF、CF、Oにより、シリコン窒化膜103をCHF、CF、O、不活性ガスにより、シリコン酸化膜102をCHF、CF、O、Arによりエッチングを行う。
具体的な条件として、反射防止膜104のエッチングは、CHF:6(sccm)、CF:128(sccm)O:8(sccm)、圧力:13.3Pa(100mTorr)、RFパワー:1.1W/cmであり、また、シリコン窒化膜103のエッチング条件は、CHF:10(sccm)、CF:125(sccm)、O:17(sccm)、Ar:500(sccm)、圧力:20Pa(135mTorr)、RFパワー:0.85W/cmあって、また、シリコン酸化膜102のエッチング条件は、CHF:30(sccm)、CF:75(sccm)O:15(sccm)、Ar:600(sccm)、圧力:50mTorr、RFパワー:1.4W/cmである。この時の、エッチングの際のシリコン基板温度は80〜100℃が望ましい。
Next, as shown in FIG. 1B, the antireflection film 104 is made of CHF 3 , CF 4 , O 2 , and the silicon nitride film 103 is made of CH 3 F, CF 4 , O 2 , an inert gas, and a silicon oxide film. Etching 102 is performed with CHF 3 , CF 4 , O 2 , and Ar.
As specific conditions, the antireflection film 104 is etched by CHF 3 : 6 (sccm), CF 4 : 128 (sccm) O 2 : 8 (sccm), pressure: 13.3 Pa (100 mTorr), RF power: 1 a .1W / cm 2, also, the etching conditions of the silicon nitride film 103, CH 3 F: 10 (sccm ), CF 4: 125 (sccm), O 2: 17 (sccm), Ar: 500 (sccm) pressure: 20Pa (135mTorr), RF power: 0.85 W / cm 2 there are, also, the etching conditions of the silicon oxide film 102 is, CHF 3: 30 (sccm) , CF 4: 75 (sccm) O 2: 15 (Sccm), Ar: 600 (sccm), pressure: 50 mTorr, RF power: 1.4 W / cm 2 . At this time, the temperature of the silicon substrate during etching is desirably 80 to 100 ° C.

この実施形態で用いるエッチング装置としては、図3に示すように半導体基板が載置される電極に周波数13.56MHzのRF電源を有する平行平板型RIE(Reactive Ion Etching)装置が望ましい。   As an etching apparatus used in this embodiment, a parallel plate type RIE (Reactive Ion Etching) apparatus having an RF power supply with a frequency of 13.56 MHz on an electrode on which a semiconductor substrate is mounted is desirable as shown in FIG.

続いて図1(c)に示すように公知の技術によりアッシング、及び薬液処理を行ってフォトレジスト105、反射防止膜104を除去する。   Subsequently, as shown in FIG. 1C, ashing and chemical treatment are performed by a known technique to remove the photoresist 105 and the antireflection film 104.

最後に図1(d)に示すように公知のエッチング技術によりシリコン基板101のエッチングを行い、溝106を形成し、シリコン窒化膜103を除去後、絶縁膜を埋め込むことにより素子分離領域が完成する。なお、図1(d)ではシリコン窒化膜の除去及び絶縁膜の埋め込みは省略している。   Finally, as shown in FIG. 1D, the silicon substrate 101 is etched by a known etching technique to form a trench 106, remove the silicon nitride film 103, and embed an insulating film to complete an element isolation region. . In FIG. 1D, the removal of the silicon nitride film and the filling of the insulating film are omitted.

次に、CHF流量を変化させた時の密部(100nmL/S)、疎部(ISO Line、ISO Space)でのシフト量につき、図4(a)に示し、この図からCHF流量が増加するほどシフト量は+(プラス)に変動している。
この図4(a)から、疎密差を示したのが、図4(b)であり、この図からCHFの増加により、疎密差が大きくなっていることがわかる。
この結果、シフト量、疎密差を抑えるには、CHFの流量調節の必要性がわかる。
Next, dense portion when changing the CH 3 F flow rate (100 Nml / S), sparse unit (ISO Line, ISO Space) per shift amount in, shown in Figure 4 (a), CH 3 F from FIG. As the flow rate increases, the shift amount fluctuates to + (plus).
From FIG. 4 (a), FIG. 4 (b) shows the difference in density, and it can be seen that the density difference increases as CH 3 F increases.
As a result, in order to suppress the shift amount and the density difference, it is understood that it is necessary to adjust the flow rate of CH 3 F.

