JP2006030704A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2006030704A
JP2006030704A JP2004210768A JP2004210768A JP2006030704A JP 2006030704 A JP2006030704 A JP 2006030704A JP 2004210768 A JP2004210768 A JP 2004210768A JP 2004210768 A JP2004210768 A JP 2004210768A JP 2006030704 A JP2006030704 A JP 2006030704A
Authority
JP
Japan
Prior art keywords
protective layer
layer
resin
surface protective
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210768A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishina
努 仁科
Toyoshige Sakaguchi
豊重 坂口
Ikuo Takagi
郁夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Imaging Device Co Ltd
Original Assignee
Fuji Electric Imaging Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Imaging Device Co Ltd filed Critical Fuji Electric Imaging Device Co Ltd
Priority to JP2004210768A priority Critical patent/JP2006030704A/en
Publication of JP2006030704A publication Critical patent/JP2006030704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having a surface protective layer which has excellent lubricity, is resistant to scraping and flawing, prevents an image defect due to filming etc., is good in coming off of toner and has high durability, in the electrophotographic photoreceptor having a photosensitive layer and a surface protective layer on a conductive substrate. <P>SOLUTION: The electrophotographic photoreceptor having the photosensitive layer and the surface protective layer on the conductive substrate contains cured matter of cyanate ester as a base resin in the surface protective layer. The cured matter is preferably a high polymer which is expressed by general formula (II) (where, R<SP>1</SP>represents an aromatic organic group; n represents an integer of 2 or 3) and is prepared by curing a cyanate ester compound expressed by general formula (I) (where, R<SP>1</SP>and n represent the same as the above). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真感光体に係り、特には、導電性基体上に感光層と表面保護層を備えた電子写真感光体に関する。本発明の電子写真感光体は、特に電子写真方式のプリンター、複写機、ファクシミリなどに好んで搭載される。   The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor having a photosensitive layer and a surface protective layer on a conductive substrate. The electrophotographic photosensitive member of the present invention is particularly preferably mounted on electrophotographic printers, copiers, facsimiles and the like.

近年、電子写真感光体、中でも有機光導電材料を感光層として用いた有機電子写真感光体は、無公害であって、低コストに製造することができ、さらにその有機材料の選択自由度の高さによって、市場の要求特性に対応する感光体特性を比較的容易に設計できるなどの優れた点を有しているため、すでに多種類の電子写真感光体が発表され、普及もしている。   In recent years, electrophotographic photoreceptors, in particular, organic electrophotographic photoreceptors using an organic photoconductive material as a photosensitive layer are non-polluting, can be produced at low cost, and have a high degree of freedom in selecting organic materials. As a result, it has excellent points such as relatively easy design of the photoreceptor characteristics corresponding to the required characteristics of the market. Therefore, many types of electrophotographic photoreceptors have already been announced and are widely used.

有機電子写真感光体は導電性基体上に有機材料を主成分とする感光層を被覆した構造を持つ。その感光層は光導電性機能を有する有機光導電材料を樹脂に分散した層を主要層として有する。前記感光層の構造としては電荷発生材料を樹脂に分散させた層(電荷発生層)と電荷輸送材料を樹脂に分散させた層(電荷輸送層)を積層した構造や、電荷発生材料および電荷輸送材料を単一の樹脂層に分散させた単層構造等が知られている。両構造の感光体とも既に実用化されている。   An organic electrophotographic photoreceptor has a structure in which a photosensitive layer mainly composed of an organic material is coated on a conductive substrate. The photosensitive layer has as its main layer a layer in which an organic photoconductive material having a photoconductive function is dispersed in a resin. The photosensitive layer has a structure in which a layer in which a charge generation material is dispersed in a resin (charge generation layer) and a layer in which a charge transport material is dispersed in a resin (charge transport layer), or a charge generation material and charge transport. A single-layer structure in which materials are dispersed in a single resin layer is known. Both types of photoreceptors have already been put into practical use.

電子写真感光体は電子写真プロセスにおいて、その機能を発揮させることにより、所要の感度、電気特性、光学特性等を単に初期的に満たすというだけでなく、さらに、繰り返し使用された後でも、大きく劣化することなく、良好な画像を形成する特性を満たす必要がある。たとえば、前記電子写真プロセスにおいては、感光体の表面すなわち支持体(導電性基体)から最も離れた感光層の表面に、コロナ帯電、トナ−現像、紙への転写、クリ−ニング処理などの電気的、機械的外力が、繰り返し直接に加えられるために、それらに対する耐久性が要求されるのである。具体的には、摺擦による表面の摩耗やキズの発生、また、コロナ帯電時に発生するオゾンによる表面の劣化などに対する耐久性が要求される。一方、トナ−現像、クリ−ニングの繰り返しによる感光体の表面層へのトナ−固着(フィルミング)という問題もある。これに対しては前記表面層のクリ−ニング性を向上することが求められている。   The electrophotographic photoreceptor not only simply satisfies the required sensitivity, electrical characteristics, optical characteristics, etc., but also greatly deteriorates after repeated use by exerting its functions in the electrophotographic process. Therefore, it is necessary to satisfy the characteristic of forming a good image. For example, in the electrophotographic process, the surface of the photosensitive member, that is, the surface of the photosensitive layer farthest from the support (conductive substrate) is subjected to electrical charging such as corona charging, toner development, transfer to paper, and cleaning treatment. Since mechanical and mechanical external forces are applied directly and repeatedly, durability against them is required. Specifically, durability against surface abrasion and scratches due to rubbing and surface degradation due to ozone generated during corona charging is required. On the other hand, there is also a problem of toner fixing (filming) to the surface layer of the photoreceptor due to repeated toner development and cleaning. For this, it is required to improve the cleaning properties of the surface layer.

上記のような表面層に要求される諸々の耐久性を満たすために、感光層表面に樹脂を主成分とする新たな保護層を設ける試みがなされている。保護層の機械的強度の面からは、一般的に硬化性樹脂が優れている。しかし、このような硬化性樹脂でも、単体では現在要求がますます厳しくなる耐久性に関して決して十分ではなく、さらに樹脂の機械的強度を補強する効果のあるフィラー、潤滑性を付与するための添加剤などが必要とされる場合がある。   In order to satisfy various durability required for the surface layer as described above, an attempt is made to provide a new protective layer mainly composed of a resin on the surface of the photosensitive layer. In view of the mechanical strength of the protective layer, a curable resin is generally excellent. However, even such a curable resin is not sufficient in terms of durability, which is now increasingly demanding by itself, and further, a filler that has an effect of reinforcing the mechanical strength of the resin, and an additive for imparting lubricity Etc. may be required.

前記添加剤として潤滑剤を含有させる理由は、単に樹脂の機械的強度の増大による耐久性の向上という観点のみで、硬化性樹脂またはさらにフィラー添加した保護層を設けて保護層表面を削れ難くすると、前記表面が削れによりリフレッシュされ難くなるため、却って繰り返し使用によりトナーが前記感光層表面に付着し固着しやすくなり、フィルミングが発生し、画像に欠陥を発生させるからである。   The reason for including a lubricant as the additive is simply to improve the durability by increasing the mechanical strength of the resin, and to provide a protective layer added with a curable resin or further filler to make it difficult to scrape the surface of the protective layer. This is because the surface becomes difficult to be refreshed due to scraping, and on the contrary, the toner tends to adhere to and adhere to the surface of the photosensitive layer by repeated use, filming occurs, and the image is defective.

