JP2006031957A - Method of manufacturing battery - Google Patents

Method of manufacturing battery Download PDF

Info

Publication number
JP2006031957A
JP2006031957A JP2004204687A JP2004204687A JP2006031957A JP 2006031957 A JP2006031957 A JP 2006031957A JP 2004204687 A JP2004204687 A JP 2004204687A JP 2004204687 A JP2004204687 A JP 2004204687A JP 2006031957 A JP2006031957 A JP 2006031957A
Authority
JP
Japan
Prior art keywords
pressure
battery
exterior member
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004204687A
Other languages
Japanese (ja)
Other versions
JP4788116B2 (en
Inventor
Takashi Furumiya
隆 古宮
Kazuyuki Hashimoto
一行 橋本
Hisayoshi Kajima
久義 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004204687A priority Critical patent/JP4788116B2/en
Publication of JP2006031957A publication Critical patent/JP2006031957A/en
Application granted granted Critical
Publication of JP4788116B2 publication Critical patent/JP4788116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery which can improve a yield easily by widening the width of manufacturing conditions. <P>SOLUTION: After a winding electrode is formed, the wiring electrode is sandwiched between sheathing members each made of a laminated film. Leads are pulled out to the outside of the sheathing member, and laminated by pressurizing while the peripheral edge of the sheathing member is being heated. In that case, the pressure is changed so that the pressure sequentially becomes high in order at multiple stages and is applied. Thus, the shock applied to the lead becomes small by this, and the disconnection of the lead is prevented. Moreover, since high pressure is applied at the final stage even if the temperature is not made higher than required, the sheathing members can be laminated certainly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、外装部材にラミネートフィルムを用いた電池の製造方法に関する。   The present invention relates to a battery manufacturing method using a laminate film as an exterior member.

近年、携帯型の電子機器が次々と開発されており、その電源として電池が重要な位置を占めるようになっている。携帯型電子機器には小型かつ軽量であることが要求されるので、それに伴い電池に対しても、小型かつ軽量であることが求められている。また、電子機器の収納スペースを効率的に使えるように、形状の自由度の大きなものが求められている。このような要求を満たす電池としては、例えば、外装部材にラミネートフィルムを用いた電池がある(例えば、特許文献1参照)。   In recent years, portable electronic devices have been developed one after another, and batteries have become an important position as the power source. Since portable electronic devices are required to be small and light, the batteries are also required to be small and light. In addition, in order to efficiently use the storage space of the electronic device, a device having a large degree of freedom in shape is required. As a battery that satisfies such a requirement, for example, there is a battery using a laminate film as an exterior member (see, for example, Patent Document 1).

この電池では、正極および負極を電解質と共にラミネートフィルムの内部に収納し、ラミネートフィルムの周縁部を加熱しながら加圧して貼り付けることにより、密閉している(例えば、特許文献2参照)。
特開2002−75297号公報 特開平9−199175号公報
In this battery, the positive electrode and the negative electrode are housed inside the laminate film together with the electrolyte, and the peripheral portion of the laminate film is heated and pressed while being sealed (see, for example, Patent Document 2).
JP 2002-75297 A JP-A-9-199175

しかしながら、電池の更なる小型化および軽量化の求めに応じて、ラミネートフィルムおよびリードについてもより薄いものが用いられるようになってきたので、ラミネートフィルムを貼り付ける際の温度および圧力の範囲が非常に狭くなり、高い精度で制御しなければならないという問題があった。例えば、圧力が少し高いとリードが切断してしまい、逆に少し低いと貼り付けが不十分となって密閉性が低下してしまう。また、温度を少し高くするとラミネートフィルムの樹脂層が溶け易くなるので、リードは切れにくく密閉性も向上するが、ラミネートフィルムの金属層がリードに接触して短絡が発生しやすくなってしまう。   However, in response to demands for further miniaturization and weight reduction of batteries, thinner laminate films and leads have been used, so the range of temperature and pressure when applying the laminate film is extremely high. However, there is a problem that the control must be performed with high accuracy. For example, if the pressure is a little high, the lead will be cut, whereas if the pressure is a little low, the sticking will be insufficient and the sealing performance will deteriorate. Further, when the temperature is raised slightly, the resin layer of the laminate film is easily melted, so that the leads are hard to cut and the sealing performance is improved. However, the metal layer of the laminate film comes into contact with the leads and a short circuit is likely to occur.

本発明はかかる問題点に鑑みてなされたもので、その目的は、製造条件の幅を広げ、容易に歩留まりを向上させることができる電池の製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a battery manufacturing method that can broaden the manufacturing conditions and easily improve the yield.