次に、Oの流量を変化させた時のシフト量、Oの流量を変化させた時のHM(SiN膜)のテーパー角及びOの流量を変化させた時のマスク残膜につき、図5(a)(b)(c)を示す。この図5から、O流量増加により 疎密差低減、垂直形状というメリットがあるが、シフト量増大、マスク残膜減少というデメリットがあり、Oの流量についても、特定の流量に設定する必要があることが判る(本結果ではO=17を選択)。 Next, the shift amount when changing the flow rate of O 2, per residual mask film when changing the flow rate of the taper angle and O 2 of HM when the flow rate is varied in O 2 (SiN film), 5A, 5B, and 5C are shown. From FIG. 5, there is a merit that the density difference is reduced and the vertical shape is increased by increasing the O 2 flow rate, but there is a demerit that the shift amount is increased and the mask residual film is decreased. The O 2 flow rate must be set to a specific flow rate. It can be seen that (in this result O 2 = 17 is selected).

上述したことから、特定の流量比を設定することにより、マスク残膜、シフト量、疎密差全てにおいて良好なエッチングが可能となる   As described above, by setting a specific flow rate ratio, it is possible to perform good etching in all of the remaining mask film, shift amount, and density difference.

以上説明したように、上述した第1の実施形態では、シリコン窒化膜をエッチングする際にCHF系ガスの中ではデポ性が強い CHFガスを用いOガス、不活性ガスの流量を調整することにより、フォトレジストに対し、選択性を保持しながら、疎密寸法差が小さくかつ垂直形状を得ることが可能となる。 As described above, in the first embodiment described above, when etching a silicon nitride film, CH 3 F gas, which has a strong depotency among CHF gases, is used to adjust the flow rates of O 2 gas and inert gas. By doing so, it becomes possible to obtain a vertical shape with a small sparse dimensional difference while maintaining selectivity with respect to the photoresist.

(第2の実施形態)
次に、半発明の第2の実施形態につき、図2を用いて説明する。
図2は、ゲート電極形成において、シリコン窒化膜ハードマスクを用いた時の半導体装置の製造方法を説明するための工程断面図である。
まず図2(a)に示すようにシリコン基板201にシリコン酸化膜202、ポリシリコン膜203、シリコン窒化膜204を順に成長し、反射防止膜205を塗布する。次にフォトレジスト206を塗布し公知のリソグラフィ技術にてパターン形成を行う。
(Second Embodiment)
Next, a second embodiment of the semi-invention will be described with reference to FIG.
FIG. 2 is a process cross-sectional view for explaining a method of manufacturing a semiconductor device when a silicon nitride hard mask is used in forming a gate electrode.
First, as shown in FIG. 2A, a silicon oxide film 202, a polysilicon film 203, and a silicon nitride film 204 are sequentially grown on a silicon substrate 201, and an antireflection film 205 is applied. Next, a photoresist 206 is applied and a pattern is formed by a known lithography technique.