一方、表面保護層に潤滑性成分を添加して、表面の潤滑性を良くし、また、表面へのトナーの付着力を小さくして、固着を防止し、トナーフィルミングを抑えることに関しては、液状潤滑剤の場合は繰り返し使用の際の潤滑効果の持続性に問題があり、また、固形潤滑剤の場合は、微粒子状の潤滑剤を塗膜中に混在させて使うので、塗膜とするための塗布液中への潤滑剤微粒子の分散性や分散安定性に問題がある。   On the other hand, regarding the addition of a lubricating component to the surface protective layer to improve the lubricity of the surface, and to reduce the adhesion of the toner to the surface to prevent sticking and to suppress toner filming, In the case of liquid lubricants, there is a problem with the durability of the lubrication effect during repeated use, and in the case of solid lubricants, since finely divided lubricants are mixed in the paint film, it is used as a paint film. Therefore, there is a problem in the dispersibility and dispersion stability of the lubricant fine particles in the coating liquid.

また、前述のように硬化性樹脂のみで表面保護層を構成する場合は、一般的に硬化性樹脂の電気抵抗は電子写真感光体の表面保護層として適した電気抵抗(108Ω・cm〜1015Ω・cm)より大きい(すなわち絶縁性が高い)ため、そのままでは感光体としての光電特性が犠牲になってしまうという問題がある。光電特性が犠牲になると、たとえば、露光時に発生した電荷の前記保護層中における移動に支障が出て明部電位が十分に下がらず、明部電位が上昇することにより、現像電位マージンが狭くなることおよび除電後の残留電位が上昇することにより、特に長期の繰り返し印刷を行った場合に画像濃度が低下する等の問題が生ずる。このような問題を回避するには、表面保護層に用いる硬化性樹脂としては、高絶縁性樹脂に添加剤により導電性を高める(または絶縁性を低くする)必要がある。 In the case where the surface protective layer is composed of only the curable resin as described above, the electric resistance of the curable resin is generally an electric resistance suitable for the surface protective layer of the electrophotographic photosensitive member (10 8 Ω · cm˜ 10 15 Ω · cm) (that is, the insulating property is high), there is a problem that the photoelectric characteristics as a photoconductor are sacrificed as it is. When the photoelectric characteristics are sacrificed, for example, movement of charges generated during exposure in the protective layer is hindered, the bright part potential is not sufficiently lowered, and the bright part potential is increased, so that the development potential margin is narrowed. As a result, and the residual potential after neutralization increases, there arises a problem that the image density is lowered particularly when long-term repetitive printing is performed. In order to avoid such a problem, as the curable resin used for the surface protective layer, it is necessary to increase the conductivity (or lower the insulating property) with a highly insulating resin by using an additive.

前述のように絶縁性の高い表面保護層を用いた場合でも感光層の光電特性を犠牲にしないために、保護層中に金属酸化物をフィラーとして微粒子の状態で分散させて電気抵抗を制御した保護層が既に提案されている(特許文献1−特許請求の範囲)。また、導電性付与剤の添加により樹脂層の電気抵抗を制御することについても知られている(特許文献2−0060段落)。しかし、従来の金属酸化物微粒子を分散させる方法では、金属酸化物微粒子の結着樹脂中での分散性、凝集性または保護層の透明度に問題があるため、そのような金属酸化物微粒子をフィラーとして結着樹脂に添加し分散させると、保護層の導電性の不均一性、塗布ムラなどによる画像欠陥、繰り返し帯電による残留電位の上昇、光散乱による感度低下といった現象が生じ易い。   As described above, even when a highly protective surface protective layer is used, the electrical resistance is controlled by dispersing the metal oxide as a filler in the protective layer in the form of fine particles so as not to sacrifice the photoelectric characteristics of the photosensitive layer. A protective layer has already been proposed (Patent Document 1-Claims). It is also known to control the electrical resistance of the resin layer by adding a conductivity imparting agent (Patent Document 2-0060 paragraph). However, in the conventional method of dispersing metal oxide fine particles, there are problems in the dispersibility of the metal oxide fine particles in the binder resin, the cohesiveness, or the transparency of the protective layer. When added to and dispersed in the binder resin, phenomena such as non-uniform conductivity of the protective layer, image defects due to coating unevenness, an increase in residual potential due to repeated charging, and a decrease in sensitivity due to light scattering are likely to occur.

電子写真感光体の表面保護層に前記金属酸化物微粒子を分散させ、または導電性付与剤を添加すること等の目的は、表面保護層自体の電気抵抗を制御することにより電子写真プロセスの繰り返しにおける感光層内での残留電位の増加を防止することであり、そのような電子写真感光体の保護層の適切な電気抵抗値は前述したように108Ω・cm〜1015Ω・cm程度であるとされている。
特公平6−16213号公報 特開2003−202693号公報
The purpose of dispersing the metal oxide fine particles in the surface protective layer of the electrophotographic photoreceptor or adding a conductivity-imparting agent is to repeat the electrophotographic process by controlling the electrical resistance of the surface protective layer itself. This is to prevent an increase in residual potential in the photosensitive layer, and the appropriate electrical resistance value of the protective layer of such an electrophotographic photosensitive member is about 10 8 Ω · cm to 10 15 Ω · cm as described above. It is said that there is.
Japanese Patent Publication No. 6-16213 JP 2003-202893 A

しかしながら、一般的に前記保護層を形成する主成分である樹脂の電気抵抗値は、電子写真装置の設置場所の湿度環境の変化に伴い、樹脂の吸湿性に起因するイオン電導による影響を受け易いため、表面保護層に必要な前記最適電気抵抗値範囲を保って良好な画像品質を維持することが困難という側面も有している。 However, in general, the electrical resistance value of the resin, which is the main component for forming the protective layer, is easily influenced by ion conduction due to the hygroscopicity of the resin as the humidity environment of the installation location of the electrophotographic apparatus changes. Therefore, it also has an aspect that it is difficult to maintain good image quality while maintaining the optimum electric resistance value range necessary for the surface protective layer.