本発明による電池の製造方法は、ラミネートフィルムの周縁部を貼り合わせた外装部材の内部に、正極および負極と共に電解質を封入した電池を製造する方法であって、正極および負極にそれぞれ取り付けられた各リードを外装部材の内側から外側に引き出し、外装部材の周縁部を加熱しつつ加圧して貼り合わせる際に、少なくともリードを引き出した領域については圧力を多段階に変化させて加えるものである。   The battery manufacturing method according to the present invention is a method of manufacturing a battery in which an electrolyte is sealed together with a positive electrode and a negative electrode in an exterior member bonded with a peripheral edge of a laminate film, and each battery is attached to each of the positive electrode and the negative electrode. When the lead is pulled out from the inside to the outside of the exterior member and the peripheral portion of the exterior member is heated and bonded together, the pressure is applied by changing the pressure in multiple stages at least in the region where the lead is pulled out.

本発明の電池の製造方法によれば、圧力を多段階に変化させて加えるようにしたので、リードにかかる衝撃を小さくしつつ、外装部材を確実に貼り合わせることができる。よって、貼り合わせ時の温度および圧力の範囲を広くすることができ、製造歩留まりを容易に向上させることができる。   According to the method for manufacturing a battery of the present invention, since the pressure is applied in multiple stages, the exterior member can be securely bonded while reducing the impact applied to the leads. Therefore, the range of temperature and pressure at the time of bonding can be widened, and the manufacturing yield can be easily improved.

図1は本発明の一実施の形態に係る電池の製造方法の工程を表すものである。また、図2は図1に示した電池の製造方法を用いて製造する電池を分解して表すものであり、図3は図2に示した巻回電極体10の断面構造の一部を拡大して表すものである。なお、本実施の形態では、電極反応物質にリチウム(Li)を用いた電池を製造する場合について説明する。   FIG. 1 shows the steps of a battery manufacturing method according to an embodiment of the present invention. 2 is an exploded view of the battery manufactured using the battery manufacturing method shown in FIG. 1, and FIG. 3 is an enlarged view of a part of the cross-sectional structure of the wound electrode body 10 shown in FIG. It represents. In this embodiment, a case where a battery using lithium (Li) as an electrode reactant is manufactured will be described.

まず、例えば、正極活物質と、炭素材料などの導電剤と、ポリフッ化ビニリデンなどの結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとする。正極活物質としては、例えば、リチウムを吸蔵および離脱することが可能な正極材料の1種または2種以上を用いる。   First, for example, a positive electrode active material, a conductive agent such as a carbon material, and a binder such as polyvinylidene fluoride are mixed to prepare a positive electrode mixture, and this positive electrode mixture is mixed with N-methyl-2-pyrrolidone or the like. To make a paste-like positive electrode mixture slurry. As the positive electrode active material, for example, one or more of positive electrode materials capable of inserting and extracting lithium are used.

リチウムを吸蔵および離脱することが可能な正極材料としては、例えば、リチウム酸化物,リチウムリン酸化物,リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が好ましい。特に、エネルギー密度を高くするには、一般式Lix MIO2 あるいはLiy MIIPO4 で表されるリチウム複合酸化物あるいはリチウムリン酸化物が好ましい。なお、式中、MIおよびMIIは1種類以上の遷移金属を表し、例えば、コバルト(Co),ニッケル(Ni),マンガン(Mn),鉄(Fe),アルミニウム(Al),バナジウム(V)およびチタン(Ti)のうちの少なくとも1種が好ましい。xおよびyの値は電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10の範囲内の値である。Lix MIO2 で表されるリチウム複合酸化物の具体例としては、リチウムコバルト複合酸化物(LiCoO2 )、リチウムニッケル複合酸化物(LiNiO2 )、リチウムニッケルコバルト複合酸化物(Liz Niv Co1-v 2 ;zおよびvは例えば0. 05<z<1、0<v<1である)、あるいはスピネル型結晶構造を有するリチウムマンガン複合酸化物(LiMn2 4 )などが挙げられる。また、Liy MIIPO4 で表されるリチウムリン酸化物の具体例としては、LiFePO4 などが挙げられる。 As the positive electrode material capable of inserting and extracting lithium, for example, lithium-containing compounds such as lithium oxide, lithium phosphorus oxide, lithium sulfide, or an intercalation compound containing lithium are preferable. In particular, in order to increase the energy density, a lithium composite oxide or lithium phosphorus oxide represented by the general formula Li x MIO 2 or Li y MIIPO 4 is preferable. In the formula, MI and MII represent one or more transition metals such as cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V) and At least one of titanium (Ti) is preferred. The values of x and y vary depending on the charge / discharge state of the battery, and are usually values in the range of 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10. Specific examples of the lithium composite oxide represented by Li x MIO 2 include lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ), and lithium nickel cobalt composite oxide (Li z Ni v Co). 1-v O 2 ; z and v are, for example, 0.05 <z <1, 0 <v <1), or lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel crystal structure . A specific example of the lithium phosphorus oxide represented by Li y MIIPO 4 is LiFePO 4 .