次に図2(b)に示すようにフォトレジスト206、及び反射防止膜205をCF、Oの混合ガスまたはN、O混合ガスにより、シリコン窒化膜103をCHF、CF、O、不活性ガスによりエッチングを行う。
シリコン窒化膜エッチングの具体的な条件としては、CHF:10(sccm)、CF:125(sccm)O:17(sccm)、Ar:500(sccm)、圧力:20Pa(135mTorr)、RFパワー:0.85W/cmであって、エッチングの際のシリコン基板温度は、80〜100℃が望ましい。
また、エッチング装置としては、上記第1の実施形態と同様、図3に示すように半導体基板が載置される電極に周波数13.56MHzのRF電源を有する平行平板型RIE装置が望ましい。
Next, as shown in FIG. 2B, the photoresist 206 and the antireflection film 205 are made of a mixed gas of CF 4 and O 2 or a mixed gas of N 2 and O 2 , and the silicon nitride film 103 is made of CH 3 F and CF 4. Etching is performed with O 2 , inert gas.
Specific conditions for etching the silicon nitride film include: CH 3 F: 10 (sccm), CF 4 : 125 (sccm) O 2 : 17 (sccm), Ar: 500 (sccm), pressure: 20 Pa (135 mTorr), RF power: 0.85 W / cm 2 The silicon substrate temperature during etching is desirably 80 to 100 ° C.
As the etching apparatus, a parallel plate type RIE apparatus having an RF power source with a frequency of 13.56 MHz on the electrode on which the semiconductor substrate is mounted as shown in FIG. 3 is desirable as in the first embodiment.

続いて図2(c)に示すように公知の技術によりアッシング、及び薬液処理を行ってフォトレジスト206、反射防止膜205を除去する。   Subsequently, as shown in FIG. 2C, ashing and chemical treatment are performed by a known technique to remove the photoresist 206 and the antireflection film 205.

最後に、図2(d)に示すように、公知のエッチング技術によりポリシリコン膜203のエッチングを行い、シリコン窒化膜204、および露出したシリコン酸化膜203を公知の技術により除去し、ゲート電極207を形成する。   Finally, as shown in FIG. 2D, the polysilicon film 203 is etched by a known etching technique, the silicon nitride film 204 and the exposed silicon oxide film 203 are removed by a known technique, and the gate electrode 207 is removed. Form.

上述した第2の実施形態は、50nm以下の微細ゲート電極形成においてシリコン窒化膜マスクを適用する場合においても、シリコン窒化膜エッチング時にフォトレジストに対し選択性を保持することによりシリコン窒化膜マスクがダメージを受けることなく、かつ垂直形状を維持し、かつ疎密部で寸法差の無いマスク形成を行うことが可能である。   In the second embodiment described above, even when a silicon nitride mask is applied in forming a fine gate electrode of 50 nm or less, the silicon nitride mask is damaged by maintaining selectivity with respect to the photoresist during etching of the silicon nitride film. It is possible to form a mask without any difference in size, maintaining a vertical shape, and having no dimensional difference in a dense portion.

本発明の第1の実施形態を説明するための工程断面図。Process sectional drawing for demonstrating the 1st Embodiment of this invention. 本発明の第2の実施形態を説明するための工程断面図。Process sectional drawing for demonstrating the 2nd Embodiment of this invention. 本発明の第1の実施形態及び第2の実施形態で用いたエッチング装置の概略を示す図。The figure which shows the outline of the etching apparatus used in the 1st Embodiment and 2nd Embodiment of this invention. 本発明の第1の実施形態を説明するための図The figure for demonstrating the 1st Embodiment of this invention 本発明の第1の実施形態を説明するための図The figure for demonstrating the 1st Embodiment of this invention

符号の説明Explanation of symbols

101:シリコン基板
102:シリコン酸化膜
103:シリコン窒化膜
104:反射防止膜
105:フォトレジスト
106:溝
101: Silicon substrate 102: Silicon oxide film 103: Silicon nitride film 104: Antireflection film 105: Photo resist 106: Groove

Claims (7)