さらに、一般的に最外層である保護層の潤滑性を高め、電気抵抗を制御する粒子を分散させる場合、分散粒子による入射光の散乱を防ぐためには、入射光の波長よりも粒子の粒径が小さいこと、すなわち、0.3μm以下であることが必要である(前記特許文献1)。しかし、一般に粒径0.3μm以下の金属酸化物粒子は樹脂溶液(塗布液)中において凝集傾向が特に強く、均一な分散が困難であり、さらに、いったん分散しても、また二次凝集や沈降が起こるために安定して粒径0.3μm以下の微粒子を分散させた分散膜を生産することは非常に困難であった。さらに透明度、導電均一性を向上させるためには、さらに粒径の細かい超微粒子粉体(一次粒径0.1μm以下)を分散することが有用であるが、このような超微粒子は、さらに分散性、分散安定性が悪くなる傾向にあった(前記特許文献1)。さらに特に高湿下において、繰り返し帯電プロセスにより発生するオゾン、NOXなどのコロナ生成物などが保護層表面に付着することにより感光体の表面抵抗の低下を引き起こし、画像流れが発生するなどの問題により、未だ保護層として十分に満足できる電子写真特性を示すものが得られていないのが現状である。 Furthermore, in order to increase the lubricity of the protective layer, which is generally the outermost layer, and to disperse particles that control electrical resistance, in order to prevent scattering of incident light by the dispersed particles, the particle size of the particles is larger than the wavelength of the incident light. Must be small, that is, 0.3 μm or less (Patent Document 1). However, in general, metal oxide particles having a particle size of 0.3 μm or less have a particularly strong tendency to agglomerate in a resin solution (coating solution), and it is difficult to uniformly disperse them. Since sedimentation occurs, it is very difficult to produce a dispersion film in which fine particles having a particle size of 0.3 μm or less are stably dispersed. In order to further improve transparency and conductivity uniformity, it is useful to disperse ultrafine particle powder (primary particle size of 0.1 μm or less) with a finer particle size. And dispersion stability tend to be poor (Patent Document 1). More particularly in high humidity, causing a decrease in the surface resistance of the photosensitive member by ozone generated by repeatedly charging process, such as corona products such as NO X is attached to the protective layer surface, problems such as image flow occurs As a result, there has not yet been obtained a film that exhibits sufficiently satisfactory electrophotographic characteristics as a protective layer.

本発明は以上説明した点に鑑みてなされたものであり、本発明の目的は、導電性基体上に感光層と表面保護層を有する電子写真感光体において、前記の問題点を改良し、潤滑性に優れ、削れにくく、傷が付きにくく、フィルミング等による画像欠陥を防止し、トナー離れの良い高耐久性の表面保護層を備える電子写真感光体を提供することにある。   The present invention has been made in view of the above-described points, and an object of the present invention is to improve the above-mentioned problems in an electrophotographic photosensitive member having a photosensitive layer and a surface protective layer on a conductive substrate, and to lubricate. It is an object of the present invention to provide an electrophotographic photosensitive member having a highly durable surface protective layer which is excellent in properties, hard to be scraped, hardly scratched, prevents image defects due to filming and the like, and has good toner separation.

特許請求の範囲の請求項1記載の本発明によれば、導電性基体上に感光層と表面保護層を有する電子写真感光体において、該表面保護層中に、ベース樹脂としてシアン酸エステルの硬化物を含有することにより、達成される。   According to the first aspect of the present invention, in the electrophotographic photosensitive member having a photosensitive layer and a surface protective layer on a conductive substrate, the cyanate ester is cured as a base resin in the surface protective layer. This is achieved by containing the product.

特許請求の範囲の請求項2記載の本発明によれば、前記硬化物が、次式(I)、

Figure 2006030704

(式中、R1は芳香族有機基を表し、nは2または3の整数を表す)で示されるシアン酸エステル化合物を硬化させた、次式(II)、

Figure 2006030704

(式中、R1およびnは前記のものと同じものを表す)で示される高分子である請求項1記載の電子写真感光体とすることが好ましい。 According to the present invention as set forth in claim 2, the cured product has the following formula (I):

Figure 2006030704

(Wherein R 1 represents an aromatic organic group and n represents an integer of 2 or 3), a cured cyanate compound represented by the following formula (II):

Figure 2006030704

2. The electrophotographic photosensitive member according to claim 1, wherein R 1 and n are polymers represented by the same formulas above.

特許請求の範囲の請求項3記載の本発明によれば、前記シアン酸エステルが、次式(III)、

Figure 2006030704

(式中、R2はCH2、C(CH32、CH(CH3)、C(CF32、O、SO2、Sを表す)で示される請求項1または2記載の電子写真感光体とすることが望ましい。 According to the present invention as set forth in claim 3, the cyanate ester is represented by the following formula (III):

Figure 2006030704

3. The electron according to claim 1, wherein R 2 represents CH 2 , C (CH 3 ) 2 , CH (CH 3 ), C (CF 3 ) 2 , O, SO 2 , S. A photographic photoreceptor is desirable.

特許請求の範囲の請求項4記載の本発明によれば、表面保護層中に、金属酸化物を主成分とするフィラー、導電性付与剤および潤滑剤からなる群のうち、少なくとも一つを含有する請求項1乃至3のいずれか一項に記載の電子写真感光体とすることがより好ましい。   According to the present invention of claim 4, the surface protective layer contains at least one of a group consisting of a filler mainly composed of a metal oxide, a conductivity imparting agent, and a lubricant. The electrophotographic photosensitive member according to any one of claims 1 to 3 is more preferable.

本発明によれば、導電性基体上に感光層と表面保護層を有する電子写真感光体において、潤滑性に優れ、削れにくく、傷が付きにくく、フィルミング等による画像欠陥を防止し、トナー離れの良い高耐久性の表面保護層を備える電子写真感光体を提供することができる。   According to the present invention, in an electrophotographic photosensitive member having a photosensitive layer and a surface protective layer on a conductive substrate, it has excellent lubricity, is difficult to scrape, is not easily scratched, prevents image defects due to filming, etc. It is possible to provide an electrophotographic photosensitive member having a good and highly durable surface protective layer.

以下、この発明の電子写真感光体にかかる実施例について、図面を用いて詳細に説明する。この発明は、その要旨を超えない限り、以下に説明する実施例に限定されるものではない。図1は、本発明の感光体の一実施例を示す模式的要部断面図で、1は導電性基体、2は下引き層、3は電荷発生層、4は電荷輸送層、5は表面保護層、6は単層感光層を表わしている。感光層は、電荷発生層3と電荷輸送層4とに分離した機能分離型の図1(a)、図1(b)と、電荷発生物質と電荷輸送物質を同一層に含有する単層型の図1(c)とに大別される。図1(a)は基体上に電荷発生層3、電荷輸送層4の順に積層された負帯電タイプであり、図1(b)は図1(a)とは逆に基体上に電荷輸送層4、電荷発生層3の順に積層された正帯電タイプであり、図1(c)は、単層型で主として正帯電タイプである。   Hereinafter, embodiments of the electrophotographic photosensitive member of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the examples described below as long as the gist thereof is not exceeded. FIG. 1 is a schematic cross-sectional view of an essential part showing an embodiment of the photoreceptor of the present invention, wherein 1 is a conductive substrate, 2 is an undercoat layer, 3 is a charge generation layer, 4 is a charge transport layer, and 5 is a surface. A protective layer 6 represents a single photosensitive layer. The photosensitive layer is a functionally separated type in which the charge generation layer 3 and the charge transport layer 4 are separated, and a single layer type containing the charge generation material and the charge transport material in the same layer. FIG. 1 (c). FIG. 1A shows a negative charge type in which a charge generation layer 3 and a charge transport layer 4 are laminated in this order on a substrate, and FIG. 1B shows a charge transport layer on the substrate opposite to FIG. 1A. 4 and the charge generation layer 3 are laminated in the order of the positive charge type, and FIG. 1C is a single layer type and mainly a positive charge type.