次いで、この正極合剤スラリーを、例えばアルミニウム箔,ニッケル箔あるいはステンレス箔などの金属箔よりなる正極集電体11Aに塗布し溶剤を乾燥させたのち、圧縮成型して正極活物質層11Bを形成し、正極11を作製する(ステップS101)。   Next, this positive electrode mixture slurry is applied to a positive electrode current collector 11A made of a metal foil such as an aluminum foil, a nickel foil, or a stainless foil, and the solvent is dried, followed by compression molding to form the positive electrode active material layer 11B. Then, the positive electrode 11 is produced (step S101).

続いて、例えば、負極活物質と、ポリフッ化ビニリデンなどの結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーとする。負極活物質としては、例えば、リチウムを吸蔵および離脱することが可能な負極材料の1種または2種以上を用いる。   Subsequently, for example, a negative electrode active material and a binder such as polyvinylidene fluoride are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone and pasted. A negative electrode mixture slurry. As the negative electrode active material, for example, one or more negative electrode materials capable of inserting and extracting lithium are used.

リチウムを吸蔵および離脱することが可能な負極材料としては、例えば、黒鉛,難黒鉛化性炭素あるいは易黒鉛化性炭素などの炭素材料が挙げられる。また、リチウムと合金を形成可能な金属元素の単体、合金あるいは化合物、またはリチウムと合金を形成可能な半金属元素の単体、合金あるいは化合物も挙げられる。   Examples of the negative electrode material capable of inserting and extracting lithium include carbon materials such as graphite, non-graphitizable carbon, and graphitizable carbon. Further, a single element, alloy or compound of a metal element capable of forming an alloy with lithium, or a single element, alloy or compound of a metalloid element capable of forming an alloy with lithium is also included.

このような金属元素あるいは半金属元素としては、スズ(Sn),鉛(Pb),アルミニウム,インジウム(In),ケイ素(Si),亜鉛(Zn),アンチモン(Sb),ビスマス(Bi),カドミウム(Cd),マグネシウム(Mg),ホウ素(B),ガリウム(Ga),ゲルマニウム(Ge),ヒ素(As),銀(Ag),ジルコニウム(Zr),イットリウム(Y)またはハフニウム(Hf)が挙げられ、スズあるいはケイ素が好ましい。これらの合金あるいは化合物としては、例えば、化学式Mas Mbt Liu 、あるいは化学式Map Mcq Mdr で表されるものが挙げられる。これら化学式において、Maはリチウムと合金を形成可能な金属元素および半金属元素のうちの少なくとも1種を表し、MbはリチウムおよびMa以外の金属元素および半金属元素のうちの少なくとも1種を表し、Mcは非金属元素の少なくとも1種を表し、MdはMa以外の金属元素および半金属元素のうちの少なくとも1種を表す。また、s、t、u、p、qおよびrの値はそれぞれs>0、t≧0、u≧0、p>0、q>0、r≧0である。 Examples of such metal elements or metalloid elements include tin (Sn), lead (Pb), aluminum, indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), and cadmium. (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) or hafnium (Hf). Tin or silicon is preferred. These alloys or compounds, for example, those represented by the chemical formula Ma s Mb t Li u or a chemical formula Ma p Mc q Md r,. In these chemical formulas, Ma represents at least one of a metal element and a metalloid element capable of forming an alloy with lithium, Mb represents at least one of a metal element and a metalloid element other than lithium and Ma, Mc represents at least one of nonmetallic elements, and Md represents at least one of metallic elements and metalloid elements other than Ma. The values of s, t, u, p, q, and r are s> 0, t ≧ 0, u ≧ 0, p> 0, q> 0, and r ≧ 0, respectively.

次いで、この負極合剤スラリーを、例えば、銅箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている負極集電体12Aに塗布し溶剤を乾燥させたのち、圧縮成型して負極活物質層12Bを形成し、負極12を作製する(ステップS102)。   Next, this negative electrode mixture slurry is applied to, for example, a negative electrode current collector 12A made of a metal foil such as a copper foil, a nickel foil or a stainless steel foil, and the solvent is dried. The layer 12B is formed, and the negative electrode 12 is produced (step S102).

続いて、正極集電体11Aにリード13を取り付けると共に、負極集電体12Aにリード14を取り付けたのち、正極活物質層11Bおよび負極活物質層12Bの上に電解質層15を形成する(ステップS103)。電解質層15は、例えば、電解液と、高分子化合物と、この高分子化合物の溶剤とを混合して、この混合物を正極活物質層11Bおよび負極活物質層12Bの上に塗布して乾燥させ、溶剤を揮発させることにより形成する。   Subsequently, the lead 13 is attached to the positive electrode current collector 11A and the lead 14 is attached to the negative electrode current collector 12A, and then the electrolyte layer 15 is formed on the positive electrode active material layer 11B and the negative electrode active material layer 12B (step) S103). The electrolyte layer 15 is prepared by, for example, mixing an electrolytic solution, a polymer compound, and a solvent for the polymer compound, and applying the mixture onto the positive electrode active material layer 11B and the negative electrode active material layer 12B and drying the mixture. It is formed by volatilizing the solvent.

