JPH10162842A - Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this - Google Patents

Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this

Info

Publication number
JPH10162842A
JPH10162842A JP8320206A JP32020696A JPH10162842A JP H10162842 A JPH10162842 A JP H10162842A JP 8320206 A JP8320206 A JP 8320206A JP 32020696 A JP32020696 A JP 32020696A JP H10162842 A JPH10162842 A JP H10162842A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
polymer electrolyte
gas
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8320206A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamaga
範行 山鹿
Hitoshi Kudo
均 工藤
Mikio Shinagawa
幹夫 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8320206A priority Critical patent/JPH10162842A/en
Publication of JPH10162842A publication Critical patent/JPH10162842A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently cool a fuel cell stack, and make the whole compact in the thickness of a device by projecting a heat radiating fin to a side edge part of a separator main body having a gas passage which contacts electrodes arranged on both sides by sandwiching a solid high polymer electrolyte film and supplies gas. SOLUTION: A separator main body part 10 for a solid high polymer fuel cell is formed into a rectangular plate shape by a conductive material, and a groove-shaped gas passage 15 for hydrogen gas and oxygen gas is arranged in its both surface center part. Gas supply-discharge holes 13 and 14 for hydrogen gas and oxygen gas are respectively arranged in two places in diagonal line positions on the outer peripheral side, and the passage 15 is communicated with the hole 14. A heat radiating fin 11 plays a role to radiate heat of a separator main body part 10, and is formed by projecting from one side of an outer peripheral side edge part of the separator main body part 10, and the fin 11 is formed thinner than the separator main body part 10. A separator 1 is composed of a metallic material, and is large in heat conductivity, and the heat in the main body part 10 is quickly transmitted to the fin 11, and cooling is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用セパレータ、及びこれを用いた固体高分子型燃料
電池スタックに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell separator and a polymer electrolyte fuel cell stack using the same.

【0002】[0002]

【従来の技術】図5に従来の固体高分子型燃料電池用の
セパレータを示し、図6にこの従来のセパレータを用い
て構成される固体高分子型燃料電池スタックのセルの構
造を示す。従来の固体高分子型燃料電池において、図5
に示すように、セパレータ1は、その本体が導電材料に
より平板状に形成され、且つ本体の両面中央部に水素ガ
ス用及び酸素ガス用のガス流路12,15がそれぞれ設
けられるとともに、その周辺部に水素ガス用及び酸素ガ
ス用のガス給排孔13,14がそれぞれ設けられ、さら
に冷媒給排孔16が設けられた構成となっている。そし
て、従来の固体高分子型燃料電池スタックは、図6に示
す如く、固体高分子電解質膜2の両側にそれぞれ支持集
電体5で支持した水素極3及び酸素極4を配置し、それ
らの外側にそれぞれ上記セパレータ1,1を配置してこ
れらを積層したものを1つの単位のセルとして該セルを
複数積層し、ガス給排孔13,14をそれぞれ積層方向
に連通させた構成となっている。
2. Description of the Related Art FIG. 5 shows a conventional separator for a polymer electrolyte fuel cell, and FIG. 6 shows a structure of a cell of a polymer electrolyte fuel cell stack constituted by using the conventional separator. In a conventional polymer electrolyte fuel cell, FIG.
As shown in (1), the separator 1 has a main body formed of a conductive material in a flat plate shape, and has gas flow paths 12 and 15 for hydrogen gas and oxygen gas at the center of both surfaces of the main body, respectively. Gas supply / discharge holes 13 and 14 for hydrogen gas and oxygen gas are provided in the section, respectively, and a refrigerant supply / discharge hole 16 is further provided. In the conventional polymer electrolyte fuel cell stack, as shown in FIG. 6, a hydrogen electrode 3 and an oxygen electrode 4 supported by support current collectors 5 are arranged on both sides of the polymer electrolyte membrane 2, respectively. The separators 1 and 1 are arranged on the outside, and a plurality of the stacked cells are stacked as one unit cell, and the gas supply / discharge holes 13 and 14 are connected to each other in the stacking direction. I have.

【0003】そして、水素ガスをガス給排孔14の供給
側から流入させるとともに酸素ガスをガス給排孔13の
供給側から流入させると、水素極3に接するセパレータ
1のガス流路15に水素ガスが供給され、且つ酸素極4
に接するセパレータ1のガス流路12に酸素ガスが供給
されて、水素極3側では反応式 H2→2H++2e- で示す反応が起こるとともに、酸素極4側では反応式 1/2O2+2H+2e−→H2O+反応熱Q で示す反応が起こり、トータルとして H2+1/2O2→H2O で示す反応が起こる。すなわち、水素極3にて水素が電
子を放出してプロトン化し、固体高分子型電解質層2を
通って酸素極4側に移動し、酸素極4にて電子の供給を
受けて酸素と反応する、という電気化学反応に基いて各
燃料電池セル単位で起電力を発生するもので、これら燃
料電池セルが積層され直列に接続された燃料電池スタッ
ク全体では大きな起電力を得ることができるものであっ
た。
When hydrogen gas flows in from the supply side of the gas supply / discharge holes 14 and oxygen gas flows in from the supply side of the gas supply / discharge holes 13, hydrogen gas flows into the gas passage 15 of the separator 1 in contact with the hydrogen electrode 3. Gas is supplied and oxygen electrode 4
Oxygen gas is supplied to the gas flow path 12 of the separator 1 in contact with the hydrogen electrode 3, and the reaction represented by the reaction formula H 2 → 2H ++ 2e occurs on the hydrogen electrode 3 side, and the reaction formula 1 / 2O 2 + 2H + 2e− → occurs on the oxygen electrode 4 side. A reaction represented by H 2 O + reaction heat Q occurs, and a reaction represented by H 2 + 1 / 2O 2 → H 2 O occurs in total. In other words, hydrogen emits electrons at the hydrogen electrode 3 to be protonated, moves to the oxygen electrode 4 side through the polymer electrolyte layer 2, and receives electrons at the oxygen electrode 4 to react with oxygen. The electromotive force is generated for each fuel cell unit based on the electrochemical reaction, and a large electromotive force can be obtained in the entire fuel cell stack in which these fuel cells are stacked and connected in series. Was.

