JP2006032007A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2006032007A
JP2006032007A JP2004205994A JP2004205994A JP2006032007A JP 2006032007 A JP2006032007 A JP 2006032007A JP 2004205994 A JP2004205994 A JP 2004205994A JP 2004205994 A JP2004205994 A JP 2004205994A JP 2006032007 A JP2006032007 A JP 2006032007A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
power generation
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004205994A
Other languages
Japanese (ja)
Inventor
Hideto Kanefusa
英人 金房
Masahiko Katsu
雅彦 勝
Takeharu Kuramochi
竹晴 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004205994A priority Critical patent/JP2006032007A/en
Priority to PCT/JP2005/012819 priority patent/WO2006006589A1/en
Publication of JP2006032007A publication Critical patent/JP2006032007A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the complication of the distribution structure by three fluids and enhance the output density of a fuel cell by thinning the stacking dimension. <P>SOLUTION: Cooling fins 7, 9 are integrally installed in a outer portion than a power generation region having a gas passage (an air passage 15) of a separator 1. Outer covers 27, 29 are installed so as to cover the cooling fins 7, 9 respectively, and cooling water is supplied to a cooling water supply space on the inside of the outer covers 27, 29. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質膜の一方側にアノード側電極を、同他方側にカソード側電極をそれぞれ配置し、さらにその外側を一対のセパレータで挟んで構成した燃料電池に関する。   The present invention relates to a fuel cell in which an anode side electrode is disposed on one side of an electrolyte membrane, and a cathode side electrode is disposed on the other side, and the outside is sandwiched between a pair of separators.

燃料電池は、反応ガスである水素含有ガスなどの燃料ガスと、空気などの酸化剤ガスを電気化学的に反応させることにより、燃料の持つ化学エネルギを、直接電気エネルギに変換する装置であり、エネルギ効率を他のエネルギ機関と比べて高くできること、資源の枯渇問題を有する化石燃料を使う必要がないので排出ガスを発生しないなどの優れた特徴を有している。   A fuel cell is a device that converts the chemical energy of fuel directly into electrical energy by electrochemically reacting a fuel gas such as a hydrogen-containing gas that is a reactive gas with an oxidant gas such as air. It has excellent characteristics such as high energy efficiency compared to other energy engines and no generation of exhaust gas because there is no need to use fossil fuels that have a problem of resource depletion.

このような燃料電池は、アノード側電極と一方のセパレータとの間に燃料ガスである水素ガスを供給し、カソード側電極と他方のセパレータとの間に酸化剤ガスである空気を供給し、さらにセパレータの電極と反対側に冷却水を供給する。   Such a fuel cell supplies hydrogen gas as a fuel gas between the anode side electrode and one separator, supplies air as an oxidant gas between the cathode side electrode and the other separator, and Cooling water is supplied to the side of the separator opposite to the electrode.

したがって、この燃料電池は、燃料電池内部のいわゆる発電領域に、水素ガス、空気、冷却水の3流体を供給していることになる(例えば、下記特許文献1参照)。
特開平9−17437号公報
Therefore, this fuel cell supplies three fluids of hydrogen gas, air, and cooling water to a so-called power generation area inside the fuel cell (see, for example, Patent Document 1 below).
Japanese Patent Laid-Open No. 9-17437

従来の燃料電池では、上記したように、燃料電池内部の発電領域における、両面に電極を備えた電解質膜とセパレータの積層方向の異なる位置に、水素ガス、空気、冷却水の3流体を、それぞれ別々に供給しているので、3流体の分配構造が複雑化し、また積層厚さも厚くなって、燃料電池としての出力密度が低下するという問題がある。   In the conventional fuel cell, as described above, in the power generation region inside the fuel cell, the hydrogen gas, the air, and the cooling water are respectively supplied to the electrolyte membrane having electrodes on both sides and the separator in different stacking directions. Since the three fluids are supplied separately, the three-fluid distribution structure becomes complicated, and the thickness of the laminated layer also increases, resulting in a problem that the power density of the fuel cell decreases.