電解液には、溶媒にリチウム塩などの電解質塩を溶解させたものを用いる。溶媒としては、例えば、炭酸プロピレン、炭酸エチレン、炭酸ブチレン、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチル、1,3−ジオキソール−2−オン、4−ビニル−1,3−ジオキソラン−2−オン、エチレンスルフィド、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、酢酸エステル、酪酸エステル、あるいはプロピオン酸エステルなどの非水溶媒が挙げられる。溶媒には1種を単独で用いてもよいが2種以上を混合して用いてもよい。   As the electrolytic solution, a solution in which an electrolyte salt such as a lithium salt is dissolved in a solvent is used. Examples of the solvent include propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, and ethylene. Sulfide, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl Non-aqueous solvents such as sulfolane, acetonitrile, propionitrile, acetic acid ester, butyric acid ester, or propionic acid ester are listed. As the solvent, one kind may be used alone, or two or more kinds may be mixed and used.

リチウム塩としては、例えば、LiPF6 ,LiAsF6 ,LiBF4 ,LiClO4 ,LiB(C6 5 4 ,LiCH3 SO3 ,LiCF3 SO3 ,LiN(CF3 SO2 2 ,LiN(C2 5 SO2 2 ,LiN(C4 9 SO2 )(CF3 SO2 ),LiC(CF3 SO2 3 ,LiC4 9 SO3 ,LiAlCl4 、LiSiF6 、LiClあるいはLiBrが挙げられる。リチウム塩には1種を単独で用いてもよいが2種以上を混合して用いてもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, LiN (C 4 F 9 SO 2) (CF 3 SO 2), LiC (CF 3 SO 2) 3, LiC 4 F 9 SO 3, LiAlCl 4, LiSiF 6, LiCl or LiBr are Can be mentioned. One lithium salt may be used alone, or two or more lithium salts may be mixed and used.

高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンあるいはポリカーボネートが挙げられる。   Examples of the polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, Examples thereof include polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, and polycarbonate.

そののち、電解質層15を形成した正極11と負極12とをセパレータ16を介して積層し、長手方向に巻回して巻回電極体10を形成する(ステップS104)。セパレータ16には、例えば、ポリプロピレンあるいはポリエチレンなどのポリオレフィン系の材料よりなる多孔質膜、またはセラミックス性の不織布などの無機材料よりなる多孔質膜が用いられ、これら2種以上の多孔質膜を積層しても用いてもよい。   After that, the positive electrode 11 and the negative electrode 12 on which the electrolyte layer 15 is formed are stacked via the separator 16 and wound in the longitudinal direction to form the wound electrode body 10 (step S104). For the separator 16, for example, a porous film made of a polyolefin-based material such as polypropylene or polyethylene, or a porous film made of an inorganic material such as a ceramic nonwoven fabric is used, and these two or more kinds of porous films are laminated. Or may be used.

次いで、巻回電極体10をラミネートフィルムよりなる外装部材20の間に挟み込み、リード13,14を外装部材20の内側から外側に引き出す(ステップS105)。ラミネートフィルムには、例えば樹脂層の間に金属層を挟んだものを用いる。具体的には、例えば、ナイロンフィルムと、アルミニウム箔と、ポリオレフィンフィルムとをこの順に張り合わせたものが好ましい。   Next, the wound electrode body 10 is sandwiched between the exterior members 20 made of a laminate film, and the leads 13 and 14 are pulled out from the inside to the outside of the exterior member 20 (step S105). For example, a laminate film in which a metal layer is sandwiched between resin layers is used. Specifically, for example, a nylon film, an aluminum foil, and a polyolefin film laminated in this order are preferable.

続いて、外装部材20の周縁部を加熱しつつ加圧して貼り合わせる(ステップS106)。例えば、図示しないが、巻回電極体10の形状に合わせて窪みが形成された上下2つの押圧部材の間に、外装部材20に挟み込んだ巻回電極体10を置き、押圧部材を加熱しながら上下に移動させて外装部材20を加圧する。   Subsequently, the peripheral edge portion of the exterior member 20 is heated and pressed and bonded together (step S106). For example, although not shown, the wound electrode body 10 sandwiched between the exterior members 20 is placed between two upper and lower pressing members each having a depression formed in accordance with the shape of the wound electrode body 10, and the pressing member is heated. The exterior member 20 is pressurized by moving up and down.