【0004】ところで、上記反応は可逆的でないため
に、該燃料電池においてはその不可逆分である過電圧η
が存在する。また電池の内部抵抗Rが存在するために、
電流Iが流れるとIRの電圧ロスが生じる。その結果、 ηI+I2R+反応熱Q の分だけは、電力とならず熱エネルギーとなって燃料電
池スタックを加熱し温度上昇させることとなる。
Incidentally, since the above reaction is not reversible, in the fuel cell, an overvoltage η which is an irreversible component thereof is used.
Exists. Also, because of the internal resistance R of the battery,
When the current I flows, a voltage loss of IR occurs. As a result, only the amount of ηI + I 2 R + reaction heat Q becomes heat energy instead of electric power, and heats the fuel cell stack to increase the temperature.

【0005】一般に固体高分子型燃料電池では、良好な
発電を行うための最適運転温度範囲を有しているが、こ
れに対し電池反応に付随する発熱が大きいので、運転条
件を安定化するために冷却手段を設ける必要があった。
特に、固体高分子型燃料電池では固体高分子電解質膜が
水を含有しているために100℃以下に冷却して運転す
る必要があった。そのため従来では、冷却手段として、
燃料電池スタックを構成する燃料電池セルの一部又は全
てに冷媒流路62を有する導電性の冷却板6を介在さ
せ、且つ上記冷却板6の冷媒流路62と連通する冷媒給
排孔66をセパレータ1の冷媒給排孔16と積層方向に
連通させて、これに水などの冷媒を通すことにより、燃
料電池スタックの冷却を行えるようにしていた。
[0005] In general, a polymer electrolyte fuel cell has an optimum operating temperature range for good power generation. However, since the amount of heat accompanying the cell reaction is large, it is necessary to stabilize the operating conditions. It was necessary to provide a cooling means.
In particular, in a polymer electrolyte fuel cell, the polymer electrolyte membrane needs to be cooled to 100 ° C. or less for operation since the polymer electrolyte membrane contains water. Therefore, conventionally, as a cooling means,
A conductive cooling plate 6 having a coolant passage 62 is interposed in part or all of the fuel cells constituting the fuel cell stack, and a coolant supply / discharge hole 66 communicating with the coolant passage 62 of the cooling plate 6 is formed. The fuel cell stack can be cooled by communicating with the coolant supply / discharge holes 16 of the separator 1 in the stacking direction and passing a coolant such as water through the coolant supply / discharge holes 16.

【0006】しかしながら、この場合、冷却板6が積層
方向に介在していることに起因して、その分だけ燃料電
池スタックの厚みが大きくなり厚み方向のコンパクト化
を妨げる要因となっていた。また、冷却板6は電気抵抗
として働くことにもなり、燃料電池スタック全体として
の起電力を低下させる要因ともなっていた。
However, in this case, since the cooling plate 6 is interposed in the stacking direction, the thickness of the fuel cell stack is increased by that amount, which hinders the compactness in the thickness direction. Further, the cooling plate 6 also functions as an electric resistance, which has been a factor of reducing the electromotive force of the entire fuel cell stack.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述の事情
に鑑みてなされたものであり、その目的とするところ
は、燃料電池スタックの良好な冷却が行え、厚み方向の
コンパクト化が可能な固体高分子型燃料電池用セパレー
タ、及びこれを用いた固体高分子型燃料電池スタックを
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide good cooling of a fuel cell stack and downsizing in the thickness direction. An object of the present invention is to provide a polymer electrolyte fuel cell separator and a polymer electrolyte fuel cell stack using the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る固体高分子型燃料電池用セ
パレータは、固体高分子電解質膜を挟んで両側に配置さ
れる電極と接し且つ該電極に水素ガス又は酸素ガスを供
給するガス流路を有するセパレータ本体部の側縁部に、
放熱フィンを突設したことを特徴とするものである。
According to a first aspect of the present invention, there is provided a separator for a polymer electrolyte fuel cell, comprising electrodes disposed on both sides of the polymer electrolyte membrane. In contact with the side edge of the separator body having a gas flow path for supplying hydrogen gas or oxygen gas to the electrode,
The radiating fin is provided in a protruding manner.

【0009】請求項2に係る固体高分子型燃料電池用セ
パレータは、請求項1に係る固体高分子型燃料電池用セ
パレータにおいて、上記セパレータ本体部及び放熱フィ
ンを金属材料により一体に形成し、且つその表面に導電
性を有する腐食防止被膜を形成したことを特徴とするも
のである。
A separator for a polymer electrolyte fuel cell according to a second aspect is the separator for a polymer electrolyte fuel cell according to the first aspect, wherein the separator main body and the radiation fins are integrally formed of a metal material; It is characterized in that a conductive corrosion prevention coating is formed on the surface.

【0010】請求項3に係る固体高分子型燃料電池用セ
パレータは、請求項2に係る固体高分子型燃料電池用セ
パレータにおいて、上記金属材料がアルミニウムである
ことを特徴とするものである。
According to a third aspect of the present invention, there is provided a separator for a polymer electrolyte fuel cell according to the second aspect, wherein the metal material is aluminum.

【0011】請求項4に係る固体高分子型燃料電池用セ
パレータは、請求項2又は請求項3に係る固体高分子型
燃料電池用セパレータにおいて、上記腐食防止被膜がチ
タン、炭化チタン、窒化チタン、又はカーボン膜である
ことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a separator for a polymer electrolyte fuel cell according to the second or third aspect, wherein the corrosion prevention coating is made of titanium, titanium carbide, titanium nitride, Or a carbon film.