導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体となっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、炭素鋼、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂などの上に導電処理を施したものでもよい。   The conductive substrate 1 serves as a support for each of the other layers as well as serving as an electrode of the photoreceptor, and may be any of a cylindrical shape, a plate shape, and a film shape, and is made of aluminum, carbon steel, or stainless steel. In addition, a metal such as nickel, or a material obtained by conducting a conductive treatment on glass, resin, or the like may be used.

下引き層2は、樹脂を主成分とする層やアルマイト等の酸化皮膜等からなり、導電性基体から感光層への不要な電荷の注入防止、基体表面の欠陥被覆、感光層の接着性の向上等の目的で必要に応じて設けられる。樹脂バインダとしてポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン樹脂、シリコーン樹脂、ポリブチラール樹脂、ポリアミド樹脂およびこれらの共重合体などを適宜組み合わせて使用することが可能である。また樹脂バインダ中に金属酸化物微粒子等を含有させてもよい。金属酸化物微粒子としては、SiO2、TiO2、In23、ZrO2等の微粒子を用いることが可能である。 The undercoat layer 2 is composed of a resin-based layer, an anodized oxide film, or the like, which prevents injection of unnecessary charges from the conductive substrate to the photosensitive layer, covers defects on the substrate surface, and adheres to the photosensitive layer. It is provided as necessary for the purpose of improvement. As the resin binder, polyethylene, polypropylene, polystyrene, acrylic resin, vinyl chloride resin, vinyl acetate resin, polyurethane resin, epoxy resin, polyester resin, melamine resin, silicone resin, polybutyral resin, polyamide resin, and copolymers thereof are appropriately used. It can be used in combination. Further, metal oxide fine particles and the like may be contained in the resin binder. As the metal oxide fine particles, fine particles such as SiO 2 , TiO 2 , In 2 O 3 and ZrO 2 can be used.

下引き層2の膜厚は、下引き層2の配合組成にも依存するが、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定することができる。電荷発生層3は、有機光導電性物質を真空蒸着して形成され、または有機光導電性物質の粒子を樹脂バインダ中に分散させた材料を塗布して形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層4への注入性が重要で、注入性の電場依存性が少なく低電場でも注入の良いことが望ましい。   The film thickness of the undercoat layer 2 depends on the composition of the undercoat layer 2 but can be arbitrarily set within a range that does not cause an adverse effect such as an increase in residual potential when repeatedly used. The charge generation layer 3 is formed by vacuum-depositing an organic photoconductive substance, or is formed by applying a material in which particles of an organic photoconductive substance are dispersed in a resin binder. appear. In addition, since the charge generation efficiency is high, the injection property of the generated charge into the charge transport layer 4 is important, and the injection property is less dependent on the electric field, and it is desirable that the injection is good even at a low electric field.

電荷発生層3の膜厚は、含まれる電荷発生物質の光吸収係数の大きさに関係して変わり、必要な電荷発生能が得られる厚さに決められ、一般的には5μm以下であり、好適には1μm以下である。電荷発生層3は電荷発生物質を主体としてこれに電荷輸送物質などを添加して使用することも可能である。電荷発生物質として、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を用いることができ、またこれらの顔料を組み合わせて用いてもよい。特にフタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましく、更には、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、特開2004−2874号公報に記載のCuKα:X線回折スペクトルにてブラッグ角2θが9.6°を最大ピークとするチタニルフタロシアニンが好ましい。   The film thickness of the charge generation layer 3 changes in relation to the magnitude of the light absorption coefficient of the contained charge generation material, and is determined to be a thickness that provides the necessary charge generation capability, and is generally 5 μm or less, Preferably, it is 1 μm or less. The charge generation layer 3 can also be used with a charge generation material as a main component and a charge transport material added thereto. As the charge generation substance, phthalocyanine pigments, azo pigments, anthanthrone pigments, perylene pigments, perinone pigments, squarylium pigments, thiapyrylium pigments, quinacridone pigments, and the like may be used, or these pigments may be used in combination. In particular, as the phthalocyanine pigment, metal-free phthalocyanine, copper phthalocyanine, and titanyl phthalocyanine are preferable. Furthermore, X-type metal-free phthalocyanine, τ-type metal-free phthalocyanine, ε-type copper phthalocyanine, β-type titanyl phthalocyanine, Y-type titanyl phthalocyanine, Preferred is titanyl phthalocyanine having a maximum peak of Bragg angle 2θ of 9.6 ° in the CuKα: X-ray diffraction spectrum described in Kaikai 2004-2874.

電荷発生層3に用いる樹脂バインダとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリブチラール樹脂、塩化ビニル系共重合体、フェノキシ樹脂、シリコーン樹脂、メタクリル酸エステル樹脂およびこれらの共重合体などを適宜組み合わせて使用することが可能である。   The resin binder used for the charge generation layer 3 includes polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, epoxy resin, polybutyral resin, vinyl chloride copolymer, phenoxy resin, silicone resin, methacrylic ester resin, and these Copolymers and the like can be used in appropriate combinations.

電荷輸送層4は、樹脂バインダ中に電荷輸送物質を分散させた材料からなる塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。   The charge transport layer 4 is a coating film made of a material in which a charge transport material is dispersed in a resin binder. The charge transport layer 4 retains the charge of the photoreceptor as an insulator layer in the dark, and is injected from the charge generation layer at the time of light reception. Exhibits the function of transporting charges.

電荷輸送物質としては、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物やポリビニルカルバゾールなどの電荷輸送性ポリマー等を使用することが可能である。   As a charge transport material, a hydrazone compound, a pyrazoline compound, a pyrazolone compound, an oxadiazole compound, an oxazole compound, an arylamine compound, a benzidine compound, a stilbene compound, a charge transporting polymer such as a styryl compound or polyvinylcarbazole, or the like can be used. Is possible.

電荷輸送層4に用いる樹脂バインダとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、メタクリル酸エステルの重合体および共重合体などを適宜組み合わせて使用することが可能である。   As the resin binder used for the charge transport layer 4, a polycarbonate resin, a polyester resin, a polystyrene resin, a methacrylic ester polymer, a copolymer, and the like can be used in appropriate combination.

電荷輸送層4の膜厚は、実用的に有効な表面電位を維持するためには3〜50μmの範囲が好ましく、より好適には10〜40μmである。   The thickness of the charge transport layer 4 is preferably in the range of 3 to 50 μm, more preferably 10 to 40 μm in order to maintain a practically effective surface potential.