そこで、本発明は、3流体による分配構造の複雑化を防止するとともに、積層厚さを薄くして、燃料電池としての出力密度を向上させることを目的としている。   Accordingly, an object of the present invention is to prevent the distribution structure from being complicated by the three fluids and to reduce the stack thickness to improve the output density as a fuel cell.

本発明は、電解質膜の一方側にアノード側電極を、同他方側にカソード側電極をそれぞれ配置し、さらにその外側を一対のセパレータで挟んで構成した燃料電池において、前記各電極を備えた発電領域よりも外側に突出する冷却フィンを前記セパレータに設けたことを最も主要な特徴とする。   The present invention provides a fuel cell in which an anode side electrode is disposed on one side of an electrolyte membrane, a cathode side electrode is disposed on the other side, and the outside is sandwiched between a pair of separators. The main feature is that the separator is provided with cooling fins protruding outward from the region.

本発明によれば、電極を備えた発電領域よりも外側に突出する冷却フィンをセパレータに設けたので、発電領域には冷却媒体を供給する必要がなく、燃料ガスと酸化剤ガスの2流体のみを発電領域に供給すればよく、流体の分配構造が、3流体を発電領域に供給する場合に比較して簡素化し、積層厚さも薄くなって燃料電池としての出力密度が向上する。   According to the present invention, since the separator is provided with the cooling fins protruding outward from the power generation region provided with the electrodes, it is not necessary to supply the cooling medium to the power generation region, and only two fluids of fuel gas and oxidant gas are provided. The fluid distribution structure is simplified as compared with the case where three fluids are supplied to the power generation region, the stack thickness is reduced, and the output density of the fuel cell is improved.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係わる燃料電池の内部構造を示す斜視図で、図1中で紙面表側にはセパレータ1の空気流路面が見えている。図2(a)は、図1におけるセパレータ1の左側端部付近を拡大した正面図で、図2(b)は、セパレータ1と、両面に電極(一方の面にアノード側電極、他方の面にカソード側電極)を備えた固体高分子電解質膜3とを交互に積層した状態を図2(a)の上面から見た図に相当し、図2(c)は同積層した状態を図2(a)の右側から見た図に相当する。   FIG. 1 is a perspective view showing the internal structure of a fuel cell according to an embodiment of the present invention. In FIG. 1, the air flow path surface of the separator 1 is visible on the front side of the drawing. 2 (a) is an enlarged front view of the vicinity of the left end of the separator 1 in FIG. 1. FIG. 2 (b) shows the separator 1 and electrodes on both sides (an anode side electrode on one side and the other side). 2 corresponds to the view seen from the top of FIG. 2 (a), and FIG. 2 (c) shows the state of the same laminated state shown in FIG. It corresponds to the figure seen from the right side of (a).

図1ではセパレータ1と固体高分子電解質膜3とを矢印A方向に交互に積層し、その両端を図示しないエンドプレートで挟んで固定し、これにより単位電池を多数積層した燃料電池スタックを構成する。   In FIG. 1, separators 1 and solid polymer electrolyte membranes 3 are alternately laminated in the direction of arrow A, and both ends thereof are sandwiched and fixed by end plates (not shown), thereby constituting a fuel cell stack in which a large number of unit cells are laminated. .

セパレータ1は、金属母材を金などの耐蝕皮膜で被覆したもの、ステンレス合金、チタン合金、樹脂とカーボンの混合体、あるいはこれらを組み合わせたものとし、図3にその全体を示すように、中央にて長方形に形成した空気流路面を備える発電領域5と、発電領域5の図3中で上下両側の冷却フィン7,9と、発電領域5の左右両側のマニホールド部11,13とを、それぞれ備えている。   The separator 1 is a metal base material coated with a corrosion-resistant film such as gold, a stainless alloy, a titanium alloy, a mixture of resin and carbon, or a combination thereof. As shown in FIG. A power generation region 5 having a rectangular air flow path surface, cooling fins 7 and 9 on both upper and lower sides of the power generation region 5 in FIG. 3, and manifold portions 11 and 13 on both left and right sides of the power generation region 5, respectively. I have.

ここでのセパレータ1は、ステンレス合金などからなる金属製プレートを、図2(c)に示すように、発電領域5に対して凹凸状にプレス成形して図2(c)中で左側の一方の面の凹部を空気流路15とし、同右側の他方の面の凹部を水素流路17とする。   As shown in FIG. 2C, the separator 1 is formed by pressing a metal plate made of a stainless alloy or the like into a concavo-convex shape with respect to the power generation region 5 as shown in FIG. 2C. The concave portion on the other side is referred to as an air flow path 15, and the concave portion on the other right side is referred to as a hydrogen flow path 17.

セパレータ1における冷却フィン7,9の発電領域5の近傍には、この発電領域5に沿って貫通孔7a,9aを形成する。   In the vicinity of the power generation region 5 of the cooling fins 7 and 9 in the separator 1, through holes 7 a and 9 a are formed along the power generation region 5.

セパレータ1における一方のマニホールド部11は、図3中で上部側にてスタック積層方向に貫通する空気入口マニホールド11aと、図3中で下部側にてスタック積層方向に貫通する水素出口マニホールド11bとをそれぞれ備える。また、他方のマニホールド部13は、図3中で上部側にてスタック積層方向に貫通する水素入口マニホールド13aと、図3中で下部側にてスタック積層方向に貫通する空気出口マニホールド13bとをそれぞれ備える。   One manifold portion 11 in the separator 1 includes an air inlet manifold 11a penetrating in the stacking direction on the upper side in FIG. 3 and a hydrogen outlet manifold 11b penetrating in the stacking direction on the lower side in FIG. Prepare each. The other manifold portion 13 includes a hydrogen inlet manifold 13a that penetrates in the stacking direction on the upper side in FIG. 3 and an air outlet manifold 13b that penetrates in the stacking direction on the lower side in FIG. Prepare.

そして、このセパレータ1の図3中で紙面表側には、発電領域5とマニホールド部11,13とを含む図3中で左右方向に長い長方形部位全体の周囲と、水素出口マニホールド11bおよび水素入口マニホールド13aのそれぞれの周囲に、積層部材相互間のガスシール材として機能する樹脂モールド部19を、金属製プレートに一体成形している。   Then, on the front side of the sheet of FIG. 3 of this separator 1, the periphery of the entire rectangular portion that is long in the left-right direction in FIG. 3 including the power generation region 5 and the manifold portions 11, 13, the hydrogen outlet manifold 11 b and the hydrogen inlet manifold. Around each of 13a, the resin mold part 19 which functions as a gas seal material between laminated members is integrally molded by the metal plate.

これにより、空気入口マニホールド11aと空気流路15との間に、これら両者をつなぐ空気入口ガイド流路21を形成するとともに、空気流路15と空気出口マニホールド13bとの間に、これら両者をつなぐ空気出口ガイド流路23を形成する。   As a result, an air inlet guide channel 21 is formed between the air inlet manifold 11 a and the air channel 15, and both are connected between the air channel 15 and the air outlet manifold 13 b. An air outlet guide channel 23 is formed.

同様にして、セパレータ1の図3中で紙面裏側には、発電領域5とマニホールド部11,13とを含む図3中で左右方向に長い長方形部位全体の周囲と、空気入口マニホールド11aおよび空気出口マニホールド13bのそれぞれの周囲に、積層部材相互間のガスシール材として機能する樹脂モールド部25(図2(b),(c)参照)を、金属製プレートに一体成形する。   Similarly, on the back side of the sheet of FIG. 3 of the separator 1, the periphery of the entire rectangular portion that is long in the left-right direction in FIG. 3 including the power generation region 5 and the manifold portions 11, 13, the air inlet manifold 11 a and the air outlet. Around each of the manifolds 13b, a resin mold portion 25 (see FIGS. 2B and 2C) that functions as a gas seal material between the laminated members is integrally formed on a metal plate.

これにより、水素入口マニホールド13aと水素流路17との間に、これら両者をつなぐ図示しない水素入口ガイド流路を形成するとともに、水素流路17と水素出口マニホールド11bとの間に、これら両者をつなぐ図示しない水素出口ガイド流路を形成する。   As a result, a hydrogen inlet guide channel (not shown) that connects both of them is formed between the hydrogen inlet manifold 13a and the hydrogen channel 17, and both of these are connected between the hydrogen channel 17 and the hydrogen outlet manifold 11b. A hydrogen outlet guide channel (not shown) to be connected is formed.

そして、図1に示すように、上下の冷却フィン7,9の周囲をそれぞれ覆うように、上下の外部カバー27,29を設ける。外部カバー27,29は図1中で左右両端部27a,29aを、セパレータ1のマニホールド部11,13および固体高分子電解質膜3の各側面に接合固定し、冷却フィン7,9の発電領域5側を除く3方との間に、冷却媒体としての冷却水を供給する冷却水供給空間31,33をそれぞれ形成する。   Then, as shown in FIG. 1, upper and lower outer covers 27 and 29 are provided so as to cover the periphery of the upper and lower cooling fins 7 and 9, respectively. In the outer covers 27 and 29, the left and right end portions 27 a and 29 a in FIG. 1 are joined and fixed to the side surfaces of the manifold portions 11 and 13 of the separator 1 and the solid polymer electrolyte membrane 3. Cooling water supply spaces 31 and 33 for supplying cooling water as a cooling medium are formed between the three sides excluding the side.

冷却水供給空間31,33への冷却水の供給は、図4に示すように、燃料電池スタックの積層方向(図4中で左右方向)一方側に設けた増圧ポンプ35によって行う。増圧ポンプ35と冷却水供給空間31,33とは冷却水供給配管37で接続し、冷却水供給配管37の途中に設けた温度調整装置39によって冷却水の温度調整を行う。   As shown in FIG. 4, the cooling water is supplied to the cooling water supply spaces 31 and 33 by a booster pump 35 provided on one side of the fuel cell stack in the stacking direction (left and right direction in FIG. 4). The booster pump 35 and the cooling water supply spaces 31 and 33 are connected by a cooling water supply pipe 37, and the temperature of the cooling water is adjusted by a temperature adjusting device 39 provided in the middle of the cooling water supply pipe 37.

また、燃料電池スタックの積層方向他方側においては、冷却水供給空間31,33に冷却水排出配管41を接続し、冷却水排出配管41の途中に背圧弁43を設置する。この背圧弁43と増圧ポンプ35とにより、冷却水に付与する圧力Poutを制御する。   Further, on the other side in the stacking direction of the fuel cell stack, a cooling water discharge pipe 41 is connected to the cooling water supply spaces 31 and 33, and a back pressure valve 43 is installed in the middle of the cooling water discharge pipe 41. The back pressure valve 43 and the pressure increasing pump 35 control the pressure Pout applied to the cooling water.

なお、外部カバー27,29の図4中で左右方向両端部は開口しており、この開口部を端板45,47によって塞ぎ、端板45,47にそれぞれ形成した貫通孔45a,47aに、前記した冷却水供給配管37,冷却水排出配管41をそれぞれ接続している。   Note that both ends in the left-right direction in FIG. 4 of the outer covers 27 and 29 are open, and the openings are closed by end plates 45 and 47, and the through holes 45a and 47a formed in the end plates 45 and 47, respectively. The cooling water supply pipe 37 and the cooling water discharge pipe 41 are connected to each other.

上記した冷却水に付与する圧力Poutは、図4のB部を拡大して示した図5のように、燃料電池内部のガス圧力Pin(水素ガス圧力および空気ガス圧力)以上に設定する。   The pressure Pout applied to the cooling water is set to be equal to or higher than the gas pressure Pin (hydrogen gas pressure and air gas pressure) inside the fuel cell, as shown in FIG.

上記した燃料電池は、燃料ガスとして水素を水素流路17に供給するとともに、酸化剤ガスとして空気を空気流路15に供給し、これらが水素流路17および空気流路15に対応して配置される電極を備えた発電領域5にて反応して発電を行う。このとき、冷却水については、増圧ポンプ35によって、発電領域5よりも外側に突出する冷却フィン7,9を収容する冷却水供給空間31,33に、温度および圧力を制御した状態で供給する。   The fuel cell described above supplies hydrogen as a fuel gas to the hydrogen flow path 17 and supplies air as an oxidant gas to the air flow path 15, which are arranged corresponding to the hydrogen flow path 17 and the air flow path 15. Power is generated by reacting in the power generation region 5 provided with the electrodes. At this time, the cooling water is supplied to the cooling water supply spaces 31 and 33 accommodating the cooling fins 7 and 9 protruding outward from the power generation region 5 by the pressure-intensifying pump 35 in a state in which the temperature and pressure are controlled. .

冷却水供給空間31,33に流入した冷却水は冷却フィン7,9を冷却し、発電領域5での発熱による温度上昇を抑える。冷却水は、冷却フィン7,9の貫通孔7a,9aにも入り込むので、冷却効果がより高まる。   The cooling water that has flowed into the cooling water supply spaces 31 and 33 cools the cooling fins 7 and 9 and suppresses a temperature rise due to heat generation in the power generation region 5. Since the cooling water also enters the through holes 7a and 9a of the cooling fins 7 and 9, the cooling effect is further enhanced.

このように、本実施形態の燃料電池によれば、発電領域5には冷却水を供給する必要がなく、水素ガスと空気の2流体のみを発電領域5に供給すればよく、このため流体の分配構造としては、冷却水を含む3流体を発電領域5に供給する場合に比較して簡素化し、スタック積層厚さも薄くなり、燃料電池としての出力密度が向上する。   Thus, according to the fuel cell of the present embodiment, it is not necessary to supply cooling water to the power generation region 5, and only two fluids, hydrogen gas and air, need to be supplied to the power generation region 5. The distribution structure is simplified as compared with the case where three fluids including cooling water are supplied to the power generation region 5, the stack stack thickness is also reduced, and the output density as a fuel cell is improved.

また、長方形状とした発電領域5の長辺部に対応して冷却フィン7,9を設けているので、発電領域5の短辺部に対応して冷却フィンを設けた場合に比較して、冷却フィンの面積を同等とした場合に発電領域5からの平均的な距離を短縮でき、冷却効率が向上する。   Moreover, since the cooling fins 7 and 9 are provided corresponding to the long sides of the power generation region 5 having a rectangular shape, compared to the case where the cooling fins are provided corresponding to the short sides of the power generation region 5, When the areas of the cooling fins are made equal, the average distance from the power generation region 5 can be shortened, and the cooling efficiency is improved.

また、図5に示したように、冷却水に付与する圧力Poutを、燃料電池内部のガス圧力Pin以上に設定することで、シール機能を有する前記した樹脂モールド部19,25に外部から圧力を付与することになり、燃料電池内部の水素ガスおよび空気の漏れを防止してシール性を向上させることができる。   Further, as shown in FIG. 5, by setting the pressure Pout applied to the cooling water to be equal to or higher than the gas pressure Pin inside the fuel cell, the pressure is applied to the resin mold parts 19 and 25 having a sealing function from the outside. Therefore, the leakage of hydrogen gas and air inside the fuel cell can be prevented and the sealing performance can be improved.

なお、外部カバー27,29を廃止し、冷却フィン7,9を空気により直接冷却するようにしてもよい。また、樹脂モールド部19,25に代えて、シール材を別途設けるようにしてもよい。   The external covers 27 and 29 may be eliminated and the cooling fins 7 and 9 may be directly cooled by air. Further, instead of the resin mold parts 19 and 25, a sealing material may be provided separately.

本発明によれば、前記冷却フィンは、前記セパレータと一体化しているので、セパレータ製造時に、冷却フィンも同時に製造でき、別途冷却フィンを製造する場合に比較して、製造コストを低減できるとともに、部品点数が減少する。   According to the present invention, since the cooling fin is integrated with the separator, the cooling fin can be manufactured at the same time when the separator is manufactured, and the manufacturing cost can be reduced as compared with the case of separately manufacturing the cooling fin, The number of parts is reduced.

前記発電領域を長方形状とし、この長方形状の長辺部に対応する部位に前記冷却フィンを設けたので、短辺部に対応する部位に冷却フィンを設けた場合に比較して、冷却フィンの面積を同等とした場合に発電領域からの平均的な距離を短縮でき、冷却効率が向上する。   Since the power generation area is rectangular and the cooling fins are provided in the parts corresponding to the long side portions of the rectangular shape, compared to the case where the cooling fins are provided in the parts corresponding to the short side parts, When the areas are equal, the average distance from the power generation region can be shortened, and the cooling efficiency is improved.

前記冷却フィンの周囲を覆う外部カバーを設け、この外部カバー内に冷却媒体を供給するので、冷却フィンの冷却を効率よく行うことができる。   Since an external cover that covers the periphery of the cooling fin is provided and a cooling medium is supplied into the external cover, the cooling fin can be efficiently cooled.

前記外部カバー内に供給する冷却媒体の圧力を、燃料電池内部のガス圧力以上に設定したので、燃料電池内部のガス漏れを防止してシール性を向上させることができる。   Since the pressure of the cooling medium supplied into the external cover is set to be equal to or higher than the gas pressure inside the fuel cell, gas leakage inside the fuel cell can be prevented and the sealing performance can be improved.

本発明の一実施形態に係わる燃料電池の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the fuel cell concerning one Embodiment of this invention. (a)は、図1のセパレータの左側端部付近を拡大した正面図、(b)は、セパレータと両面に電極を備えた固体高分子電解質膜とを交互に積層した状態を(a)の上面から見た図に相当する積層状態図、(c)は同積層した状態を図2(a)の右側から見た図に相当する積層状態図である。(A) is a front view in which the vicinity of the left end of the separator of FIG. 1 is enlarged. (B) is a diagram in which separators and solid polymer electrolyte membranes having electrodes on both sides are alternately laminated. FIG. 3C is a stacking state diagram corresponding to the view seen from the top, and FIG. 2C is a stacking state diagram corresponding to the view seen from the right side of FIG. 図1の燃料電池におけるセパレータ全体の正面図である。It is a front view of the whole separator in the fuel cell of FIG. 燃料電池への冷却水供給システムを示す全体構成図である。It is a whole lineblock diagram showing the cooling water supply system to a fuel cell. 図4のB部の拡大した断面図である。It is sectional drawing to which the B section of FIG. 4 was expanded.

符号の説明Explanation of symbols

1 セパレータ
3 固体高分子電解質膜
5 発電領域
7,9 冷却フィン
27,29 外部カバー
Pout 外部カバー内に供給する冷却媒体の圧力
Pin 燃料電池内部のガス圧力
DESCRIPTION OF SYMBOLS 1 Separator 3 Solid polymer electrolyte membrane 5 Electric power generation area 7,9 Cooling fins 27,29 External cover Pout Pressure of the cooling medium supplied in an external cover Pin Gas pressure inside a fuel cell

Claims (5)

電解質膜の一方側にアノード側電極を、同他方側にカソード側電極をそれぞれ配置し、さらにその外側を一対のセパレータで挟んで構成した燃料電池において、前記各電極を備えた発電領域よりも外側に突出する冷却フィンを前記セパレータに設けたことを特徴とする燃料電池。   In a fuel cell in which an anode side electrode is disposed on one side of the electrolyte membrane and a cathode side electrode is disposed on the other side of the electrolyte membrane and the outside is sandwiched between a pair of separators, the fuel cell has a power generation region provided with the electrodes. A fuel cell, characterized in that a cooling fin protruding on the separator is provided on the separator. 前記冷却フィンは、前記セパレータと一体化していることを特徴とする請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein the cooling fin is integrated with the separator. 前記発電領域を長方形状とし、この長方形状の長辺部に対応する部位に前記冷却フィンを設けたことを特徴とする請求項1または2に記載の燃料電池。   3. The fuel cell according to claim 1, wherein the power generation region has a rectangular shape, and the cooling fin is provided at a portion corresponding to the long side portion of the rectangular shape. 前記冷却フィンの周囲を覆う外部カバーを設け、この外部カバー内に冷却媒体を供給することを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein an external cover that covers the periphery of the cooling fin is provided, and a cooling medium is supplied into the external cover. 前記外部カバー内に供給する冷却媒体の圧力を、燃料電池内部のガス圧力以上に設定したことを特徴とする請求項4に記載の燃料電池。   The fuel cell according to claim 4, wherein the pressure of the cooling medium supplied into the outer cover is set to be equal to or higher than the gas pressure inside the fuel cell.
JP2004205994A 2004-07-13 2004-07-13 Fuel cell Pending JP2006032007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004205994A JP2006032007A (en) 2004-07-13 2004-07-13 Fuel cell
PCT/JP2005/012819 WO2006006589A1 (en) 2004-07-13 2005-07-12 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205994A JP2006032007A (en) 2004-07-13 2004-07-13 Fuel cell