【0012】請求5に係る固体高分子型燃料電池用セパ
レータは、請求項1に係る固体高分子型燃料電池用セパ
レータにおいて、上記セパレータ本体部の中央層部及び
放熱フィンを金属板により一体に形成し、且つ上記セパ
レータ本体部のガス流路が形成される表層部を、上記ガ
ス流路に相当する打抜き孔を有する導体材料シートを上
記中央層部の両面に接合して形成したことを特徴とする
ものである。
According to a fifth aspect of the present invention, there is provided the separator for a polymer electrolyte fuel cell according to the first aspect, wherein the central layer of the separator main body and the radiation fins are integrally formed of a metal plate. And the surface layer portion in which the gas flow path of the separator main body is formed is formed by joining a conductive material sheet having punched holes corresponding to the gas flow path to both surfaces of the central layer portion. Is what you do.

【0013】請求項6に係る固体高分子型燃料電池用セ
パレータは、請求項5に係る固体高分子型燃料電池用セ
パレータにおいて、上記金属板がアルミニウム板である
ことを特徴とするものである。
According to a sixth aspect of the present invention, there is provided the separator for a polymer electrolyte fuel cell according to the fifth aspect, wherein the metal plate is an aluminum plate.

【0014】請求項7に係る固体高分子型燃料電池スタ
ックは、請求項1乃至請求項6いずれかに係るセパレー
タを、固体高分子電解質膜を挟んで両側に配置される電
極の外側に配置し積層してなるセルを、複数積層してな
ることを特徴とするものである。
According to a seventh aspect of the present invention, there is provided a polymer electrolyte fuel cell stack, wherein the separator according to any one of the first to sixth aspects is arranged outside the electrodes arranged on both sides of the solid polymer electrolyte membrane. It is characterized in that a plurality of stacked cells are stacked.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の実施形態に係る固体高分
子型燃料電池用セパレータを示す斜視図である。また、
図4は、同上実施形態に係るセパレータを用いて構成さ
れる固体高分子型燃料電池スタックのセルの構造を示す
分解斜視図である。該実施形態に係る固体高分子型燃料
電池用セパレータ1は、セパレータ本体部10の側縁部
に放熱フィン11を突設した構成となっている。
FIG. 1 is a perspective view showing a separator for a polymer electrolyte fuel cell according to an embodiment of the present invention. Also,
FIG. 4 is an exploded perspective view showing a cell structure of a polymer electrolyte fuel cell stack configured using the separator according to the embodiment. The separator 1 for a polymer electrolyte fuel cell according to the embodiment has a configuration in which a radiation fin 11 is protruded from a side edge of a separator body 10.

【0017】セパレータ本体部10は、導電材料により
矩形平板状に形成され、その両面中央部に水素ガス用及
び酸素ガス用の溝状のガス流路12,15がそれぞれ設
けられるとともに、その外周側の対角線位置に水素ガス
用及び酸素ガス用のガス給排孔13,14がそれぞれ2
カ所ずつ設けられている。ガス流路12はガス給排孔1
3と連通し、ガス流路14はガス給排孔15と連通して
いる。なお、本発明においては、セパレータ本体部10
のサイズは特に限定されるものではなく、目的に応じて
設計変更できるものであって、またその平面形状も目的
に応じて種々に変更可能である。
The separator body 10 is formed of a conductive material in a rectangular flat plate shape, and has groove-shaped gas flow paths 12 and 15 for hydrogen gas and oxygen gas at the center of both surfaces thereof, and has an outer peripheral side. Gas supply / discharge holes 13 and 14 for hydrogen gas and oxygen gas
There are two places. The gas flow passage 12 is provided with
The gas passage 14 communicates with the gas supply / discharge hole 15. In the present invention, the separator body 10
The size is not particularly limited, and the design can be changed according to the purpose, and the planar shape can be variously changed according to the purpose.

【0018】上記放熱フィン11はセパレータ本体部1
0の熱を放熱する役割を果たすもので、該実施形態では
セパレータ本体部10の外周側縁部の1辺から突出して
形成されている。また、放熱フィン11はセパレータ本
体部10の厚みよりも薄く形成されている。
The radiating fins 11 are connected to the separator body 1.
It plays a role of dissipating heat of 0, and in this embodiment, is formed so as to protrude from one side of the outer peripheral edge of the separator main body 10. Further, the radiation fins 11 are formed thinner than the thickness of the separator body 10.

【0019】なお、本発明において放熱フィン11のサ
イズは、特に限定されるものでなく、該放熱フィン11
が接触して放熱する熱交換媒体との熱交換効率等に応じ
て所望の放熱効果を得られるように設計変更が自在であ
る。具体例を示すと、例えばセパレータ本体部10のサ
イズが100mm×100mmである場合、放熱フィン
11のサイズは100mm×50mm程度とすればよ
い。
In the present invention, the size of the radiation fin 11 is not particularly limited, and
The design can be freely changed so that a desired heat radiation effect can be obtained according to the heat exchange efficiency with the heat exchange medium that radiates heat upon contact. As a specific example, for example, when the size of the separator body 10 is 100 mm × 100 mm, the size of the heat radiation fins 11 may be about 100 mm × 50 mm.

【0020】また、放熱フィン11がセパレータ本体部
10に突設される位置も、特に限定はなく、例えば図2
に示す如く、セパレータ本体部10の外周側縁部の2辺
に突設されていても、あるいは外周縁全周に突設されて
いてもよい。セパレータ本体部10からの突設位置を増
やすとフィン表面積を増大させ熱交換効率を向上させる
点で有効である。セパレータ本体部10からの放熱を偏
り無く均一に行うにも有利である。
The position where the radiation fins 11 protrude from the separator body 10 is not particularly limited.
As shown in (1), the projection may be provided on two sides of the outer peripheral side edge of the separator body 10, or may be provided on the entire outer peripheral edge. Increasing the projecting position from the separator body 10 is effective in increasing the fin surface area and improving the heat exchange efficiency. It is also advantageous to uniformly and uniformly radiate heat from the separator body 10.