単層感光層6の場合は、樹脂バインダ中に電荷発生物質と電荷輸送物質を分散させた材料からなる塗膜であり、上記電荷発生層3および電荷輸送層4に用いられる材料を同様に用いることが可能である。膜厚は、実用的に有効な表面電位を維持するためには3〜50μmの範囲が好ましく、より好適には10〜40μmである。   In the case of the single-layer photosensitive layer 6, it is a coating film made of a material in which a charge generation substance and a charge transport substance are dispersed in a resin binder, and the materials used for the charge generation layer 3 and the charge transport layer 4 are similarly used. It is possible. The film thickness is preferably in the range of 3 to 50 μm, more preferably 10 to 40 μm, in order to maintain a practically effective surface potential.

これら感光層中には、感度の向上や残留電位の減少、あるいは繰り返し使用時の特性変動を低減する目的で、必要に応じ電子受容物質を含有することができる。電子受容物質としては、無水琥珀酸、無水マレイン酸、ジブロム無水琥珀酸、無水フタル酸、3−ニトロ無水フタル酸、4−ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4−ニトロフタルイミド、テトラシアノエチレン、テトラシアノシノジメタン、クロラニル、ブロマニル、ο−ニトロ安息香酸などの電子親和力の大きな化合物を挙げることができる。   These photosensitive layers can contain an electron accepting material as necessary for the purpose of improving sensitivity, reducing residual potential, or reducing characteristic fluctuations during repeated use. Examples of the electron acceptor include succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, pyromellitic acid, trimellitic acid, Mention may be made of compounds having a large electron affinity such as trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanosinodimethane, chloranil, bromanyl, o-nitrobenzoic acid.

また、感光層中には、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることもできる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。   Further, the photosensitive layer may contain a deterioration preventing agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light. Compounds used for such purposes include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.

表面保護層5は、図1(a)、(b)および(c)に示すように感光層の最表面上に設けられる。表面保護層5は、潤滑性に優れ、機械的ストレスに対する耐久性に優れ、さらに化学的に安定な物質で構成され、暗所ではコロナ放電の電荷を受容して保持する機能を有しており、かつ電荷発生層3が感応する光をできるだけ透過する性能を有し、露光時に前記光を透過し、電荷発生層3に到達させ、発生した電荷の注入を受けて表面電荷を中和消滅させる機能を有することが必要である。また、使用される材料は前述のとおり、電荷発生物質の光の吸収極大の波長領域においてできるだけ透明であることが望ましい。また、表面保護層の塗膜形成時に用いられる溶剤が下層の電荷輸送層を含む感光層表面をできるだけ溶解しないことが好ましい。   The surface protective layer 5 is provided on the outermost surface of the photosensitive layer as shown in FIGS. 1 (a), (b) and (c). The surface protective layer 5 is excellent in lubricity, excellent in durability against mechanical stress, and is composed of a chemically stable material, and has a function of receiving and holding the charge of corona discharge in the dark. In addition, the charge generation layer 3 has the ability to transmit the sensitive light as much as possible, transmits the light at the time of exposure, reaches the charge generation layer 3, receives the generated charge, and neutralizes and eliminates the surface charge. It is necessary to have a function. Further, as described above, it is desirable that the material used be as transparent as possible in the wavelength region of the light absorption maximum of the charge generation material. Moreover, it is preferable that the solvent used when forming the coating film of the surface protective layer does not dissolve the photosensitive layer surface including the lower charge transport layer as much as possible.

また、表面保護層5の材料としては、本発明のベース樹脂としてシアン酸エステルの硬化物(シアナート樹脂)を含有した材料が好適である。ベース樹脂としてのシアン酸エステルの硬化物は単独で用いる場合が好ましいが、シアン酸エステルの硬化物を主成分とし、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等を混合させても本発明の効果は得られる。さらに、本発明にかかるシアン酸エステルの硬化物を主成分とする表面保護膜は下層の樹脂バインダーがポリカーボネート系樹脂である場合が比較的好ましい。その理由は、前記保護膜形成時に用いられる溶剤としてのメチルエチルケトンに対するポリカーボネート系樹脂の溶解性が低いからである。シアン酸エステルの具体的化合物を以下に示す。

Figure 2006030704
Further, as the material of the surface protective layer 5, a material containing a cured product of cyanate ester (cyanate resin) as the base resin of the present invention is suitable. The cured product of cyanate ester as the base resin is preferably used alone, but the effect of the present invention can be obtained by mixing a cured product of cyanate ester as a main component with epoxy resin, acrylic resin, urethane resin, etc. It is done. Further, in the surface protective film mainly composed of a cured product of cyanate ester according to the present invention, it is relatively preferable that the lower resin binder is a polycarbonate resin. This is because the polycarbonate resin has low solubility in methyl ethyl ketone as a solvent used when forming the protective film. Specific compounds of cyanate ester are shown below.
Figure 2006030704

また、触媒としては、オクチル酸亜鉛、オクチル酸錫、アセチルアセトン亜鉛、アセチルアセトン鉄、ジブチル錫ジマレエートなどの有機金属化合物、塩化アルミニウム、塩化錫、塩化亜鉛などの金属塩、トリエチレンジアミン、ジメチルベンジルアミンなどのアミン類などを必要に応じて添加すると効果的である。   Catalysts include organometallic compounds such as zinc octylate, tin octylate, acetylacetone zinc, acetylacetone iron and dibutyltin dimaleate, metal salts such as aluminum chloride, tin chloride and zinc chloride, triethylenediamine and dimethylbenzylamine. It is effective to add amines as necessary.

また、シアン酸エステルの硬化物の他に、潤滑剤、補強フィラー、導電性フィラー(導電性付与剤)等を添加すると表面保護層としての機能が高まる。詳細な理由は不明ながら、シアナート樹脂の場合、前記潤滑剤、補強フィラー、導電性フィラー等を添加しても、比較的、環境の変動による表面保護層の電気抵抗の変動が小さく、画像品質への影響が小さいことが特長である。   Further, when a lubricant, a reinforcing filler, a conductive filler (conductivity imparting agent) or the like is added in addition to a cured product of cyanate ester, the function as a surface protective layer is enhanced. Although the detailed reason is unknown, in the case of cyanate resin, even if the above-mentioned lubricant, reinforcing filler, conductive filler, etc. are added, the fluctuation of the electrical resistance of the surface protective layer due to the fluctuation of the environment is relatively small, leading to image quality. The effect of this is small.