その際、圧力は多段階に変化させて加える。例えば、図4に示したように、2段階に分けて加圧し、1段階目よりも2段階目の圧力を高くするようにする。すなわち、順に圧力が高くなるように変化させる。このように多段階に変化させて加圧することにより、1段階で加圧する場合に比べてリード13,14にかかる衝撃が小さくなり、リード13,14の切断が抑制される。また、最終段階では高い圧力を加えるので、温度を必要以上に高くしなくても、高い密閉性が得られる。   At that time, the pressure is applied in various stages. For example, as shown in FIG. 4, pressurization is performed in two stages so that the pressure in the second stage is higher than that in the first stage. That is, the pressure is changed so as to increase in order. By applying pressure in such a multi-stage manner, the impact applied to the leads 13 and 14 is reduced compared to the case of applying pressure in one stage, and the cutting of the leads 13 and 14 is suppressed. In addition, since a high pressure is applied in the final stage, high sealing performance can be obtained without increasing the temperature more than necessary.

各段階における圧力はその段階において一定である必要はなく、例えば図4に示したように徐々に変化していてもよい。これは加圧速度によるものであり、加圧速度が遅ければ設定圧力まで徐々に圧力が増加し、加圧速度が速ければ設定圧力まですぐに到達してその圧力が一定時間保持される。各段階の時間は任意である。   The pressure in each stage does not need to be constant in that stage, and may change gradually as shown in FIG. 4, for example. This is due to the pressurization speed. If the pressurization speed is slow, the pressure gradually increases to the set pressure. If the pressurization speed is high, the pressure reaches the set pressure immediately and the pressure is maintained for a certain time. The time for each stage is arbitrary.

なお、外装部材20の周縁部は各辺を同時に貼り合わせてもよいが、リード13,14を引き出した辺と、他の辺とを分けて貼り合わせてもよい。例えば、1枚のラミネートフィルムを折り曲げて用いる場合には、リード13,14を引き出した辺と、他の2辺とを分けて貼り合わせてもよく、2枚のラミネートフィルムを用いる場合には、リード13,14を引き出した辺と、他の3辺とを分けて貼り合わせてもよい。この場合、少なくともリード13,14を引き出した辺については、上述したように圧力を多段階に変化させて貼り合わせる。他の辺については、多段階に変化させなくてもよい。   Note that each side of the peripheral portion of the exterior member 20 may be bonded at the same time, but the side from which the leads 13 and 14 are drawn out may be bonded separately from the other side. For example, when one laminate film is used by bending, the side from which the leads 13 and 14 are pulled out and the other two sides may be bonded separately, and when two laminate films are used, The side from which the leads 13 and 14 are pulled out may be bonded to the other three sides separately. In this case, at least the sides from which the leads 13 and 14 are drawn are bonded together by changing the pressure in multiple stages as described above. Other sides need not be changed in multiple stages.

これにより、図2および図3に示した電池が完成する。   Thereby, the battery shown in FIGS. 2 and 3 is completed.

また、図5に示したようにして製造してもよい。まず、例えば上記製造方法と同様にして正極および負極12を作製したのち(ステップS201,202)、正極集電体11Aにリード13を取り付けると共に、負極集電体12Aにリード14を取り付け、正極11と負極12とをセパレータ16を介して積層し巻回する(ステップS203)。次いで、これをラミネートフィルムよりなる外装部材20の間に挟み込み、外装部材20の周縁部を1辺を残して加熱しつつ加圧して貼り合わせ、袋状とする(ステップS204)。その際、リード13,14は外装部材20の開放辺から外側に引き出す。   Moreover, you may manufacture as shown in FIG. First, for example, after producing the positive electrode and the negative electrode 12 in the same manner as the above manufacturing method (steps S201 and S202), the lead 13 is attached to the positive electrode current collector 11A, and the lead 14 is attached to the negative electrode current collector 12A. And the negative electrode 12 are stacked via the separator 16 and wound (step S203). Next, this is sandwiched between the exterior members 20 made of a laminate film, and the peripheral edge of the exterior member 20 is heated and pressed while leaving one side to form a bag (step S204). At that time, the leads 13 and 14 are pulled out from the open side of the exterior member 20.

続いて、外装部材20の内部に電解液と高分子化合物の原料であるモノマーとを含む電解質組成物を注入し(ステップS205)、外装部材20の開放辺、すなわちリード13,14を引き出した辺を加熱しつつ加圧して貼り合わせる(ステップS206)。その際、圧力は上記製造方法で説明したように多段階に変化させて加える。そののち、例えば加熱することにより電解質組成物を重合させる。これにより、図2および図3に示した電池が完成する。   Subsequently, an electrolyte composition containing an electrolytic solution and a monomer that is a raw material for the polymer compound is injected into the exterior member 20 (step S205), and the open side of the exterior member 20, that is, the side from which the leads 13 and 14 are drawn out. These are bonded together by applying pressure while heating (step S206). At that time, the pressure is applied in various stages as described in the above production method. Thereafter, the electrolyte composition is polymerized, for example, by heating. Thereby, the battery shown in FIGS. 2 and 3 is completed.