【0021】該実施形態に係るセパレータ1は、セパレ
ータ本体部10及び放熱フィン11がアルミニウム等で
一体に形成されており、その表面には導電性を有する腐
食防止被膜が形成されている。セパレータ1は金属材料
により形成することによりカーボン等を用いて形成する
場合に比べて熱伝導性が大きくなり、セパレータ本体部
10の熱が放熱フィン11へと速やかに伝熱され、冷却
作用が向上したものとなる。特にアルミニウムは軽量で
あり、加工性にも優れ、さらにカーボン材よりも強度に
優れていることから、セパレータ1の厚みを全体として
薄くすることができ、厚み方向のコンパクト化を行うの
に有利である。なお、アルミニウムはカーボン材と比べ
て耐候性に劣ることから、これを補う意味でセパレータ
1表面を腐食防止被膜でコートしている。この腐食防止
被膜としては、耐食性に優れ且つ導電性を有するもので
形成することが必要であって、例えばチタン、炭化チタ
ン、窒化チタン、又はカーボン膜などが例示される。ま
たその形成方法としては、例えばスパッタリング法、熱
CVD法、プラズマCVD法、イオンプレーティング法
等で行うことができる。
In the separator 1 according to this embodiment, the separator main body 10 and the radiation fins 11 are integrally formed of aluminum or the like, and a conductive corrosion prevention coating is formed on the surface thereof. Since the separator 1 is formed of a metal material, the heat conductivity is increased as compared with the case where the separator 1 is formed using carbon or the like, and the heat of the separator body 10 is quickly transferred to the radiation fins 11 to improve the cooling effect. It will be. In particular, aluminum is lightweight, has excellent workability, and is superior in strength to carbon materials. Therefore, the thickness of the separator 1 can be reduced as a whole, which is advantageous for downsizing in the thickness direction. is there. In addition, since aluminum is inferior in weather resistance to carbon material, the surface of the separator 1 is coated with a corrosion prevention coating to compensate for this. It is necessary to form the corrosion prevention coating with a material having excellent corrosion resistance and conductivity, and examples thereof include titanium, titanium carbide, titanium nitride, and a carbon film. As a forming method thereof, for example, a sputtering method, a thermal CVD method, a plasma CVD method, an ion plating method, or the like can be used.

【0022】該実施形態に係るセパレータ1では、セパ
レータ本体部10両面の表層部に溝状に形成されたガス
流路12,15は、電極へのガス接触面積を大きくする
ために面状に形成されている。ガス流路12,15の形
成方法としては、平板状の出発材料におけるセパレータ
本体部10に相当する部分の平滑面を座繰り加工機など
を用いて機械加工することにより溝形成する手法が挙げ
られる。しかし、この手法は加工に手間がかかるために
生産効率が悪く、量産性が低い。これに対し、セパレー
タ1を図3に示す如き部材構成により形成されるものと
することで、その生産効率が改善され量産性を向上させ
ることができる。
In the separator 1 according to this embodiment, the gas passages 12 and 15 formed in grooves on the surface layers on both surfaces of the separator main body 10 are formed in a plane to increase the gas contact area with the electrodes. Have been. As a method of forming the gas passages 12 and 15, there is a method of forming a groove by machining a flat surface of a portion corresponding to the separator main body 10 in the starting material in a flat plate shape using a counterbore processing machine or the like. . However, this method takes a lot of time and effort for processing, so that the production efficiency is poor and the mass productivity is low. On the other hand, when the separator 1 is formed by a member configuration as shown in FIG. 3, the production efficiency is improved and the mass productivity can be improved.

【0023】すなわち、図3に示すセパレータ1は、セ
パレータ本体部10の中央層部及び放熱フィン11が一
枚の金属板1aにより一体に形成され、セパレータ本体
部10のガス流路12,15が形成される両面側の表層
部が、ガス流路12,15に相当する打抜き孔12c,
15bを有する導体材料シート1c,1bをそれぞれ上
記中央層部の両面に接合して形成された構成となってい
る。詳しく説明すると、金属板1aは、セパレータ本体
部10のガス給排孔13,14に相当する部位に孔13
a,14aを開けておき、一方、導体材料シート1c,
1bは、それぞれガス流路12,15に相当する打抜き
孔12c,15bと、ガス給排孔13,14に相当する
孔(13b,14b),(13c,14c)を予め形成
しておく。そして、金属板1aの両側に導体材料シート
1c,1bをそれぞれ接合することにより、セパレータ
1が形成される。このように、比較的薄い導体材料シー
ト1c,1bを打ち抜き加工することにより簡単にガス
流路12,15が形成できることから、生産性が向上す
る。ここで、金属板1aとしては、軽量なアルミ板を用
いると好ましく、導体材料シート1cとしてはアルミ板
のほかカーボンシートを用いることもできる。
That is, in the separator 1 shown in FIG. 3, the central layer portion of the separator body 10 and the radiation fins 11 are integrally formed by a single metal plate 1a, and the gas passages 12, 15 of the separator body 10 are formed. The surface layer portions on both sides formed are punched holes 12 c,
The conductive material sheets 1c and 1b having the 15b are joined to both surfaces of the central layer, respectively. More specifically, the metal plate 1a is provided with holes 13 at positions corresponding to the gas supply / discharge holes 13 and 14 of the separator body 10.
a, 14a are opened, while the conductor material sheets 1c,
In 1b, punched holes 12c and 15b corresponding to the gas flow paths 12 and 15 and holes (13b and 14b) and (13c and 14c) corresponding to the gas supply / discharge holes 13 and 14 are formed in advance. Then, the separator 1 is formed by joining the conductive material sheets 1c and 1b to both sides of the metal plate 1a, respectively. As described above, since the gas flow paths 12, 15 can be easily formed by punching the relatively thin conductive material sheets 1c, 1b, the productivity is improved. Here, a lightweight aluminum plate is preferably used as the metal plate 1a, and a carbon sheet in addition to the aluminum plate can be used as the conductive material sheet 1c.

【0024】次に、図4に示す固体高分子型燃料電池ス
タックについて説明する。このものは、上述したセパレ
ータ1を用いて作製されるもので、すなわち、固体高分
子電解質膜2の両側にそれぞれ支持集電体5で支持した
水素極3及び酸素極4を配置し、それらの外側にそれぞ
れセパレータ1,1を配置してこれらを積層したものを
1つの単位のセルとして該セルを複数積層し、ガス給排
孔13,14をそれぞれ積層方向に連通させて形成され
る。
Next, the polymer electrolyte fuel cell stack shown in FIG. 4 will be described. This is manufactured using the above-described separator 1, that is, the hydrogen electrode 3 and the oxygen electrode 4 supported by the supporting current collector 5 are arranged on both sides of the solid polymer electrolyte membrane 2, respectively. The separators 1 and 1 are arranged on the outside, and a plurality of the stacked cells are stacked as one unit cell, and the gas supply / discharge holes 13 and 14 are connected to each other in the stacking direction.

【0025】固体高分子電解質膜2としては、電解質と
してスルフォン酸基等の置換基を有するものが用いられ
る。また、酸素極4および水素極3としては、白金触媒
などをガス透過性を有するように支持集電体5で支持し
て形成した層が例示される。
As the solid polymer electrolyte membrane 2, one having a substituent such as a sulfonic acid group as an electrolyte is used. Examples of the oxygen electrode 4 and the hydrogen electrode 3 include a layer formed by supporting a platinum catalyst or the like with a supporting current collector 5 so as to have gas permeability.

【0026】該燃料電池スタックは、水素ガスをガス給
排孔14の供給側から流入させるとともに酸素ガスをガ
ス給排孔13の供給側から流入させると、水素極3に接
するセパレータ1のガス流路15に水素ガスが供給さ
れ、且つ酸素極4に接するセパレータ1のガス流路12
に酸素ガスが供給されて、このとき、水素極3にて水素
が電子を放出してプロトン化し、固体高分子型電解質層
2を通って酸素極4側に移動し、酸素極4にて電子の供
給を受けて酸素と反応する、という電気化学反応に基い
て各燃料電池セル単位で起電力を発生するもので、これ
ら燃料電池セルが積層され直列に接続された燃料電池ス
タック全体では大きな起電力が得られる。
When the hydrogen gas flows in from the supply side of the gas supply / discharge holes 14 and the oxygen gas flows in from the supply side of the gas supply / discharge holes 13, the gas flow of the separator 1 in contact with the hydrogen electrode 3 The hydrogen gas is supplied to the passage 15 and the gas passage 12 of the separator 1 is in contact with the oxygen electrode 4.
At this time, hydrogen is released from the hydrogen electrode 3 and protonated, and moves to the oxygen electrode 4 side through the solid polymer electrolyte layer 2. An electromotive force is generated for each fuel cell unit based on an electrochemical reaction in which the fuel cell is supplied and reacts with oxygen. In the entire fuel cell stack in which these fuel cells are stacked and connected in series, a large electromotive force is generated. Power is obtained.

【0027】このとき供給される水素ガスとしては、水
素単独で供給されるものでも構わないが、通常、メタノ
ールやブタンガスを燃料改質器により改質して発生させ
た水素を含む改質ガスが使用される。また酸素ガスとし
ては、酸素単独でも構わないが、通常、空気が使用され
る。
The hydrogen gas supplied at this time may be hydrogen gas alone, but usually, a reformed gas containing hydrogen generated by reforming methanol or butane gas by a fuel reformer is used. used. Although oxygen alone may be used as the oxygen gas, air is usually used.

【0028】該燃料電池スタックは、上記のように運転
すると、起電力を生じると共に発熱を生じるが、放熱フ
ィン11を備えたセパレータ1を用いているので、この
熱はセパレータ本体10を介して放熱フィン11に伝わ
り、この放熱フィン11から空気等の熱交換媒体に放熱
され、その結果、安定した運転が可能な温度域まで冷却
される。したがって、従来、燃料電池スタック中に介在
させて用いていた冷却板を省くことが可能となるもので
あり、その分、厚みを小さくすることができるものであ
る。また、冷却板を省くことが可能となるために冷媒を
供給する装置等も不要となり、燃料電池全体としてコン
パクト化が可能となる。
When the fuel cell stack is operated as described above, it generates an electromotive force and generates heat. However, since the separator 1 having the radiating fins 11 is used, this heat is radiated through the separator body 10. The heat is transmitted to the fins 11 and is radiated from the radiating fins 11 to a heat exchange medium such as air. As a result, the fins 11 are cooled to a temperature range where stable operation is possible. Therefore, it is possible to omit the cooling plate conventionally used to be interposed in the fuel cell stack, and the thickness can be reduced accordingly. Further, since the cooling plate can be omitted, a device for supplying a refrigerant and the like are not required, and the whole fuel cell can be made compact.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係る固体
高分子型燃料電池用セパレータによると、燃料電池運転
時に生じる熱をセパレータ本体部を通して放熱フィンか
ら系外に放熱することができるので、従来、冷却のため
に必要であった冷却板を省くことが可能となる。その結
果、該セパレータを用いた燃料電池スタックは、運転時
の発熱を冷却できるとともにその厚みを小さくすること
ができる。また、従来、冷却板に冷媒を供給する装置等
も不要となり、燃料電池全体としてコンパクト化が可能
となる。
As described above, according to the separator for a polymer electrolyte fuel cell according to the present invention, the heat generated during the operation of the fuel cell can be radiated to the outside of the system from the radiation fins through the separator body. Conventionally, it is possible to omit a cooling plate required for cooling. As a result, the fuel cell stack using the separator can reduce the heat generated during operation and reduce the thickness thereof. Further, conventionally, a device for supplying a coolant to the cooling plate becomes unnecessary, and the fuel cell as a whole can be made compact.

【0030】本発明に係る固体高分子型燃料電池用セパ
レータにおいては、上記セパレータ本体部及び放熱フィ
ンを金属材料により一体に形成し、且つその表面に導電
性を有する腐食防止被膜を形成したものとすると、セパ
レータの熱伝導率が大きくなって放熱効果が向上すると
ともに、腐食防止被膜により耐食性も良好に維持され
る。この場合、上記金属材料がアルミニウムであると、
軽量化に有効であり好ましい。
In the separator for a polymer electrolyte fuel cell according to the present invention, the separator body and the radiation fin are integrally formed of a metal material, and the surface thereof is provided with a conductive corrosion prevention coating. Then, the thermal conductivity of the separator is increased, the heat dissipation effect is improved, and the corrosion resistance is also favorably maintained by the corrosion prevention coating. In this case, if the metal material is aluminum,
It is effective and preferable for weight reduction.