Publications (1)

Publication Number Publication Date
JP2006032007A true JP2006032007A (en) 2006-02-02

Family

ID=35783929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205994A Pending JP2006032007A (en) 2004-07-13 2004-07-13 Fuel cell

Country Status (2)

Country Link
JP (1) JP2006032007A (en)
WO (1) WO2006006589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069072A2 (en) * 2009-12-03 2011-06-09 Enerfuel, Inc. High temperature pem fuel cell with thermal management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091851A1 (en) * 2012-12-14 2014-06-19 日産自動車株式会社 Fuel-cell system and method for controlling same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622156B2 (en) * 1985-03-01 1994-03-23 三菱電機株式会社 Fuel cell device
JP3567447B2 (en) * 1996-06-25 2004-09-22 石川島播磨重工業株式会社 Differential pressure control device between containment vessel and fuel cell
JPH10162842A (en) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this
JP2000021434A (en) * 1998-07-01 2000-01-21 Honda Motor Co Ltd Fuel cell stack and car loading system thereof
JP3548433B2 (en) * 1998-09-10 2004-07-28 本田技研工業株式会社 Fuel cell stack
JP2000353536A (en) * 1999-06-09 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> Fuel cell and its operating method
JP4822581B2 (en) * 2000-12-01 2011-11-24 三菱重工業株式会社 Fuel cell
JP3665769B2 (en) * 2002-03-22 2005-06-29 大同メタル工業株式会社 Split cell fuel cell
JP4292368B2 (en) * 2002-12-12 2009-07-08 ソニー株式会社 Fuel cell and electronic device equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069072A2 (en) * 2009-12-03 2011-06-09 Enerfuel, Inc. High temperature pem fuel cell with thermal management system
WO2011069072A3 (en) * 2009-12-03 2011-11-17 Enerfuel, Inc. High temperature pem fuel cell with thermal management system

Also Published As

Publication number Publication date
WO2006006589A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP5133616B2 (en) Fuel cell
JP5504308B2 (en) Metal separator for fuel cell
US9099693B2 (en) Fuel cell and fuel cell separator
EP2461403B1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP2008226713A (en) Fuel cell stack
US7846613B2 (en) Fuel cell with separator having a ridge member
JP5180513B2 (en) Fuel cell
JP4473598B2 (en) Fuel cell
JP2009123596A (en) Fuel cell
JP4957091B2 (en) Fuel cell
JP5584731B2 (en) Fuel cell
WO2012081333A1 (en) Fuel cell
JP2008293743A (en) Fuel cell
JP2006147258A (en) Separator and fuel battery stack
JP2005108506A (en) Fuel cell
JP2007324122A (en) Fuel cell
JP6144647B2 (en) Fuel cell stack
JP2006032007A (en) Fuel cell
JP4734880B2 (en) Fuel cell
JP2013125614A (en) Fuel cell
JP2006164766A (en) Fuel cell
JP2006156037A (en) Fuel cell unit cell
JP2006100087A (en) Fuel cell
JP5163142B2 (en) Fuel cell stack and design method
JP6059552B2 (en) Fuel cell stack