なお、上記工程では、ステップS204においてリード13,14を引き出した辺を開放辺とし、ステップS206においてその開放辺を圧力を多段階に変化させて貼り合わせる場合について説明したが、ステップS204においてリード13,14を引き出した辺を貼り合わせ、他の辺を開放辺としてもよい。その場合には、リード13,14を引き出した辺を貼り合わせるステップS204において圧力を多段階に変化させるようにする。   In the above process, the side where the leads 13 and 14 are pulled out in step S204 is defined as an open side, and the open side is bonded in step S206 by changing the pressure in multiple stages. , 14 may be bonded together, and the other side may be an open side. In that case, the pressure is changed in multiple steps in step S204 where the sides from which the leads 13 and 14 are drawn are bonded.

このように本実施の形態によれば、外装部材20の周縁部のうちリードを引き出した領域を貼り合わせる際に、圧力を多段階に変化させて加えるようにしたので、リードにかかる衝撃を小さくしつつ、外装部材20を確実に貼り合わせることができる。よって、貼り合わせ時の温度および圧力などの製造条件の幅を広くすることができ、製造歩留まりを容易に向上させることができる。   As described above, according to the present embodiment, when the region from which the lead is drawn out of the peripheral portion of the exterior member 20 is bonded, the pressure is changed in multiple stages, so that the impact on the lead is reduced. However, the exterior member 20 can be securely bonded. Therefore, the range of manufacturing conditions such as temperature and pressure at the time of bonding can be widened, and the manufacturing yield can be easily improved.

更に、本発明の具体的な実施例について詳細に説明する。   Further, specific embodiments of the present invention will be described in detail.

図1に示した工程に従い図2および図3に示した構造を有する電池を作製した。外装部材20には、ナイロンフィルムと、アルミニウム箔と、ポリプロピレンフィルムとをこの順に貼り合わせた厚み85μmのものを用いた。外装部材20の周縁部を貼り合わせる際には、リード13,14に合わせて溝を形成した押圧部材を用い、各辺を同時に貼り合わせた。押圧部材は、リード13,14に合わせた溝の深さを95μmから170μmの範囲内で変えたものを複数用意し、それぞれについて圧力および温度の条件を変えて電池を作製した。圧力は2段階に変化させて加え、1段階目の設定圧力は0.1MPa、2段階目の設定圧力は0.15MPaまたは0.2MPaとした。設定圧力というのは各段階における到達圧力ということである。温度は、185℃、195℃、または205℃とした。   A battery having the structure shown in FIGS. 2 and 3 was fabricated according to the steps shown in FIG. As the exterior member 20, a member having a thickness of 85 μm in which a nylon film, an aluminum foil, and a polypropylene film are bonded together in this order was used. When bonding the peripheral edge of the exterior member 20, each side was bonded simultaneously using a pressing member in which a groove was formed in accordance with the leads 13 and 14. A plurality of pressing members were prepared by changing the depth of the groove corresponding to the leads 13 and 14 within the range of 95 μm to 170 μm, and the battery was fabricated by changing the pressure and temperature conditions for each. The pressure was changed in two stages and the first stage set pressure was 0.1 MPa, and the second stage set pressure was 0.15 MPa or 0.2 MPa. The set pressure is the ultimate pressure at each stage. The temperature was 185 ° C., 195 ° C., or 205 ° C.

また、比較例として、外装部材の周縁部を貼り合わせる際の圧力を1段階で加えたことを除き、他は同様にして電池を作製した。設定圧力、すなわち到達圧力は、0.1MPa、0.15MPaまたは0.2MPaとした。押圧部材は、リード13,14に合わせた溝の深さを95μmから140μmの範囲内で変化させた。   Further, as a comparative example, a battery was fabricated in the same manner except that the pressure at the time of pasting the peripheral portion of the exterior member was applied in one step. The set pressure, that is, the ultimate pressure, was 0.1 MPa, 0.15 MPa, or 0.2 MPa. In the pressing member, the depth of the groove corresponding to the leads 13 and 14 was changed within the range of 95 μm to 140 μm.