【0031】また、該セパレータが、上記セパレータ本
体部の中央層部及び放熱フィンを金属板により一体に形
成し、且つ上記セパレータ本体部のガス流路が形成され
る表層部を、上記ガス流路に相当する打抜き孔を有する
導体材料シートを上記中央層部の両面に接合して形成し
たものである場合、上記ガス流路を形成する手間がかか
らず、その結果、製造コストの低減が図れる。
Further, the separator has a central layer portion of the separator main body and a radiation fin integrally formed of a metal plate, and a surface layer portion in which a gas flow path of the separator main body is formed is connected to the gas flow path. When the conductor material sheet having the punched holes corresponding to the above is formed by bonding to both surfaces of the central layer portion, the labor for forming the gas flow path is not required, and as a result, the manufacturing cost can be reduced. .

【0032】本発明に係る固体高分子型燃料電池スタッ
クは、本発明に係るセパレータを用いて構成されるもの
であるため、冷却板を介在させなくても運転時に発生す
る熱の冷却を上記セパレータに設けられた放熱フィンに
より行える。従って、コンパクト化が可能である。
Since the polymer electrolyte fuel cell stack according to the present invention is constituted by using the separator according to the present invention, cooling of the heat generated during operation without the interposition of a cooling plate can be performed by the separator. This can be done by the radiation fins provided in the. Therefore, compactness is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る固体高分子型燃料電池
用セパレータを示す斜視図である。
FIG. 1 is a perspective view showing a polymer electrolyte fuel cell separator according to an embodiment of the present invention.

【図2】本発明に係る固体高分子型燃料電池用セパレー
タの他の態様を示す斜視図である。
FIG. 2 is a perspective view showing another embodiment of the separator for a polymer electrolyte fuel cell according to the present invention.

【図3】本発明に係る固体高分子型燃料電池用セパレー
タのさらに他の態様を示す斜視図である。
FIG. 3 is a perspective view showing still another embodiment of the separator for a polymer electrolyte fuel cell according to the present invention.

【図4】本発明の実施形態に係る固体高分子型燃料電池
用セパレータを用いて構成される固体高分子型燃料電池
スタックのセルの構造を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a structure of a cell of a polymer electrolyte fuel cell stack constituted by using a polymer electrolyte fuel cell separator according to an embodiment of the present invention.

【図5】従来の固体高分子型燃料電池用セパレータを示
す斜視図である。
FIG. 5 is a perspective view showing a conventional polymer electrolyte fuel cell separator.

【図6】従来の固体高分子型燃料電池用セパレータを用
いて構成される固体高分子型燃料電池スタックのセルの
構造を示す分解斜視図である。
FIG. 6 is an exploded perspective view showing a cell structure of a polymer electrolyte fuel cell stack formed using a conventional polymer electrolyte fuel cell separator.

【符号の説明】[Explanation of symbols]

1 固体高分子型燃料電池用セパレータ 2 固体高分子電解質膜 3 水素極 4 酸素極 10 セパレータ本体部 11 放熱フィン 12,15 ガス流路 DESCRIPTION OF SYMBOLS 1 Separator for polymer electrolyte fuel cells 2 Solid polymer electrolyte membrane 3 Hydrogen electrode 4 Oxygen electrode 10 Separator main body 11 Heat radiation fins 12, 15 Gas flow path

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟んで両側に配置
される電極と接し且つ該電極に水素ガス又は酸素ガスを
供給するガス流路を有するセパレータ本体部の側縁部
に、放熱フィンを突設したことを特徴とする固体高分子
型燃料電池用セパレータ。
1. A radiating fin is provided on a side edge of a separator body having a gas flow path for supplying a hydrogen gas or an oxygen gas to the electrodes, the fin being in contact with electrodes disposed on both sides of the solid polymer electrolyte membrane. A separator for a polymer electrolyte fuel cell, wherein the separator is protruded.
【請求項2】 上記セパレータ本体部及び放熱フィンを
金属材料により一体に形成し、且つその表面に導電性を
有する腐食防止被膜を形成したことを特徴とする請求項
1記載の固体高分子型燃料電池用セパレータ。
2. The solid polymer fuel according to claim 1, wherein the separator body and the radiating fins are integrally formed of a metal material, and a conductive anti-corrosion coating is formed on the surfaces thereof. Battery separator.
【請求項3】 上記金属材料がアルミニウムであること
を特徴とする請求項2記載の固体高分子型燃料電池用セ
パレータ。
3. The separator for a polymer electrolyte fuel cell according to claim 2, wherein the metal material is aluminum.
【請求項4】 上記腐食防止被膜がチタン、炭化チタ
ン、窒化チタン、又はカーボン膜であることを特徴とす
る請求項2又は請求項3記載の固体高分子型燃料電池用
セパレータ。
4. The separator for a polymer electrolyte fuel cell according to claim 2, wherein the corrosion prevention coating is a titanium, titanium carbide, titanium nitride, or carbon film.
【請求項5】 上記セパレータ本体部の中央層部及び放
熱フィンを金属板により一体に形成し、且つ上記セパレ
ータ本体部のガス流路が形成される表層部を、上記ガス
流路に相当する打抜き孔を有する導体材料シートを上記
中央層部の両面に接合して形成したことを特徴とする請
求項1の固体高分子型燃料電池用セパレータ。
5. The center layer of the separator body and the radiating fins are integrally formed by a metal plate, and the surface layer portion of the separator body where the gas flow path is formed is punched corresponding to the gas flow path. 2. The separator for a polymer electrolyte fuel cell according to claim 1, wherein a conductive material sheet having holes is formed by bonding to both surfaces of the central layer.
【請求項6】 上記金属板がアルミニウム板であること
を特徴とする請求項5記載の固体高分子型燃料電池用セ
パレータ。
6. The separator for a polymer electrolyte fuel cell according to claim 5, wherein the metal plate is an aluminum plate.
【請求項7】 請求項1乃至請求項6いずれかに係るセ
パレータを、固体高分子電解質膜を挟んで両側に配置さ
れる電極の外側に配置し積層してなるセルを、複数積層
してなることを特徴とする固体高分子型燃料電池スタッ
ク。
7. A plurality of cells comprising the separator according to any one of claims 1 to 6 arranged and laminated outside electrodes arranged on both sides of the solid polymer electrolyte membrane. A polymer electrolyte fuel cell stack characterized by the above-mentioned.
JP8320206A 1996-11-29 1996-11-29 Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this Pending JPH10162842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8320206A JPH10162842A (en) 1996-11-29 1996-11-29 Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8320206A JPH10162842A (en) 1996-11-29 1996-11-29 Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this