前記潤滑剤としては、各種シリコーンオイル、フッ素系高分子オイルなどが用いられる。補強フィラーとしては、直径が0.3μm、より好ましくは0.1μm以下の高分子量のポリマー微粒子または高架橋性ポリマー微粒子、繊維径が0.1μm〜5μmで、繊維長さが5μm〜100μm径の、より好ましくは繊維径が0.1μm〜2μmで、繊維長さが5μm〜40μmの、ナイロン繊維、パラ系アラミド繊維、ポリフェニレンサルファイド繊維、ビニロン繊維等の有機高分子繊維または炭素繊維、アルミナ、ほう酸等の無機ウィスカ、酸化チタン等の金属酸化物微粒子などが用いられる。前記無機繊維、金属酸化物微粒子などは、樹脂溶液(塗布液)中への分散性を高めるためにアミノシラン、エポキシシラン、メタクリロキシシランなどによる表面処理が施されることが好ましい。フィラーとしては、特に、金属酸化物を主成分とするものを好適に用いることができる。   As the lubricant, various silicone oils, fluorine polymer oils and the like are used. As the reinforcing filler, a high molecular weight polymer fine particle or highly crosslinkable polymer fine particle having a diameter of 0.3 μm, more preferably 0.1 μm or less, a fiber diameter of 0.1 μm to 5 μm, and a fiber length of 5 μm to 100 μm, More preferably, the fiber diameter is 0.1 μm to 2 μm, and the fiber length is 5 μm to 40 μm. Organic polymer fibers such as nylon fibers, para-aramid fibers, polyphenylene sulfide fibers, vinylon fibers, or carbon fibers, alumina, boric acid, etc. Inorganic whiskers and metal oxide fine particles such as titanium oxide are used. The inorganic fibers, metal oxide fine particles and the like are preferably subjected to a surface treatment with aminosilane, epoxysilane, methacryloxysilane or the like in order to improve dispersibility in the resin solution (coating solution). Especially as a filler, what has a metal oxide as a main component can be used suitably.

表面保護層5の膜厚は、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定することができる。また、前記潤滑剤、補強フィラー、導電性フィラー等の添加剤を加えなくても、樹脂膜の膜厚を薄くするなど前記残留電位が増大しないように考慮すれば、シアン酸エステルの硬化物のみでも表面保護膜として被着させることができる。   The film thickness of the surface protective layer 5 can be arbitrarily set within a range that does not cause an adverse effect such as an increase in residual potential when repeatedly used. In addition, even if additives such as the lubricant, reinforcing filler, and conductive filler are not added, if the residual potential is not increased, such as by reducing the thickness of the resin film, only the cured product of cyanate ester However, it can be applied as a surface protective film.

次に、本発明の電子写真感光体が前述したように、本発明にかかる優れた効果を有することについて、本発明の電子写真感光体にかかる一実施例をとおして説明する。なお、以下「部」とは「重量部」を表わすものとする。また、下記の実施例と比較例において、耐刷性の評価は、実機を模擬して、感光ドラムの回りにウレタン製のクリーニングブレード、トナー、トナー帯電ローラーを施した装置を用い、感光ドラムを回転させて(10万回転)、前記ブレードによる感光ドラム表面の膜削れ量により評価し、耐刷性の指標とした。さらに10万回転後の目視によるフィルミングの有無と、10万回転後の対ウレタンブレードに対する摩擦抵抗の大きさを任意の従来の表面保護層の摩擦抵抗の大きさ(1.0)を基準に相対比較値として求めた。摩擦抵抗の測定は表面性測定機(HEIDON−14DR、新東科学(株)製)にて測定した。従来と測定試料の摩擦抵抗が同程度ならば、1.0、大きい場合は、1.0より大きい値となる。   Next, the fact that the electrophotographic photosensitive member of the present invention has the excellent effects of the present invention as described above will be described through an example of the electrophotographic photosensitive member of the present invention. Hereinafter, “part” represents “part by weight”. Further, in the following examples and comparative examples, the printing durability was evaluated by simulating an actual machine and using a device provided with a urethane cleaning blade, toner, and a toner charging roller around the photosensitive drum. It was rotated (100,000 rotations) and evaluated by the amount of film scraping on the surface of the photosensitive drum by the blade, and used as an index of printing durability. Furthermore, the presence or absence of visual filming after 100,000 revolutions and the magnitude of the frictional resistance against the urethane blade after 100,000 revolutions are based on the magnitude (1.0) of the frictional resistance of any conventional surface protective layer. It was determined as a relative comparison value. The frictional resistance was measured with a surface property measuring machine (HEIDON-14DR, manufactured by Shinto Kagaku Co., Ltd.). If the frictional resistance of the conventional sample and that of the measurement sample are approximately the same, the value is 1.0.

(実施例1)
電気特性評価用として円筒状感光体(30mmΦ)を作製した。アルミニウム素管上に、以下の組成の下引き層分散液を浸漬塗工し、100℃で30分乾燥して膜厚3μmの下引き層を形成した。
アルコール可溶性ナイロン(CM8000:東レ(株)) 5部
アミノシラン処理された酸化チタン微粒子 5部
メタノール、塩化メチレン混合溶剤(6/4(v/v)) 90部
Example 1
A cylindrical photoreceptor (30 mmΦ) was prepared for evaluation of electrical characteristics. An undercoat layer dispersion of the following composition was dip-coated on the aluminum tube, and dried at 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 3 μm.
Alcohol-soluble nylon (CM8000: Toray Industries, Inc.) 5 parts Titanium oxide fine particles treated with aminosilane 5 parts Methanol / methylene chloride mixed solvent (6/4 (v / v)) 90 parts

次に、以下の組成の電荷発生層分散液を浸漬塗工し、100℃で30分乾燥して膜厚0.3・mの電荷発生層を形成した。
チタニルフタロシアニン 11部
塩化ビニル系共重合樹脂(MR−110:日本ゼオン(株)) 1部
塩化メチレン 98部
Next, a charge generation layer dispersion having the following composition was applied by dip coating and dried at 100 ° C. for 30 minutes to form a charge generation layer having a thickness of 0.3 · m.
Titanylphthalocyanine 11 parts Vinyl chloride copolymer resin (MR-110: Nippon Zeon Co., Ltd.) 1 part Methylene chloride 98 parts

次に、以下の組成の電荷輸送層溶液を浸漬塗工し、100℃で30分乾燥して膜厚20μmの電荷輸送層を形成した。
下記式で示されるヒドラゾン化合物(CTC191:高砂香料工業(株))

Figure 2006030704
9部
下記式で示されるブタジエン化合物(T405:高砂香料工業(株))
Figure 2006030704
1部
ビスフェノールZ型ポリカーボネート樹脂(商品名:パンライトTS2050、帝人化成(株)製) 10部
塩化メチレン 90部 Next, a charge transport layer solution having the following composition was dip coated and dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 20 μm.
Hydrazone compound represented by the following formula (CTC191: Takasago International Corporation)
Figure 2006030704
9 parts Butadiene compound represented by the following formula (T405: Takasago International Corporation)
Figure 2006030704
1 part bisphenol Z-type polycarbonate resin (trade name: Panlite TS2050, manufactured by Teijin Chemicals Ltd.) 10 parts methylene chloride 90 parts

次に、以下の組成の表面保護層溶液を浸漬塗工し、130℃で1時間乾燥して膜厚3μmの表面保護層を形成した。
ベース樹脂:ビスフェノールE型シアン酸エステル(商品名Arocy L−10:バンティコ(株))−(前記化学式(1)) 70部
触媒:亜鉛アセチルアセトナート 0.4部
導電性調整剤(導電性フィラー):酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:メチルエチルケトン 200部
以上のようにして電子写真感光体を作製した。
Next, a surface protective layer solution having the following composition was applied by dip coating and dried at 130 ° C. for 1 hour to form a surface protective layer having a thickness of 3 μm.
Base resin: Bisphenol E-type cyanate ester (trade name Arocy L-10: Bantico Co., Ltd.)-(The above chemical formula (1)) 70 parts Catalyst: 0.4 parts of zinc acetylacetonate Conductivity modifier (conductive filler ): Tin oxide (particle size: 0.02 μm) (NanoTek Powder SnO 2 : CI Chemical Co., Ltd.) 30 parts Solvent: Methyl ethyl ketone 200 parts or more An electrophotographic photosensitive member was produced.

(実施例2)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。次の組成の表面保護層溶液を浸漬塗工し、130℃で1時間乾燥して膜厚3μmの表面保護層を形成した。
ベース樹脂:ビスフェノールE型シアン酸エステル(商品名Arocy L−10:バンティコ(株))−(前記化学式(1)) 55部
触媒:亜鉛アセチルアセトナート 0.3部
補強用材料(補強フィラー):無機ウィスカ(FTL−300:石原テクノ、繊維径0.3μm、繊維長5.2μm) 10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:メチルエチルケトン 180部
(Example 2)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below. A surface protective layer solution having the following composition was applied by dip coating and dried at 130 ° C. for 1 hour to form a surface protective layer having a thickness of 3 μm.
Base resin: Bisphenol E type cyanate ester (trade name Arocy L-10: Bantico Co., Ltd.)-(the above chemical formula (1)) 55 parts Catalyst: Zinc acetylacetonate 0.3 part Reinforcing material (reinforcing filler): Inorganic whisker (FTL-300: Ishihara Techno, fiber diameter 0.3 μm, fiber length 5.2 μm) 10 parts Conductivity adjuster: Tin oxide (particle diameter 0.02 μm) (NanoTek Powder SnO 2 : Cii Kasei) 30 parts solvent : 180 parts of methyl ethyl ketone

(実施例3)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。次の組成の表面保護層溶液を浸漬塗工し、130℃で1時間乾燥して膜厚3μmの表面保護層を形成した。
ベース樹脂:ビスフェノールE型シアン酸エステル(商品名Arocy L−10:バンティコ(株))−(前記化学式(1)) 55部
触媒:亜鉛アセチルアセトナート 0.3部
潤滑性付与:シリコーン変性剤(TSR160) 5部
補強用材料:酸化チタン微粒子(ET−600W:石原テクノ、粒径0.3μm)
10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤 :メチルエチルケトン 180部
Example 3
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below. A surface protective layer solution having the following composition was applied by dip coating and dried at 130 ° C. for 1 hour to form a surface protective layer having a thickness of 3 μm.
Base resin: Bisphenol E-type cyanate ester (trade name Arocy L-10: Bantico Co., Ltd.)-(The above chemical formula (1)) 55 parts Catalyst: Zinc acetylacetonate 0.3 part Lubricating: Silicone modifier ( TSR160) 5 parts Reinforcing material: Titanium oxide fine particles (ET-600W: Ishihara Techno, particle size 0.3 μm)
10 parts Conductivity adjuster: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : CI Kasei) 30 parts Solvent: Methyl ethyl ketone 180 parts

(比較例1)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:エポキシ樹脂(THB9502:京セラケミカル) 70部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:キシレン 100部
(Comparative Example 1)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Epoxy resin (THB9502: Kyocera Chemical) 70 parts Conductivity adjuster: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : CI Kasei) 30 parts Solvent: Xylene 100 parts

(比較例2)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:ウレタン樹脂(イソシアネート+ポリオール) 70部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:トルエン 100部
(Comparative Example 2)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Urethane resin (isocyanate + polyol) 70 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : CI Kasei) 30 parts Solvent: Toluene 100 parts

(比較例3)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:アクリル樹脂(アロセットAST5221:日本触媒) 70部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:トルエン 100部
(Comparative Example 3)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Acrylic resin (Alloset AST 5221: Nippon Shokubai) 70 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : Cii Kasei) 30 parts Solvent: Toluene 100 parts

(比較例4)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:フェノール樹脂(PR−912:住友ベークライト) 70部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:イソプロピルアルコール 100部
(Comparative Example 4)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Phenol resin (PR-912: Sumitomo Bakelite) 70 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : CI Kasei) 30 parts Solvent: Isopropyl alcohol 100 parts

(比較例5)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:エポキシ樹脂(THB9502) 60部
補強用材料:無機ウィスカ(FTL−300) 10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:キシレン 100部
(Comparative Example 5)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Epoxy resin (THB9502) 60 parts Reinforcing material: Inorganic whisker (FTL-300) 10 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : Cai Kasei) 30 parts Solvent: 100 parts of xylene

(比較例6)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:ウレタン樹脂(イソシアネート+ポリオール) 60部
補強用材料:無機ウィスカ(FTL−300) 10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:トルエン 100部
(Comparative Example 6)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: urethane resin (isocyanate + polyol) 60 parts Reinforcing material: Inorganic whisker (FTL-300) 10 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : C-I Kasei) 30 parts Solvent: 100 parts of toluene

(比較例7)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:アクリル樹脂(アロセットAST5221) 60部
補強用材料:無機ウィスカ(FTL−300) 10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:トルエン 100部
(Comparative Example 7)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Acrylic resin (Alloset AST 5221) 60 parts Reinforcing material: Inorganic whisker (FTL-300) 10 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : C-I Kasei) 30 parts Solvent : Toluene 100 parts

(比較例8)
以下に説明する表面保護層以外は実施例1と同様にして電子写真感光体を作成した。
ベース樹脂:フェノール樹脂(PR−912) 60部
補強用材料:無機ウィスカ(FTL−300) 10部
導電性調整剤:酸化スズ(粒径0.02μm)(NanoTek Powder SnO2:シーアイ化成) 30部
溶剤:イソプロピルアルコール 100部
(Comparative Example 8)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except for the surface protective layer described below.
Base resin: Phenol resin (PR-912) 60 parts Reinforcing material: Inorganic whisker (FTL-300) 10 parts Conductivity regulator: Tin oxide (particle size 0.02 μm) (NanoTek Powder SnO 2 : C-I Kasei) 30 parts Solvent: 100 parts isopropyl alcohol

(比較例9)
表面保護層を設けない以外は実施例1と同様にして電子写真感光体を作製した。
(評価結果)
表面保護層の耐刷性の指標として電子写真感光体10万回転後の膜削れ量、同じく10万回転後の目視によるフィルミング有無および同じく10万回転後のウレタンブレードとの間の摩擦抵抗を測定して基準値との相対比較結果を表1に示す。
(Comparative Example 9)
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the surface protective layer was not provided.
(Evaluation results)
As an index of printing durability of the surface protective layer, the film scraping amount after 100,000 rotations of the electrophotographic photosensitive member, the presence or absence of filming visually after 100,000 rotations, and the friction resistance between the urethane blades after 100,000 rotations as well Table 1 shows the results of measurement and relative comparison with reference values.