作製した各電池について、リード13,14が切断していないかどうか、およびリード13,14と外装部材20との間に隙間がないかどうかを検査した。その結果を図6,7に示す。図6,7において、○はリード13,14の切断がなく、かつ外装部材20の貼り合わせにも隙間がない良品を示し、×* はリード13,14の切断が認められた不良品を示し、×**は外装部材の貼り合わせに隙間が認められた不良品を示している。 Each manufactured battery was inspected for whether or not the leads 13 and 14 were cut, and whether or not there was a gap between the leads 13 and 14 and the exterior member 20. The results are shown in FIGS. In FIG. 6, 7, ○ is no cutting of the leads 13 and 14, and shows a good no gaps in the bonding of the outer member 20, × * indicates defective cutting of the leads 13 and 14 were observed , X ** indicates a defective product in which a gap was recognized in the bonding of the exterior member.

図6と図7とを比較すれば分かるように、圧力を2段階に変化させて加えた実施例によれば、溝の深さ、圧力および温度を変化させても広い範囲内において良品を得る事ができたのに対して、圧力を1段階で加えた比較例によれば、一部の狭い範囲内でしか良品を得ることができなかった。すなわち、外装部材20の周縁部を貼り合わせる際に、圧力を多段階に変化させて加えるようにすれば、製造条件の幅が広くなり、製造歩留まりを容易に向上させることができることが分かった。   As can be seen from a comparison between FIG. 6 and FIG. 7, according to the embodiment in which the pressure was changed in two steps, a good product was obtained within a wide range even if the groove depth, pressure and temperature were changed. On the other hand, according to the comparative example in which the pressure was applied in one step, a good product could be obtained only within a part of a narrow range. That is, it has been found that if the pressure is applied in multiple stages when the peripheral edge portion of the exterior member 20 is bonded, the manufacturing conditions can be widened and the manufacturing yield can be easily improved.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例においては、電池の構成について具体的に説明したが、本発明は、外装部材20にラミネートフィルムを用いた電池であれば、他の構成を有するものを製造する場合にも同様に適用することができる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, the configuration of the battery has been specifically described. However, the present invention manufactures a battery having a different configuration as long as the battery uses a laminate film for the exterior member 20. The same applies to the case.

例えば、電解質層15を形成せずに、電解液、すなわち液状の電解質をセパレータ16に含浸させるようにしてもよい。また、電解質層15を他の材料、例えば溶媒を用いずにイオン伝導性を有する高分子化合物に電解質塩を分散させたもの、または無機イオン伝導体により形成するようにしてもよい。更に、正極11および負極12を他の材料により構成するようにしてもよく、電極反応物質もリチウムに限定されない。加えて、正極11および負極12を巻回して巻回電極体10とするのではなく、正極と負極とを1層以上ずつ積層した積層体としてもよく、また、正極と負極とを積層して折り畳んだ構造としてもよい。   For example, the separator 16 may be impregnated with an electrolytic solution, that is, a liquid electrolyte, without forming the electrolyte layer 15. The electrolyte layer 15 may be formed of another material, for example, a polymer compound having ion conductivity dispersed without using a solvent, or an inorganic ion conductor. Furthermore, you may make it comprise the positive electrode 11 and the negative electrode 12 with another material, and an electrode reactant is not limited to lithium. In addition, the positive electrode 11 and the negative electrode 12 may not be wound to form the wound electrode body 10, but may be a laminate in which one or more positive electrodes and negative electrodes are laminated, or the positive electrode and the negative electrode are laminated. It may be a folded structure.

本発明の一実施の形態に係る電池の製造方法を表す流れ図である。It is a flowchart showing the manufacturing method of the battery which concerns on one embodiment of this invention. 図1に示した電池の製造方法を用いて作製する電池の構成を分解して表す斜視図である。It is a perspective view which decomposes | disassembles and represents the structure of the battery produced using the manufacturing method of the battery shown in FIG. 図2に示した電池における巻回電極体の一部を拡大して表す断面図である。FIG. 3 is an enlarged sectional view showing a part of a wound electrode body in the battery shown in FIG. 2. 図1に示した工程ステップS106を説明するための図である。It is a figure for demonstrating process step S106 shown in FIG. 本発明の一実施の形態に係る他の電池の製造方法を表す流れ図である。It is a flowchart showing the manufacturing method of the other battery which concerns on one embodiment of this invention. 本発明の実施例における製造条件と良・不良の結果とを表す関係図である。It is a relationship figure showing the manufacturing conditions in the Example of this invention, and the result of good and bad. 比較例における製造条件と良・不良の結果とを表す関係図である。It is a relationship figure showing the manufacturing conditions in a comparative example, and the result of good and bad.

符号の説明Explanation of symbols

10…巻回電極体、11…正極、11A…正極集電体、11B…正極活物質層、12…負極、12A…負極集電体、12B…負極活物質層、13,14…リード、15…電解質層、16…セパレータ、20…外装部材。
DESCRIPTION OF SYMBOLS 10 ... Winding electrode body, 11 ... Positive electrode, 11A ... Positive electrode collector, 11B ... Positive electrode active material layer, 12 ... Negative electrode, 12A ... Negative electrode collector, 12B ... Negative electrode active material layer, 13, 14 ... Lead, 15 ... electrolyte layer, 16 ... separator, 20 ... exterior member.