Publications (1)

Publication Number Publication Date
JPH10162842A true JPH10162842A (en) 1998-06-19

Family

ID=18118902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8320206A Pending JPH10162842A (en) 1996-11-29 1996-11-29 Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this

Country Status (1)

Country Link
JP (1) JPH10162842A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014819A1 (en) * 1998-09-04 2000-03-16 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
JP2000133282A (en) * 1998-10-21 2000-05-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for solid polymer electrolyte fuel cell
JP2001006694A (en) * 1999-06-16 2001-01-12 Sumitomo Electric Ind Ltd Separator for solid polymer fuel cell
JP2001155742A (en) * 1999-11-30 2001-06-08 Toyota Central Res & Dev Lab Inc Fuel cell separator and fuel cell provided with the separator
WO2001054218A3 (en) * 2000-01-19 2002-02-21 Manhattan Scientifics Inc Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
KR100413891B1 (en) * 1998-09-25 2004-01-07 마쯔시다덴기산교 가부시키가이샤 Fuel cell stack with separator of a laminate structure
WO2004054026A1 (en) * 2002-12-12 2004-06-24 Sony Corporation Fuel cell and electronic equipment mounting it
JP2004241363A (en) * 2002-04-19 2004-08-26 Sony Corp System and method for treating formation water and power generator
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
WO2005013405A1 (en) * 2003-07-31 2005-02-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack, fuel cell system, and method for producing fuel cell stack
EP1521324A2 (en) * 2003-09-30 2005-04-06 Kabushiki Kaisha Toshiba Fuel cell
JP2005183156A (en) * 2003-12-19 2005-07-07 Sankei Giken Kogyo Co Ltd Separator for fuel cell
JP2005294155A (en) * 2004-04-02 2005-10-20 Hitachi Ltd Separator and fuel cell
WO2006006589A1 (en) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. Fuel cell stack
EP1644997A2 (en) * 2003-06-27 2006-04-12 Ultracell Corporation Micro fuel cell architecture
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
JP2006190561A (en) * 2005-01-06 2006-07-20 Hitachi Ltd Fuel cell separator, and fuel cell
JP2007019007A (en) * 2005-07-05 2007-01-25 Samsung Sdi Co Ltd Fuel cell stack
CN1326271C (en) * 2003-09-30 2007-07-11 株式会社东芝 Fuel cell
JP2008059847A (en) * 2006-08-30 2008-03-13 Casio Comput Co Ltd Fuel battery cell, fuel cell stack, power generating device, and electronic device
JP2008098181A (en) * 1998-09-04 2008-04-24 Toshiba Corp Solid polymer electrolyte fuel cell system
JP2009252491A (en) * 2008-04-04 2009-10-29 Dainippon Printing Co Ltd Separator for fuel cell
WO2009141985A1 (en) * 2008-05-19 2009-11-26 株式会社 東芝 Fuel battery
US7662499B2 (en) 2002-07-31 2010-02-16 Sfc Smart Fuel Cell Ag Plate elements for fuel cell stacks
US7666539B2 (en) 2003-06-27 2010-02-23 Ultracell Corporation Heat efficient portable fuel cell systems
US7807313B2 (en) 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
WO2011069072A2 (en) * 2009-12-03 2011-06-09 Enerfuel, Inc. High temperature pem fuel cell with thermal management system
WO2014131619A1 (en) * 2013-02-27 2014-09-04 Bayerische Motoren Werke Aktiengesellschaft Fuel cell stack
CN110416568A (en) * 2019-09-04 2019-11-05 北京久安通氢能科技有限公司 Air-cooled (list) battery pile of heat pipe metal double polar plates, the vehicles and electronic equipment

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014819A1 (en) * 1998-09-04 2000-03-16 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
EP1030396A1 (en) * 1998-09-04 2000-08-23 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
JP2008098181A (en) * 1998-09-04 2008-04-24 Toshiba Corp Solid polymer electrolyte fuel cell system
US6613467B1 (en) 1998-09-04 2003-09-02 Kabushiki Kaisha Toshiba Polymer electrolyte fuel cells system
EP1030396A4 (en) * 1998-09-04 2006-03-08 Toshiba Kk Solid polymer type fuel cell system
KR100413891B1 (en) * 1998-09-25 2004-01-07 마쯔시다덴기산교 가부시키가이샤 Fuel cell stack with separator of a laminate structure
JP2000133282A (en) * 1998-10-21 2000-05-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for solid polymer electrolyte fuel cell
JP2001006694A (en) * 1999-06-16 2001-01-12 Sumitomo Electric Ind Ltd Separator for solid polymer fuel cell
JP4719948B2 (en) * 1999-06-16 2011-07-06 住友電気工業株式会社 Separator for polymer electrolyte fuel cell
JP2001155742A (en) * 1999-11-30 2001-06-08 Toyota Central Res & Dev Lab Inc Fuel cell separator and fuel cell provided with the separator
JP4529205B2 (en) * 1999-11-30 2010-08-25 株式会社豊田中央研究所 FUEL CELL SEPARATOR AND FUEL CELL HAVING THE SAME
WO2001054218A3 (en) * 2000-01-19 2002-02-21 Manhattan Scientifics Inc Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
US6808834B2 (en) * 2000-01-19 2004-10-26 Manhattan Scientifics, Inc. Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
US7816043B2 (en) 2002-04-19 2010-10-19 Sony Corporation Water disposal system, method of disposing water, and power generation apparatus
JP2004241363A (en) * 2002-04-19 2004-08-26 Sony Corp System and method for treating formation water and power generator
US7662499B2 (en) 2002-07-31 2010-02-16 Sfc Smart Fuel Cell Ag Plate elements for fuel cell stacks
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
WO2004054026A1 (en) * 2002-12-12 2004-06-24 Sony Corporation Fuel cell and electronic equipment mounting it
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
JP4629961B2 (en) * 2003-06-11 2011-02-09 本田技研工業株式会社 Fuel cell and temperature control system
US7585581B2 (en) 2003-06-27 2009-09-08 Ultracell Corporation Micro fuel cell architecture
EP1644997A2 (en) * 2003-06-27 2006-04-12 Ultracell Corporation Micro fuel cell architecture
EP1644997A4 (en) * 2003-06-27 2011-03-16 Ultracell Corp Micro fuel cell architecture
US7666539B2 (en) 2003-06-27 2010-02-23 Ultracell Corporation Heat efficient portable fuel cell systems
US7935452B2 (en) * 2003-06-27 2011-05-03 Ultracell Corporation Micro fuel cell architecture
US7655337B2 (en) 2003-06-27 2010-02-02 Ultracell Corporation Micro fuel cell thermal management
US7943263B2 (en) 2003-06-27 2011-05-17 Ultracell Corporation Heat efficient portable fuel cell systems
WO2005013405A1 (en) * 2003-07-31 2005-02-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack, fuel cell system, and method for producing fuel cell stack
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
CN1326271C (en) * 2003-09-30 2007-07-11 株式会社东芝 Fuel cell
EP1521324A2 (en) * 2003-09-30 2005-04-06 Kabushiki Kaisha Toshiba Fuel cell
CN1326272C (en) * 2003-09-30 2007-07-11 株式会社东芝 Fuel cell
EP1521324A3 (en) * 2003-09-30 2006-01-18 Kabushiki Kaisha Toshiba Fuel cell
JP2005183156A (en) * 2003-12-19 2005-07-07 Sankei Giken Kogyo Co Ltd Separator for fuel cell
JP4627406B2 (en) * 2004-04-02 2011-02-09 株式会社日立製作所 Separator and fuel cell
JP2005294155A (en) * 2004-04-02 2005-10-20 Hitachi Ltd Separator and fuel cell
WO2006006589A1 (en) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. Fuel cell stack
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
US7807313B2 (en) 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
JP2006190561A (en) * 2005-01-06 2006-07-20 Hitachi Ltd Fuel cell separator, and fuel cell
JP4648007B2 (en) * 2005-01-06 2011-03-09 株式会社日立製作所 Fuel cell separator and fuel cell
JP2007019007A (en) * 2005-07-05 2007-01-25 Samsung Sdi Co Ltd Fuel cell stack
KR100696681B1 (en) * 2005-07-05 2007-03-19 삼성에스디아이 주식회사 Stack and fuel cell apparatus with the same
US7981562B2 (en) * 2005-07-05 2011-07-19 Samsung Sdi Co., Ltd. Fuel cell stack with heat sink element
JP2008059847A (en) * 2006-08-30 2008-03-13 Casio Comput Co Ltd Fuel battery cell, fuel cell stack, power generating device, and electronic device
JP2009252491A (en) * 2008-04-04 2009-10-29 Dainippon Printing Co Ltd Separator for fuel cell
WO2009141985A1 (en) * 2008-05-19 2009-11-26 株式会社 東芝 Fuel battery
WO2011069072A2 (en) * 2009-12-03 2011-06-09 Enerfuel, Inc. High temperature pem fuel cell with thermal management system
WO2011069072A3 (en) * 2009-12-03 2011-11-17 Enerfuel, Inc. High temperature pem fuel cell with thermal management system
WO2014131619A1 (en) * 2013-02-27 2014-09-04 Bayerische Motoren Werke Aktiengesellschaft Fuel cell stack
CN110416568A (en) * 2019-09-04 2019-11-05 北京久安通氢能科技有限公司 Air-cooled (list) battery pile of heat pipe metal double polar plates, the vehicles and electronic equipment

Similar Documents

Publication Publication Date Title
JPH10162842A (en) Separator for solid high polymer fuel cell nd solid high polymer fuel cell stack using this
US8105731B2 (en) Fuel cell system
US7799480B2 (en) Fuel cell stack with dummy cell
JP4572062B2 (en) Fuel cell stack
EP1416570B1 (en) Fuel cell stack with heated end plates
US8574778B2 (en) Fuel cell stack
US8153288B2 (en) Fuel cell and fuel cell stack
JP2002260689A (en) Solid high polymer cell assembly, fuel cell stack and reaction gas supply method of the fuel cell
JP2006260916A (en) Fuel cell
JP2008053197A5 (en)
US7232582B2 (en) Fuel cell
KR20070005999A (en) Stack and fuel cell system with the same
CN112331881A (en) Modularized air cooling heat dissipation plate suitable for air cooling type proton exchange membrane fuel cell
JP2004247061A (en) Separator channel structure of fuel cell
KR100853976B1 (en) Fuel cell system
JP2001332288A (en) Fuel cell stack
JP2007226991A (en) Fuel cell
JP4454949B2 (en) Thermoelectric converter
US7745062B2 (en) Fuel cell having coolant inlet and outlet buffers on a first and second side
JP2002170590A (en) Fuel battery
KR20200072201A (en) Air-cooled fuel cell stack and air supply system including the same
JP2003151594A (en) Fuel cell stack
JP3981578B2 (en) Fuel cell
JP2005032578A (en) Separator for fuel cell, fuel cell, and fuel cell vehicle
KR101107081B1 (en) Stack for fuel cell and fuel cell system with the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316