Figure 2006030704
Figure 2006030704

表1から、本発明の電子写真感光体にかかる実施例1、2、3の表面保護層の膜削れ量は順に0.9μm、0.4μm、0.1μmのように小さく、フィルミング性は無いか、あっても実用上の問題が無い程度に少なく、さらに対ウレタンブレードの摩擦抵抗についての表1の結果から、本発明にかかるシアン酸エステルの硬化物はウレタンブレードとの相性に関して、従来の保護膜樹脂としてのエポキシ樹脂、ウレタン樹脂、アクリル樹脂、フェノール樹脂等と同等か、または小さく良好であることが分かる。   From Table 1, the film removal amounts of the surface protective layers of Examples 1, 2, and 3 according to the electrophotographic photosensitive member of the present invention are as small as 0.9 μm, 0.4 μm, and 0.1 μm in order, and the filming property is From the results shown in Table 1 regarding the friction resistance of the urethane blade, the cured product of the cyanate ester according to the present invention is related to the compatibility with the urethane blade. It can be seen that the protective film resin is equivalent to or small and good as an epoxy resin, urethane resin, acrylic resin, phenol resin, or the like.

一方、本発明に含まれない表面保護層または表面保護層を有さない比較例1〜9にかかる電子写真感光体については、比較例1は表面保護層の膜厚3μmのうち、2μmの膜削れがあるということであり、膜削れ量が多すぎることが問題であり、比較例2〜8はフィルミング性に問題があり、比較例9は表面保護膜がない場合であり、表面保護層が削れ、対ウレタンブレードとの摩擦抵抗も大きくなっている点に問題のあることが分かる。   On the other hand, for the electrophotographic photoreceptors according to Comparative Examples 1 to 9 which do not include the surface protective layer or the surface protective layer not included in the present invention, Comparative Example 1 is a film of 2 μm out of the film thickness of 3 μm of the surface protective layer. That is, there is a problem that the amount of film scraping is too large, Comparative Examples 2 to 8 have a problem in filming property, and Comparative Example 9 is a case where there is no surface protective film. It can be seen that there is a problem in that the frictional resistance against the urethane blade is also increased.

本発明の電子写真感光体の一実施例を示す模式的要部断面図で、(a)は積層型電子写真感光体の模式的要部断面図、(b)は(a)とは逆順の積層型電子写真感光体の模式的要部断面図、(c)は、単層型電子写真感光体の模式的要部断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of an essential part showing an embodiment of the electrophotographic photosensitive member of the present invention, where (a) is a schematic cross-sectional view of the essential part of a laminated electrophotographic photosensitive member, FIG. 2C is a schematic cross-sectional view of a main part of a multilayer electrophotographic photosensitive member, and FIG.

符号の説明Explanation of symbols

1 導電性基体
2 下引き層
3 電荷発生層
4 電荷輸送層
5 保護層
6 単層感光層
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Undercoat layer 3 Charge generation layer 4 Charge transport layer 5 Protective layer 6 Single layer photosensitive layer

Claims (4)

導電性基体上に感光層と表面保護層を有する電子写真感光体において、該表面保護層中に、ベース樹脂としてシアン酸エステルの硬化物を含有することを特徴とする電子写真感光体。 An electrophotographic photosensitive member having a photosensitive layer and a surface protective layer on a conductive substrate, wherein the surface protective layer contains a cured product of a cyanate ester as a base resin. 前記硬化物が、次式(I)、

Figure 2006030704

(式中、R1は芳香族有機基を表し、nは2または3の整数を表す)で示されるシアン酸エステル化合物を硬化させた、次式(II)、

Figure 2006030704

(式中、R1およびnは前記のものと同じものを表す)で示される高分子である請求項1記載の電子写真感光体。
The cured product has the following formula (I):

Figure 2006030704

(Wherein R 1 represents an aromatic organic group and n represents an integer of 2 or 3), a cured cyanate compound represented by the following formula (II):

Figure 2006030704

The electrophotographic photosensitive member according to claim 1, wherein R 1 and n are the same as those described above.
前記シアン酸エステルが、次式(III)、

Figure 2006030704

(式中、R2はCH2、C(CH32、CH(CH3)、C(CF32、O、SO2、Sを表す)で示される請求項1または2記載の電子写真感光体。
The cyanate ester is represented by the following formula (III):

Figure 2006030704

3. The electron according to claim 1, wherein R 2 represents CH 2 , C (CH 3 ) 2 , CH (CH 3 ), C (CF 3 ) 2 , O, SO 2 , S. Photoconductor.
表面保護層中に、金属酸化物を主成分とするフィラー、導電性付与剤および潤滑剤からなる群のうち、少なくとも一つを含有する請求項1乃至3のいずれか一項に記載の電子写真感光体。
The electrophotography according to any one of claims 1 to 3, wherein the surface protective layer contains at least one of a group consisting of a filler mainly composed of a metal oxide, a conductivity imparting agent, and a lubricant. Photoconductor.
JP2004210768A 2004-07-16 2004-07-16 Electrophotographic photoreceptor Pending JP2006030704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210768A JP2006030704A (en) 2004-07-16 2004-07-16 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210768A JP2006030704A (en) 2004-07-16 2004-07-16 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2006030704A true JP2006030704A (en) 2006-02-02

Family

ID=35897108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210768A Pending JP2006030704A (en) 2004-07-16 2004-07-16 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2006030704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167768A (en) * 2012-02-15 2013-08-29 Ricoh Co Ltd Photoreceptor, image forming apparatus, and process cartridge
JP2014085564A (en) * 2012-10-25 2014-05-12 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic device, and process cartridge for electrophotographic device
US9933739B2 (en) 2016-05-31 2018-04-03 Oki Data Corporation Drum unit, image forming unit and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167768A (en) * 2012-02-15 2013-08-29 Ricoh Co Ltd Photoreceptor, image forming apparatus, and process cartridge
JP2014085564A (en) * 2012-10-25 2014-05-12 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic device, and process cartridge for electrophotographic device
US9933739B2 (en) 2016-05-31 2018-04-03 Oki Data Corporation Drum unit, image forming unit and image forming apparatus

Similar Documents

Publication Publication Date Title
CN111198484B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7862968B2 (en) Electrophotographic photoreceptor
JP6896556B2 (en) Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US20130288170A1 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP7034768B2 (en) Process cartridge and image forming equipment
JP5871061B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP2006018266A (en) Image forming member
JP2014092672A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US20070292794A1 (en) Imaging members and method for stabilizing a charge transport layer of an imaging member
JP4696951B2 (en) Electrophotographic photoreceptor
WO2010064585A1 (en) Electrophotographic photoreceptor, process for producing the electrophotographic photoreceptor, and electrophotographic device
JP3927930B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US20150277249A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2004302032A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2018205671A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
WO2019159342A1 (en) Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
JP2004347855A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2006030704A (en) Electrophotographic photoreceptor
JP6681229B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
TW201832025A (en) Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device using same
JP2007121819A (en) Electrophotographic photoreceptor and image forming apparatus
JP2007163578A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
US20040180279A1 (en) Electrophotographic photoconductor and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060428

RD02 Notification of acceptance of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Effective date: 20090108

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A02 Decision of refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A02