Claims (3)

ラミネートフィルムの周縁部を貼り合わせた外装部材の内部に、正極および負極と共に電解質を封入した電池の製造方法であって、
正極および負極にそれぞれ取り付けられた各リードを外装部材の内側から外側に引き出し、外装部材の周縁部を加熱しつつ加圧して貼り合わせる際に、少なくともリードを引き出した領域については圧力を多段階に変化させて加えることを特徴とする電池の製造方法。
A battery manufacturing method in which an electrolyte is encapsulated together with a positive electrode and a negative electrode inside an exterior member bonded with a peripheral edge of a laminate film,
When each lead attached to the positive electrode and the negative electrode is pulled out from the inside of the exterior member to the outside, and the peripheral edge of the exterior member is heated and pressed and bonded together, the pressure is multistage in at least the region where the lead is pulled out A method for producing a battery, wherein the battery is added after being changed.
圧力は順に高くなるように変化させることを特徴とする請求項1記載の電池の製造方法。   2. The battery manufacturing method according to claim 1, wherein the pressure is changed so as to increase in order. 加圧は2段階に分けて行い、1段階目よりも2段階目の圧力を高くすることを特徴とする請求項1記載の電池の製造方法。
2. The battery manufacturing method according to claim 1, wherein the pressurization is performed in two stages, and the pressure in the second stage is made higher than that in the first stage.
JP2004204687A 2004-07-12 2004-07-12 Battery manufacturing method Expired - Fee Related JP4788116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204687A JP4788116B2 (en) 2004-07-12 2004-07-12 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204687A JP4788116B2 (en) 2004-07-12 2004-07-12 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2006031957A true JP2006031957A (en) 2006-02-02
JP4788116B2 JP4788116B2 (en) 2011-10-05

Family

ID=35898075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204687A Expired - Fee Related JP4788116B2 (en) 2004-07-12 2004-07-12 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4788116B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128547A (en) * 1986-11-19 1988-06-01 Sanyo Electric Co Ltd Sealing method of thin-type cell
JPH09199175A (en) * 1996-01-23 1997-07-31 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary cell
JP2000067846A (en) * 1998-08-20 2000-03-03 Dainippon Printing Co Ltd Battery case having safety valve
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001266952A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2005056815A (en) * 2003-07-22 2005-03-03 Toyota Motor Corp Secondary battery and fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128547A (en) * 1986-11-19 1988-06-01 Sanyo Electric Co Ltd Sealing method of thin-type cell
JPH09199175A (en) * 1996-01-23 1997-07-31 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary cell
JP2000067846A (en) * 1998-08-20 2000-03-03 Dainippon Printing Co Ltd Battery case having safety valve
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001266952A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2005056815A (en) * 2003-07-22 2005-03-03 Toyota Motor Corp Secondary battery and fabrication method thereof

Also Published As

Publication number Publication date
JP4788116B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4793378B2 (en) Non-aqueous electrolyte battery
JP4501081B2 (en) Electrode forming method and battery manufacturing method
JP5768359B2 (en) Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
KR101432806B1 (en) Non-aqueous solvent, non-aqueous electrolyte compositions, and non-aqueous electrolyte secondary battery
CN102623709B (en) Battery
JP5109359B2 (en) Nonaqueous electrolyte secondary battery
KR20020027227A (en) Solid electrolyte cell
CN102148357B (en) For the negative pole of lithium rechargeable battery, lithium rechargeable battery, electric power tool, motor vehicle and power storage system
JP3831939B2 (en) battery
US20090325064A1 (en) Electrode assembly and lithium secondary battery having the same
JP2006216451A (en) Method of manufacturing battery
JP2021506074A (en) Electrolyte and lithium secondary battery containing it
JP2013118069A (en) Lithium secondary battery
JP5793411B2 (en) Lithium secondary battery
JP2007035391A (en) Positive electrode material, positive electrode and battery
JP2015195167A (en) Negative electrode for nonaqueous secondary batteries, nonaqueous secondary battery, nonaqueous secondary battery system, and method for manufacturing nonaqueous secondary battery
JP4782266B2 (en) Non-aqueous electrolyte battery
JP4192635B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP2003059538A (en) Manufacturing method of cell
JP2007042439A (en) Electrolyte and battery
JP4788116B2 (en) Battery manufacturing method
CN110265628B (en) Positive electrode and lithium ion secondary battery
JP2004014445A (en) Apparatus for manufacture of battery
JP2000243427A (en) Solid electrolyte cell and its manufacture
JP2010021043A (en) Separator, manufacturing method of separator and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4788116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees