JP2006032507A - Capacitor incorporating substrate and substrate - Google Patents

Capacitor incorporating substrate and substrate Download PDF

Info

Publication number
JP2006032507A
JP2006032507A JP2004206730A JP2004206730A JP2006032507A JP 2006032507 A JP2006032507 A JP 2006032507A JP 2004206730 A JP2004206730 A JP 2004206730A JP 2004206730 A JP2004206730 A JP 2004206730A JP 2006032507 A JP2006032507 A JP 2006032507A
Authority
JP
Japan
Prior art keywords
layer
capacitor
substrate
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206730A
Other languages
Japanese (ja)
Inventor
Miyoko Nyuraiin
美代子 入来院
Koji Fusayasu
浩嗣 房安
Shiyouichi Mimura
詳一 三村
Seiji Hamada
清司 濱田
Akira Matsubara
亮 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004206730A priority Critical patent/JP2006032507A/en
Publication of JP2006032507A publication Critical patent/JP2006032507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor incorporating substrate which is highly reliable and wherein a capacitor having a necessary capacity is built in. <P>SOLUTION: The substrate having a plurality of internal electrode layers incorporates a capacitor which is composed of two counterelectrodes. At least either of them is provided with two first electrodes that are formed in a first internal electrode layer while they are isolated with a wiring area in between and a second electrode that is formed in a second internal electrode layer while it is opposite to the wiring area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンデンサ内蔵基板に関する。   The present invention relates to a capacitor built-in substrate.

従来から、プリント基板にIC等の電子部品を実装する際に、プリント基板からの伝送・放射ノイズを抑制するために、バイパスコンデンサが用いられている。
図1は従来のバイパスコンデンサの実装方法の一例を示す図である。図1の従来例では、電源パターン101とGNDパターン102が形成されたプリント基板100上にボールグリッドアレイ(以下、BGAと略す)タイプのIC104が設けられている。そして、バイパスコンデンサ103が電源パターン101とGNDパターン102間に接続されている。バイパスコンデンサ103はインダクタンス成分を減らすために、IC104の近くに配置される。
Conventionally, when electronic components such as ICs are mounted on a printed board, a bypass capacitor has been used to suppress transmission / radiation noise from the printed board.
FIG. 1 is a diagram showing an example of a conventional bypass capacitor mounting method. In the conventional example of FIG. 1, a ball grid array (hereinafter abbreviated as BGA) type IC 104 is provided on a printed circuit board 100 on which a power supply pattern 101 and a GND pattern 102 are formed. A bypass capacitor 103 is connected between the power supply pattern 101 and the GND pattern 102. The bypass capacitor 103 is disposed near the IC 104 in order to reduce the inductance component.

しかし、バイパスコンデンサをICの近くに配置しても、IC等の電源端子とバイパスコンデンサ103には、例えば、実装上の制約により、最小限の間隔をあける必要があり、その距離に比例して、電源パターン配線によるインダクタンス成分が生じる。この配線長によるインダクタンス成分が無視できる周波数では、バイパスコンデンサとして作用するが、無視できない高周波数帯域では、伝送・放射ノイズの抑制が不十分となる。この問題を解決するためのバイパスコンデンサの接続方法と形成方法が、例えば、特開平9−102663に示されているが、その方法では、BGAタイプのパッケージを用いたICには適用できない。   However, even if the bypass capacitor is arranged near the IC, it is necessary to leave a minimum distance between the power supply terminal of the IC and the bypass capacitor 103 due to, for example, mounting restrictions, and in proportion to the distance. An inductance component is generated due to the power pattern wiring. At a frequency where the inductance component due to the wiring length can be ignored, it acts as a bypass capacitor, but transmission and radiation noise are not sufficiently suppressed in a high frequency band where it cannot be ignored. A bypass capacitor connecting method and forming method for solving this problem are disclosed in, for example, Japanese Patent Laid-Open No. 9-102663, but this method cannot be applied to an IC using a BGA type package.

また、特開平9−82557には、BGA内にコンデンサを形成することによりインダクタンス成分をなくし、伝送・放射ノイズを抑制できる構造が示されているが、BGAの製造に手間がかかるという問題がある。そこで、インダクタンス成分をなくして伝送・放射ノイズを抑制できる基板内蔵型コンデンサ形成方法が、特開平8−204341に示されている。
特開平9−102663号公報 特開平9−82557号公報 特開平8−204341号公報
Japanese Patent Laid-Open No. 9-82557 discloses a structure in which an inductance component is eliminated by forming a capacitor in the BGA and transmission / radiation noise can be suppressed. However, there is a problem that it takes time to manufacture the BGA. . Japanese Patent Laid-Open No. 8-204341 discloses a method of forming a capacitor with a built-in substrate that can suppress transmission and radiation noise by eliminating an inductance component.
JP-A-9-102663 JP-A-9-82557 JP-A-8-204341

しかしながら、従来の基板内蔵型コンデンサ形成方法では、図4に模式的に示すように、例えば、6層のベース基板内の第3層202と第4層203を使ってコンデンサを作成した場合、ICベアチップ54から引き出した配線156を第4層203に接続する場合には必ず第1のコンデンサ電極106を大きく迂回しなければならず、ICとしての信頼性にかけてしまうといった課題があった。
また、4層のベース基板内でコンデンサを形成するならば、配線の引き回しのために第1のコンデンサ電極106や第2のコンデンサ電極107に穴を開けなければならず、コンデンサの容量を確保することが難しくなるという問題もあった。
However, in the conventional substrate built-in capacitor formation method, as schematically shown in FIG. 4, for example, when a capacitor is formed using the third layer 202 and the fourth layer 203 in the six-layer base substrate, When the wiring 156 drawn from the bare chip 54 is connected to the fourth layer 203, the first capacitor electrode 106 must be largely detoured, and there is a problem that reliability as an IC is increased.
Further, if a capacitor is formed in a four-layer base substrate, a hole must be made in the first capacitor electrode 106 and the second capacitor electrode 107 for wiring, and the capacitance of the capacitor is ensured. There was also the problem that it became difficult.

そこで、本発明は、必要な容量のコンデンサが内蔵された信頼性の高いコンデンサ内蔵基板を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly reliable built-in capacitor board in which a capacitor having a required capacity is built.

以上の目的を達成するために、本発明に係る基板内蔵コンデンサは、複数の層を有する基板に内蔵されたコンデンサであって、上記コンデンサを構成する2つの対向電極のうちの少なくとも一方の対向電極は、上記複数の層のうちの任意の一つの層であるA層に配線領域を挟んで分離されるように形成された一対の第1電極と、上記A層以外の任意の一つの層であるB層に上記配線領域に対向するように形成された第2電極とを含んでなることを特徴とする。   In order to achieve the above object, a substrate built-in capacitor according to the present invention is a capacitor built in a substrate having a plurality of layers, and is at least one counter electrode of two counter electrodes constituting the capacitor. Is a pair of first electrodes formed so as to be separated from the A layer, which is any one of the plurality of layers, with the wiring region interposed therebetween, and any one layer other than the A layer. A B layer includes a second electrode formed so as to face the wiring region.

以上のように構成された本発明に係る基板内蔵コンデンサは、例えば、ICのパッケージに内蔵することができ、短い配線で外部端子に接続することが可能であり、配線の伝送損失の増大や放射ノイズを抑制することができるので信頼性の高いパッケージを提供できる。   The substrate built-in capacitor according to the present invention configured as described above can be incorporated in, for example, an IC package, and can be connected to an external terminal with a short wiring, which increases wiring transmission loss and radiation. Since noise can be suppressed, a highly reliable package can be provided.

以下、本発明に係る実施の形態の基板内蔵コンデンサについて説明する。
本実施の形態の基板内蔵コンデンサは、例えば、BGAパッケージを構成するためのベース基板5に内蔵される容量素子であり、その構成要素である対向電極がそれぞれ複数の層に渡って形成されていることを特徴とするものである。
尚、図2及び図3は、ベース基板5を用いて構成した集積回路の断面図であり、それぞれ以下のように構成される。
Hereinafter, a substrate built-in capacitor according to an embodiment of the present invention will be described.
The substrate built-in capacitor according to the present embodiment is, for example, a capacitive element built in the base substrate 5 for constituting the BGA package, and the counter electrode as the component is formed across a plurality of layers. It is characterized by this.
2 and 3 are cross-sectional views of the integrated circuit configured using the base substrate 5, and are configured as follows.