シリコン基板上にシリコン酸化膜、シリコン窒化膜を順に形成し、この後に反射防止膜を形成してリソグラフィ技術によりパターン形成を行い、しかる後、前記反射防止膜を、CHF、CF及びOにより、前記シリコン窒化膜をCHF、CF、O及び不活性ガスにより、前記シリコン酸化膜をCHF、CF、O及びArによりエッチングすることを特徴とする半導体装置の製造方法。 A silicon oxide film and a silicon nitride film are sequentially formed on the silicon substrate, and then an antireflection film is formed, and pattern formation is performed by a lithography technique. Thereafter, the antireflection film is formed as CHF 3 , CF 4, and O 2. The silicon nitride film is etched with CH 3 F, CF 4 , O 2 and an inert gas, and the silicon oxide film is etched with CHF 3 , CF 4 , O 2 and Ar. . 前記シリコン窒化膜のエッチングに用いる不活性ガスは、Ar、Ne、He、KrまたはXeから選ばれて少なくとも1つであることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the inert gas used for etching the silicon nitride film is at least one selected from Ar, Ne, He, Kr or Xe. 前記反射防止膜をエッチングする時のガスの割合は、CHF:CF:O=1:20〜25:1〜1.5、圧力が12〜14.7Pa(90〜110mTorr)であることを特徴とする請求項1記載の半導体装置の製造方法。 The gas ratio when etching the antireflection film is CHF 3 : CF 4 : O 2 = 1: 20 to 25: 1 to 1.5, and the pressure is 12 to 14.7 Pa (90 to 110 mTorr). The method of manufacturing a semiconductor device according to claim 1. 前記シリコン窒化膜をエッチングする時のガスの割合は、CHF:CF:O:Ar=1:12〜13:1.6〜1.8:50〜55、圧力が16〜20Pa(120〜150mTorr)であることを特徴とする請求項1記載の半導体装置の製造方法。 The ratio of gas when etching the silicon nitride film is as follows: CH 3 F: CF 4 : O 2 : Ar = 1: 12 to 13: 1.6 to 1.8: 50 to 55, and the pressure is 16 to 20 Pa ( 2. The method of manufacturing a semiconductor device according to claim 1, wherein the method is 120 to 150 mTorr). 前記シリコン酸化膜をエッチングする時のガスの割合は、CHF:CF:O:Ar=2:5:1:40、 圧力が5.3〜8Pa(40〜60mTorr)であることを特徴とする請求項1記載の半導体装置の製造方法。 The gas ratio for etching the silicon oxide film is CHF 3 : CF 4 : O 2 : Ar = 2: 5: 1: 40, and the pressure is 5.3 to 8 Pa (40 to 60 mTorr). A method for manufacturing a semiconductor device according to claim 1. 前記シリコン基板をエッチングする際、シリコン基板温度が80〜100℃であることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein when the silicon substrate is etched, the temperature of the silicon substrate is 80 to 100 [deg.] C. シリコン基板上にシリコン酸化膜、ポリシリコン膜、シリコン窒化膜を順に形成し、この後反射防止膜を形成して、リソグラフィ技術によりパターン形成を行い、前記反射防止膜をCF、Oの混合ガスまたはN、O混合ガス、によりエッチングを行い、シリコン窒化膜をCHF、CF、O、不活性ガスによりエッチングすることを特徴とする半導体装置の製造方法

A silicon oxide film, a polysilicon film, and a silicon nitride film are sequentially formed on a silicon substrate, and then an antireflection film is formed, and pattern formation is performed by a lithography technique, and the antireflection film is mixed with CF 4 and O 2 . Etching with a gas or a mixed gas of N 2 and O 2 , and etching the silicon nitride film with CH 3 F, CF 4 , O 2 , and an inert gas, a method for manufacturing a semiconductor device

JP2004212172A 2004-07-20 2004-07-20 Semiconductor device manufacturing process Pending JP2006032801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212172A JP2006032801A (en) 2004-07-20 2004-07-20 Semiconductor device manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212172A JP2006032801A (en) 2004-07-20 2004-07-20 Semiconductor device manufacturing process

Publications (1)

Publication Number Publication Date
JP2006032801A true JP2006032801A (en) 2006-02-02

Family

ID=35898754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212172A Pending JP2006032801A (en) 2004-07-20 2004-07-20 Semiconductor device manufacturing process

Country Status (1)

Country Link
JP (1) JP2006032801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266291A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Method for manufacturing semiconductor device, plasma treatment device and storage medium
JP2008270522A (en) * 2007-04-20 2008-11-06 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
US8263498B2 (en) 2006-03-28 2012-09-11 Tokyo Electron Limited Semiconductor device fabricating method, plasma processing system and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160077A (en) * 1991-12-05 1993-06-25 Sharp Corp Plasma etching method
JPH118223A (en) * 1997-03-31 1999-01-12 Applied Materials Inc Selective plasma etching of silicon nitride coexisting with silicon or silicon oxide using methyl fluoride or ethyl difluoride and mixture of tetrafluoro-carbon and oxygen
JPH11102896A (en) * 1997-08-15 1999-04-13 Internatl Business Mach Corp <Ibm> Anisotropic selective nitride etching for featuring high aspect ratio in high-density plasma
JP2000173996A (en) * 1998-12-03 2000-06-23 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2003077900A (en) * 2001-09-06 2003-03-14 Hitachi Ltd Method of manufacturing semiconductor device
JP2003229418A (en) * 2001-11-30 2003-08-15 Tokyo Electron Ltd Method of etching
JP2003297813A (en) * 2001-11-30 2003-10-17 Hynix Semiconductor Inc METHOD OF FORMING PATTERN USING ArF LASER BEAM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160077A (en) * 1991-12-05 1993-06-25 Sharp Corp Plasma etching method
JPH118223A (en) * 1997-03-31 1999-01-12 Applied Materials Inc Selective plasma etching of silicon nitride coexisting with silicon or silicon oxide using methyl fluoride or ethyl difluoride and mixture of tetrafluoro-carbon and oxygen
JPH11102896A (en) * 1997-08-15 1999-04-13 Internatl Business Mach Corp <Ibm> Anisotropic selective nitride etching for featuring high aspect ratio in high-density plasma
JP2000173996A (en) * 1998-12-03 2000-06-23 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2003077900A (en) * 2001-09-06 2003-03-14 Hitachi Ltd Method of manufacturing semiconductor device
JP2003229418A (en) * 2001-11-30 2003-08-15 Tokyo Electron Ltd Method of etching
JP2003297813A (en) * 2001-11-30 2003-10-17 Hynix Semiconductor Inc METHOD OF FORMING PATTERN USING ArF LASER BEAM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266291A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Method for manufacturing semiconductor device, plasma treatment device and storage medium
US8263498B2 (en) 2006-03-28 2012-09-11 Tokyo Electron Limited Semiconductor device fabricating method, plasma processing system and storage medium
JP2008270522A (en) * 2007-04-20 2008-11-06 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3659933B2 (en) Method for etching high aspect ratio openings
JP3976703B2 (en) Manufacturing method of semiconductor device
CN101064244B (en) Etch methods to form anisotropic features for high aspect ratio applications
JP2009076661A (en) Method for manufacturing semiconductor device
JP5122106B2 (en) Carbon-containing film etching method and semiconductor device manufacturing method using the same
JP2007134668A (en) Method for forming trench of semiconductor element and element isolation method of semiconductor element using it
JP2008103718A (en) Method for forming fine pattern of semiconductor element
JP2006190947A (en) Recess gate and method for manufacturing semiconductor device equipped therewith
JP2000340552A (en) Anisotropic nitride etching having high sensitivity with respect to oxide and photoresist layer
JP5137415B2 (en) Recess channel forming method of semiconductor device
JP2007110005A (en) Manufacturing method of semiconductor device
JP2005244167A (en) Manufacturing method of semiconductor device
JP2008218999A (en) Method of manufacturing semiconductor device
TW200824002A (en) Method for fabricating semiconductor device
JP2004119905A (en) Etching method for polysilicon
JP2006032801A (en) Semiconductor device manufacturing process
US6673695B1 (en) STI scheme to prevent fox recess during pre-CMP HF dip
JP2010098101A (en) Method of manufacturing semiconductor device
KR100772709B1 (en) Method for fabricating the same of semiconductor device with isolation
JP2006324615A (en) Method of forming conductive line of semiconductor element
JPH11243080A (en) Etching method of semiconductor substrate
JP4621718B2 (en) Manufacturing method of semiconductor device
JP5171091B2 (en) Plasma processing method
KR100856614B1 (en) Method for forming sti in semiconductor device and its structure
KR100842508B1 (en) Method for manufacturing device isolation layer of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070618

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A02 Decision of refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A02