図2に示す集積回路では、ベース基板5上にICベアチップがいわゆるフェイスアップボンディングされており、ICベアチップ54の端子はボンディングワイヤ51によってベース基板5上の電極に接続されて樹脂50で封止されている。ICベアチップの入出力端子は、ベース基板5内の内部配線によりIC端子52に接続される。
図3に示す集積回路では、ベース基板5上にICベアチップがいわゆるフェイスダウンで接続されており、ICベアチップ54はバンプ53によりベース基板5上の電極に接続され、ベース基板5内の内部配線によりIC端子52に接続される。ICベアチップ54は、バンプ53とともに樹脂50により封止される。
In the integrated circuit shown in FIG. 2, an IC bare chip is so-called face-up bonded on the base substrate 5, and terminals of the IC bare chip 54 are connected to electrodes on the base substrate 5 by bonding wires 51 and sealed with a resin 50. ing. The input / output terminals of the IC bare chip are connected to the IC terminal 52 by internal wiring in the base substrate 5.
In the integrated circuit shown in FIG. 3, an IC bare chip is connected to the base substrate 5 in a so-called face-down manner, and the IC bare chip 54 is connected to an electrode on the base substrate 5 by a bump 53. Connected to the IC terminal 52. The IC bare chip 54 is sealed with the resin 50 together with the bumps 53.

本実施の形態の基板内蔵コンデンサは、係る集積回路において、例えば、ICベアチップ54の電源端子に接続されて高周波ノイズを除去するバイパスコンデンサとして形成されるものであり、好ましくは、ベース基板5において実装されるICベアチップ54の直下の位置に形成される。   The substrate built-in capacitor according to the present embodiment is formed as a bypass capacitor that is connected to the power supply terminal of the IC bare chip 54 and removes high frequency noise in the integrated circuit, and is preferably mounted on the base substrate 5. The IC bare chip 54 is formed at a position immediately below.

以下、本実施の形態の基板内蔵コンデンサについて、図5に示すBGA用の8層からなるベース基板の内部に形成された例により詳細に説明する。ここでは、ICベアチップ54がベース基板の上面にフェースダウン(フリップチップ)実装されたものとして図示している。   Hereinafter, the substrate built-in capacitor according to the present embodiment will be described in detail with reference to an example formed inside a base substrate composed of eight layers for BGA shown in FIG. Here, the IC bare chip 54 is illustrated as being face-down (flip chip) mounted on the upper surface of the base substrate.

本実施の形態では、ベース基板において、基板内蔵コンデンサを構成する2つの対向電極のうちの一方の対向電極は、基板内部の第3層202(A層)に形成された第1のコンデンサ電極6と第4層203(B層)に形成された第2のコンデンサ電極7とからなり、他方の対向電極は、基板内部の第5層204(C層)に形成された第3のコンデンサ電極8と第6層205(D層)に形成された第4のコンデンサ電極9とからなっている。   In the present embodiment, in the base substrate, one of the two counter electrodes constituting the substrate built-in capacitor is the first capacitor electrode 6 formed on the third layer 202 (A layer) inside the substrate. And the second capacitor electrode 7 formed on the fourth layer 203 (B layer), and the other counter electrode is the third capacitor electrode 8 formed on the fifth layer 204 (C layer) inside the substrate. And the fourth capacitor electrode 9 formed in the sixth layer 205 (D layer).

また、A層において、第1のコンデンサ電極6は配線領域(第1配線領域)を挟んで2つに分離されて一対の電極となっており、B層において、第2のコンデンサ電極7は配線領域(第2配線領域)を挟んで2つに分離されて一対の電極となっている。そして、分離された第1のコンデンサ電極6の1つはB層の第2配線領域に対向し、分離された第2のコンデンサ電極7の1つはA層における第1配線領域に対向している。そして、第1のコンデンサ電極6と第2のコンデンサ電極7は互いに一部で対向して重なるように形成されて、その重なった部分でビアホールを用いて接続されることにより一方の対向電極が構成される。   In the A layer, the first capacitor electrode 6 is separated into two with a wiring region (first wiring region) interposed therebetween, and in the B layer, the second capacitor electrode 7 is connected to the wiring. A pair of electrodes is formed by separating the region (second wiring region) into two. One of the separated first capacitor electrodes 6 faces the second wiring region of the B layer, and one of the separated second capacitor electrodes 7 faces the first wiring region of the A layer. Yes. The first capacitor electrode 6 and the second capacitor electrode 7 are formed so as to face each other and overlap each other, and one of the counter electrodes is configured by connecting via the via hole at the overlapping portion. Is done.

さらに、C層に形成された他方の対向電極の一部を構成する第3のコンデンサ電極8は、2つに分離されてそれぞれ第1のコンデンサ電極6に対向するように形成され、D層に形成された第4のコンデンサ電極9は2つに分離されてそれぞれ第2のコンデンサ電極7に対向するように形成される。すなわち、C層において、第3のコンデンサ電極8は配線領域(第3配線領域)を挟んで2つに分離されており、D層において、第4のコンデンサ電極9は配線領域(第4配線領域)を挟んで2つに分離されている。そして、第3のコンデンサ電極8と第4のコンデンサ電極9は互いに一部で対向して重なるように形成されて、その重なった部分でビアホールを用いて接続されることにより他方の対向電極が構成される。   Further, the third capacitor electrode 8 constituting a part of the other counter electrode formed in the C layer is separated into two and formed so as to face the first capacitor electrode 6, respectively. The formed fourth capacitor electrode 9 is separated into two and is formed to face the second capacitor electrode 7 respectively. That is, in the C layer, the third capacitor electrode 8 is separated into two across the wiring region (third wiring region), and in the D layer, the fourth capacitor electrode 9 is separated from the wiring region (fourth wiring region). ) Is separated into two. The third capacitor electrode 8 and the fourth capacitor electrode 9 are formed so as to face each other and overlap each other, and the other counter electrode is configured by connecting via the via hole at the overlapping portion. Is done.

尚、第1のコンデンサ電極6と第2のコンデンサ電極7からなる一方の対向電極と、第3のコンデンサ電極8と第4のコンデンサ電極9からなる他方の対向電極の間には、いうまでもなく基板を構成する絶縁体からなる誘電体が挟まれており、その誘電体の誘電率と2つの対向電極の対向面積とによって基板内蔵コンデンサの静電容量が決定される。   Needless to say, between one counter electrode composed of the first capacitor electrode 6 and the second capacitor electrode 7 and the other counter electrode composed of the third capacitor electrode 8 and the fourth capacitor electrode 9. In other words, a dielectric made of an insulator constituting the substrate is sandwiched, and the capacitance of the substrate built-in capacitor is determined by the dielectric constant of the dielectric and the opposing area of the two counter electrodes.

このように構成された基板内蔵コンデンサにおいて、例えば、一方の対向電極は、図5に示すように、第2のコンデンサ電極7のある端部から引き出され、第4層203、第5層204、第6層205、第7層206を貫通するビアホールを用いて形成された配線57を介して第8層207のコンデンサ端子10に接続される。
また、他方の対向電極は、例えば、図5に示すように、第4のコンデンサ電極9のある端部から引き出され、第6層205及び第7層206を貫通するビアホールを用いて形成された配線58を介して第8層207のコンデンサ端子11に接続される。
In the substrate built-in capacitor configured in this way, for example, one counter electrode is pulled out from an end portion of the second capacitor electrode 7 as shown in FIG. 5, and the fourth layer 203, the fifth layer 204, The capacitor layer 10 is connected to the capacitor terminal 10 of the eighth layer 207 through a wiring 57 formed using a via hole penetrating the sixth layer 205 and the seventh layer 206.
Further, the other counter electrode is formed by using a via hole that is drawn from an end portion of the fourth capacitor electrode 9 and penetrates the sixth layer 205 and the seventh layer 206, as shown in FIG. It is connected to the capacitor terminal 11 of the eighth layer 207 through the wiring 58.

以上のように、内部に基板内蔵コンデンサを構成する対向電極が形成された多層基板においては、ICベアチップ54の端子のうち、外側に位置する端子は第1層200の配線55により外側に引き出され、第2から第7層を貫通するビアホールを介して第8層207に形成された所定の端子に接続される。   As described above, in the multilayer substrate in which the counter electrode constituting the substrate built-in capacitor is formed, the terminals located outside of the terminals of the IC bare chip 54 are drawn to the outside by the wiring 55 of the first layer 200. These are connected to predetermined terminals formed in the eighth layer 207 through via holes penetrating the second to seventh layers.

また、ICベアチップ54の端子のうち内側に位置する端子(例えば、図5に示すICベアチップ54の端子60)は、56の符号を付して示す配線のように、第2層201を貫通するビアホールにより端子60の直下の位置で第1配線領域に形成された配線に接続されて第2コンデンサ電極7及び第4コンデンサ電極9を迂回するように引き出されて第3層202、第4層203、第5層204及び第6層205を貫通するビアホールにより第7層206に形成された配線に接続され、その配線と第7層206を貫通するビアホールを介して第8層207の端子61に接続される。   In addition, among the terminals of the IC bare chip 54, a terminal located inside (for example, the terminal 60 of the IC bare chip 54 shown in FIG. 5) penetrates the second layer 201 like a wiring denoted by reference numeral 56. The third layer 202 and the fourth layer 203 are connected to a wiring formed in the first wiring region at a position immediately below the terminal 60 by a via hole and drawn out so as to bypass the second capacitor electrode 7 and the fourth capacitor electrode 9. , Connected to the wiring formed in the seventh layer 206 by a via hole penetrating the fifth layer 204 and the sixth layer 205, and connected to the terminal 61 of the eighth layer 207 through the wiring and the via hole penetrating the seventh layer 206. Connected.

以上のように構成された本実施の形態の基板内蔵コンデンサは、その容量を構成するための対向電極をそれぞれ複数の層に渡って形成しているので、必要な容量を確保するために必要な対向面積を確保しつつ、その対向電極に制約されることなく、比較的短い配線長でかつ容易にICベアチップ54の端子と基板の端子とを接続できる。
従って、従来例のように比較的大きな面積のコンデンサ電極を迂回して配線を長く引き回す必要がないので、配線長が長くなることに起因して生じる伝送損失の増加及び放射ノイズの発生を抑制することができる。
In the substrate built-in capacitor according to the present embodiment configured as described above, the counter electrodes for forming the capacitance are formed over a plurality of layers, respectively, so that it is necessary to secure the necessary capacitance. While securing the facing area, the terminals of the IC bare chip 54 and the terminals of the substrate can be easily connected with a relatively short wiring length without being restricted by the facing electrode.
Therefore, it is not necessary to bypass the capacitor electrode having a relatively large area as in the conventional example, and the wiring does not need to be routed long, so that the increase in transmission loss and the generation of radiation noise caused by the long wiring length are suppressed. be able to.

また、本実施の形態では、ICベアチップ54の端子と基板内蔵コンデンサ間を基板内部で接続することなく、それぞれ基板の外部端子に接続しているので、ICベアチップ54のどの端子を基板内蔵コンデンサに接続するか、外部で選択できる。
これによって、ベース基板5を用いて構成された集積回路を実装するプリント基板の配線によりプリント基板上において基板内蔵コンデンサの接続を選択又は変更することが可能になる。
In the present embodiment, the terminals of the IC bare chip 54 are connected to the external terminals of the board without connecting the terminals of the IC bare chip 54 and the board built-in capacitor inside the board. Can be connected or externally selected.
Accordingly, it is possible to select or change the connection of the built-in capacitor on the printed circuit board by wiring of the printed circuit board on which the integrated circuit configured using the base substrate 5 is mounted.

尚、本実施の形態では、ICベアチップをフェイスダウンで接続された例で説明したが、本発明はこれに限られるものではなく、ICベアチップをフェイスアップで実装した場合であっても同様に適用できる。
また、ベース基板が8層の場合を例にとって説明したが、8層に限定されるものではない。
また、本実施の形態では、2つの対向電極をそれぞれ相隣り合う層に形成するようにしたが、本発明はこれに限られるものではなく、2つの対向電極を任意の層に形成してもよい。
In the present embodiment, the example in which the IC bare chip is connected face-down has been described. However, the present invention is not limited to this, and the same applies even when the IC bare chip is mounted face-up. it can.
Further, the case where the base substrate has eight layers has been described as an example, but the number is not limited to eight layers.
In this embodiment, the two counter electrodes are formed in adjacent layers, but the present invention is not limited to this, and the two counter electrodes may be formed in any layer. Good.

またさらに、本実施の形態では、2つの対向電極をそれぞれ複数の層に渡って形成するようにしたが、本発明はこれに限られるものではなく、いずれか一方の対向電極を複数層に渡って形成するようにしてもよい。   Furthermore, in this embodiment, the two counter electrodes are formed over a plurality of layers, respectively, but the present invention is not limited to this, and any one counter electrode extends over a plurality of layers. You may make it form.

また、本実施の形態では、一方の対向電極をA層に形成した一対の第1のコンデンサ電極6とB層に形成した一対の第2のコンデンサ電極7によって構成した。しかしながら、本発明はこれに限られるものではなく、一方の対向電極が、A層及び/又はB層に、一対の第1のコンデンサ電極6及び/又は一対の第2のコンデンサ電極7に加えてさらに、それぞれ配線領域を挟んで分離されてなる一対又は二対以上の電極を含んでいてもよい。尚、他方の対向電極についても同様である。   In the present embodiment, one counter electrode is constituted by a pair of first capacitor electrodes 6 formed in the A layer and a pair of second capacitor electrodes 7 formed in the B layer. However, the present invention is not limited to this, and one counter electrode is added to the A layer and / or the B layer in addition to the pair of first capacitor electrodes 6 and / or the pair of second capacitor electrodes 7. Furthermore, a pair of electrodes or two or more pairs of electrodes separated from each other with a wiring region interposed therebetween may be included. The same applies to the other counter electrode.

また、本実施の形態では、ベース基板に1つの基板内蔵コンデンサを形成した例により説明したが、本発明はこれに限られるものではなく、ベース基板に上述のように構成された基板内蔵コンデンサを複数個形成することができ、その複数の基板内蔵コンデンサをプリント基板側の配線により組み合わせることにより、コンデンサの容量を変更することも可能になる。   In the present embodiment, the example in which one substrate built-in capacitor is formed on the base substrate has been described. However, the present invention is not limited to this, and the substrate built-in capacitor configured as described above is formed on the base substrate. A plurality of capacitors can be formed, and the capacitance of the capacitors can be changed by combining the plurality of built-in capacitors with wiring on the printed board side.

また、本実施の形態では、2端子の基板内蔵コンデンサの例を説明したが、本発明はこれに限られるものではなく、3端子コンデンサを構成することもでき、より効果的に伝送損失を抑え、放射ノイズをさらに抑制することも可能である。   In this embodiment, an example of a two-terminal substrate built-in capacitor has been described. However, the present invention is not limited to this, and a three-terminal capacitor can be configured to suppress transmission loss more effectively. It is also possible to further suppress radiation noise.

また、本発明では、ベース基板を構成する絶縁体として、種々の材料を使用することができ、例えば、ガラスエポキシ、ガラス熱硬化PPO樹脂などの高誘電率材料を用いることにより、より小さい面積又は体積でより静電容量の高い基板内蔵コンデンサを構成することが可能であり、より伝送特性を良好にし、放射ノイズを抑制することができるようになる。   In the present invention, various materials can be used as the insulator constituting the base substrate. For example, by using a high dielectric constant material such as glass epoxy or glass thermosetting PPO resin, a smaller area or It is possible to constitute a capacitor with a built-in substrate having a higher capacitance by volume, and it becomes possible to improve transmission characteristics and suppress radiation noise.

以上説明したように、本発明による基板内蔵コンデンサは、ICパッケージ内にコンデンサを形成することが可能になり、効率よく伝送・放射ノイズを抑制することができる。   As described above, the substrate built-in capacitor according to the present invention can form a capacitor in an IC package, and can efficiently suppress transmission / radiation noise.

従来例の基板上にICとバイパスコンデンサを実装した従来例の斜視図である。It is a perspective view of the conventional example which mounted IC and the bypass capacitor on the board | substrate of the conventional example. ICベアチップがフェイスアップ実装されたBGAパッケージタイプの集積回路の断面図である。It is sectional drawing of the integrated circuit of a BGA package type in which IC bare chip was mounted face-up. ICベアチップがフェイスダウン実装されたBGAタイプの集積回路の断面図である。It is sectional drawing of the BGA type integrated circuit by which IC bare chip was mounted face-down. 従来の基板内蔵コンデンサの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the conventional board | substrate built-in capacitor | condenser. 本発明に係る実施の形態の基板内蔵コンデンサの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a substrate built-in capacitor according to an embodiment of the present invention.

符号の説明Explanation of symbols

5 ベース基板、6 第1のコンデンサ電極、7 第2のコンデンサ電極、8 第3のコンデンサ電極、9 第4のコンデンサ電極、10 コンデンサ端子、12 ビアホール、50 樹脂、51 ワイヤボンディング、52 IC端子、53 バンプ、54 ICベアチップ、55,56,57,58 配線、200 第1層、201 第2層、202 第3層、203 第4層、204 第5層、205 第6層、206 第7層、207 第8層。
5 base substrate, 6 first capacitor electrode, 7 second capacitor electrode, 8 third capacitor electrode, 9 fourth capacitor electrode, 10 capacitor terminal, 12 via hole, 50 resin, 51 wire bonding, 52 IC terminal, 53 Bump, 54 IC bare chip, 55, 56, 57, 58 Wiring, 200 1st layer, 201 2nd layer, 202 3rd layer, 203 4th layer, 204 5th layer, 205 6th layer, 206 7th layer 207, eighth layer.

Claims (9)

複数の層を有する基板に内蔵されたコンデンサであって、
上記コンデンサを構成する2つの対向電極のうちの少なくとも一方の対向電極は、
上記複数の層のうちの任意の一つの層であるA層に配線領域を挟んで分離されるように形成された一対の第1電極と、上記複数の層のうちの上記A層以外の任意の一つの層であるB層に上記配線領域に対向するように形成された第2電極とを含んでなることを特徴とする基板内蔵コンデンサ。
A capacitor built in a substrate having a plurality of layers,
At least one counter electrode of the two counter electrodes constituting the capacitor is:
A pair of first electrodes formed so as to be separated from the A layer, which is any one of the plurality of layers, with the wiring region interposed therebetween, and any one of the plurality of layers other than the A layer And a second electrode formed so as to face the wiring region in the B layer, which is one of the layers.
上記一対の第1電極はそれぞれその一部で上記第2電極に対向しており、その対向する部分でそれぞれ上記第2電極とビアホールを用いて接続されている請求項1記載の基板内蔵コンデンサ。   2. The substrate built-in capacitor according to claim 1, wherein a part of each of the pair of first electrodes is opposed to the second electrode, and the second part is connected to the second electrode using a via hole. 上記2つの対向電極のうちの他方の対向電極は、上記一対の第1電極にそれぞれ対向するように上記A層と上記B層以外の任意の一つの層であるC層に配線領域を挟んで分離されるように形成された一対の第3電極と、上記第2電極と対向するように上記A層、上記B層及び上記C層以外の任意の一つの層であるD層に形成された第4電極とを含んでなる請求項1又は2記載の基板内蔵コンデンサ。   The other counter electrode of the two counter electrodes has a wiring region sandwiched between C layers, which is any one layer other than the A layer and the B layer, so as to face the pair of first electrodes, respectively. A pair of third electrodes formed so as to be separated from each other, and a D layer that is an arbitrary layer other than the A layer, the B layer, and the C layer so as to face the second electrode. The substrate built-in capacitor according to claim 1, further comprising a fourth electrode. 上記一対の第3電極はそれぞれその一部で上記第4電極に対向しており、その対向する部分でそれぞれ上記第4電極とビアホールを用いて接続されている請求項3記載の基板内蔵コンデンサ。   4. The substrate built-in capacitor according to claim 3, wherein a part of each of the pair of third electrodes is opposed to the fourth electrode, and the opposite part is connected to the fourth electrode using a via hole. 上記B層は上記A層と上記C層の間に位置し、上記C層は上記B層と上記D層の間に位置する請求項3又は4記載の基板内蔵コンデンサ。   5. The substrate built-in capacitor according to claim 3, wherein the B layer is located between the A layer and the C layer, and the C layer is located between the B layer and the D layer. 請求項1〜5のうちのいずれか1つに記載の基板内蔵コンデンサを複数個含む基板。   A substrate comprising a plurality of the substrate built-in capacitors according to claim 1. 上記配線領域に上記コンデンサと電気的に分離された配線を形成した請求項6記載の基板。   The substrate according to claim 6, wherein a wiring electrically isolated from the capacitor is formed in the wiring region. 上記対向電極が上記基板表面の外部接続用端子に接続された請求項6又は7記載の基板。   The substrate according to claim 6 or 7, wherein the counter electrode is connected to an external connection terminal on the surface of the substrate. 上記一方の対向電極は、上記一対の電極とは別にさらに、それぞれ配線領域を挟んで分離されている一対又は二対以上の電極を含む請求項1又は3に記載の基板内蔵コンデンサ。
4. The substrate built-in capacitor according to claim 1, wherein the one counter electrode further includes a pair or two or more pairs of electrodes separated from each other with the wiring region interposed therebetween, in addition to the pair of electrodes.
JP2004206730A 2004-07-14 2004-07-14 Capacitor incorporating substrate and substrate Pending JP2006032507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206730A JP2006032507A (en) 2004-07-14 2004-07-14 Capacitor incorporating substrate and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206730A JP2006032507A (en) 2004-07-14 2004-07-14 Capacitor incorporating substrate and substrate

Publications (1)

Publication Number Publication Date
JP2006032507A true JP2006032507A (en) 2006-02-02

Family

ID=35898514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206730A Pending JP2006032507A (en) 2004-07-14 2004-07-14 Capacitor incorporating substrate and substrate

Country Status (1)

Country Link
JP (1) JP2006032507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028282A (en) * 2006-07-25 2008-02-07 Rohm Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028282A (en) * 2006-07-25 2008-02-07 Rohm Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US6218729B1 (en) Apparatus and method for an integrated circuit having high Q reactive components
KR100665217B1 (en) A semiconductor multi-chip package
KR100535181B1 (en) Semiconductor chip package having decoupling capacitor and manufacturing method thereof
JP4365166B2 (en) Capacitor, multilayer wiring board, and semiconductor device
US10109576B2 (en) Capacitor mounting structure
JP2003110084A (en) Semiconductor device
US20070216020A1 (en) Semiconductor device
KR100835061B1 (en) A semiconductor chip package
JP2004273938A (en) Stacked semiconductor device
JP6144139B2 (en) Multilayer ceramic capacitor with interposer and interposer for multilayer ceramic capacitor
JPH07235632A (en) Capacitor unit and capacitor unit built-in electronic circuit device
JP2009252893A (en) Semiconductor device
JP6102770B2 (en) High frequency module
JP2005167468A (en) Electronic apparatus and semiconductor device
US6300677B1 (en) Electronic assembly having improved power supply bus voltage integrity
JP2006032507A (en) Capacitor incorporating substrate and substrate
JP2008028282A (en) Semiconductor device
JP6256575B2 (en) High frequency module
JPWO2012086107A1 (en) Electronic component mounting structure intermediate, electronic component mounting structure, and method of manufacturing electronic component mounting structure
KR102345061B1 (en) Semiconductor package
JP2007150181A (en) Laminated packaged structure
JP2002359343A (en) Semiconductor device
WO2021084750A1 (en) Interposer mounted substrate
JP2005183669A (en) Mounting substrate and electronic component using it
CN117559954A (en) Filter, duplexer, multiplexer and communication equipment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206