JP2006030034A - Spectral sensitivity measuring device for solar battery - Google Patents

Spectral sensitivity measuring device for solar battery Download PDF

Info

Publication number
JP2006030034A
JP2006030034A JP2004210715A JP2004210715A JP2006030034A JP 2006030034 A JP2006030034 A JP 2006030034A JP 2004210715 A JP2004210715 A JP 2004210715A JP 2004210715 A JP2004210715 A JP 2004210715A JP 2006030034 A JP2006030034 A JP 2006030034A
Authority
JP
Japan
Prior art keywords
optical system
spectral sensitivity
light
light source
sensitivity measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210715A
Other languages
Japanese (ja)
Inventor
Yasushi Aoki
康 青木
Osamu Niihori
理 新堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004210715A priority Critical patent/JP2006030034A/en
Publication of JP2006030034A publication Critical patent/JP2006030034A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectral sensitivity measuring device for a solar battery, which has a simple structure at a low cost and can increase irradiation intensity of monochromatic light, in comparison with conventional devices. <P>SOLUTION: The spectral sensitivity measuring device 100 is equipped with an incidence optical system 102 having two sources of a long-wavelength light source 102A and a short-wavelength light source 102B; a spectral optical system 104 which spectrally processes light emitted from the light source 102A and the light source 102D of the incidence optical system 102 and can emit monochromatic light having a prescribed spectrum; an emission optical system 106 which irradiates an object to be measured 110 with light entering it from the spectral optical system 104; and a bias optical system 108 which irradiates the object to be measured 110 with bias light from a bias light source 108A. The spectral optical system 104 is configured so that a concave surface grating 104B is formed thereon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池の分光特性を測定可能な太陽電池の分光感度測定装置に関する。   The present invention relates to a solar cell spectral sensitivity measuring apparatus capable of measuring the spectral characteristics of a solar cell.

従来、色素増感型太陽電池等の太陽電池の分光特性を測定可能な、太陽電池の分光感度測定装置が広く知られている。   2. Description of the Related Art Conventionally, a solar cell spectral sensitivity measuring apparatus capable of measuring the spectral characteristics of a solar cell such as a dye-sensitized solar cell is widely known.

例えば、図2に示される分光感度測定装置10は、単色光源12が生成する単色光を、入射光学系14、分光光学系15及び出射光学系16を介して、被測定セルCUTに照射する単色光照射装置18と、バイアス光源20が発生するバイアス光を、単色光に重畳させて照射するバイアス光照射装置22と、被測定セルCUTの出力信号を測定する分光感度測定部24と、を有して構成されている(特許文献1参照)。   For example, the spectral sensitivity measuring apparatus 10 shown in FIG. 2 irradiates the measured cell CUT with monochromatic light generated by the monochromatic light source 12 via the incident optical system 14, the spectral optical system 15, and the outgoing optical system 16. A light irradiating device 18; a bias light irradiating device 22 that irradiates the bias light generated by the bias light source 20 by superimposing on the monochromatic light; and a spectral sensitivity measuring unit 24 that measures the output signal of the cell CUT to be measured. (Refer to Patent Document 1).

この分光感度測定装置10は、バイアス光照射装置20から出射されるバイアス光が被測定セルCUTに照射されている状態で単色光照射装置18から出射される単色光を被測定セルCUTに照射させ、そのときの被測定セルCUTの出力信号に基づいて分光感度測定部24で分光感度の測定を行うものである。   The spectral sensitivity measuring apparatus 10 causes the cell CUT to be irradiated with monochromatic light emitted from the monochromatic light irradiating device 18 in a state in which the bias light emitted from the bias light irradiating device 20 is irradiated to the cell CUT to be measured. The spectral sensitivity measurement unit 24 measures the spectral sensitivity based on the output signal of the measured cell CUT at that time.

このような分光感度測定装置10の分光光学系15に適用される光学素子としては、例えば、図3に示されるようなCzerny−Turner型のモノクロメータ30が知られている。   As an optical element applied to the spectral optical system 15 of such a spectral sensitivity measuring apparatus 10, for example, a Czerny-Turner type monochromator 30 as shown in FIG. 3 is known.

このモノクロメータ30は、入射スリット32と、出射スリット34と、結像素子36、38と、平面グレーティング40と、を有して構成され、平面グレーティング40の回転により出射スリット34を通過する単色光の波長走査(分光)を行うようになっている。   The monochromator 30 includes an entrance slit 32, an exit slit 34, imaging elements 36 and 38, and a planar grating 40, and monochromatic light that passes through the exit slit 34 by the rotation of the planar grating 40. Wavelength scanning (spectroscopy) is performed.

特開2003−57114号公報JP 2003-57114 A

しかしながら、従来の分光感度測定装置の分光光学系に広く適用されるCzerny−Turner型のモノクロメータ30は、構成部品が多く、構造が複雑で、高コストになりやすいといった問題があった。   However, the Czerny-Turner type monochromator 30 widely applied to the spectroscopic optical system of the conventional spectral sensitivity measuring apparatus has a problem that it has many components, has a complicated structure, and tends to be expensive.

しかも、従来の分光感度測定装置によって出射可能な単色光の照射強度は0.5〜5mW/cm程度であるため、5mW/cmを超える照射強度を必要とする太陽電池の分光感度測定には適用することができないといった問題があった。特に、低コストの太陽電池として近年注目されている色素増感型太陽電池は、5mW/cmを越える照射強度が必要とされ、従来の分光感度測定装置での測定には限界があった。 Moreover, the irradiation intensity of the conventional spectral sensitivity measuring apparatus capable monochromatic light emitted by the order of the order 0.5~5mW / cm 2, the spectral sensitivity measurement of the solar cell that requires irradiation intensity exceeding 5 mW / cm 2 There was a problem that could not be applied. In particular, a dye-sensitized solar cell that has been attracting attention as a low-cost solar cell in recent years requires an irradiation intensity exceeding 5 mW / cm 2 , and there is a limit to measurement using a conventional spectral sensitivity measuring apparatus.

本発明は、このような問題点を解決するためになされたものであって、簡易構造、且つ、低コストでありながら、同時に、従来よりも単色光の照射強度を増大することができる太陽電池の分光感度測定装置を提供することを目的とする。   The present invention has been made to solve such problems, and has a simple structure and low cost, and at the same time, can increase the irradiation intensity of monochromatic light as compared with the conventional solar cell. An object of the present invention is to provide a spectral sensitivity measuring apparatus.

本発明は、光源から出射される光を分光し、所定スペクトルの単色光を出射可能な分光光学系を有する太陽電池の分光感度測定装置において、前記分光光学系は、凹面グレーティングを有して構成されていることにより、上記課題を解決したものである。   The present invention relates to a spectral sensitivity measuring device for a solar cell that has a spectral optical system capable of dispersing light emitted from a light source and emitting monochromatic light of a predetermined spectrum, wherein the spectral optical system has a concave grating. As a result, the above problems are solved.

本発明によれば、従来よりも単色光の照射強度を増大することができる上に、凹面鏡などの結像素子を用いずに分光光学系を構成することができ、簡易構造、且つ、低コストの装置にすることができる。   According to the present invention, it is possible to increase the irradiation intensity of monochromatic light as compared with the prior art, and it is possible to configure a spectroscopic optical system without using an imaging element such as a concave mirror, which has a simple structure and low cost. It can be a device.

なお、前記凹面グレーティングは、少なくとも400nm〜1200nmの波長帯域の前記単色光を出射可能とされ、且つ、該単色光の前記波長帯域における照射強度が、0.5mW/cm以上とされていれば、1つの凹面グレーティングで太陽電池の分光感度測定に必要な波長帯域(400nm〜1200nm)を全てカバーすることができる上に、その波長帯域において所定の照射強度(0.5mW/cm以上)を確保することができるようになる。 The concave grating is capable of emitting the monochromatic light in a wavelength band of at least 400 nm to 1200 nm, and the irradiation intensity of the monochromatic light in the wavelength band is 0.5 mW / cm 2 or more. One concave grating can cover all of the wavelength band (400 nm to 1200 nm) necessary for measuring the spectral sensitivity of the solar cell, and also provides a predetermined irradiation intensity (0.5 mW / cm 2 or more) in that wavelength band. It will be possible to secure.

特に、単色光の波長帯域400nm〜800nmにおける照射強度が、5mW/cm〜10mW/cmとされていれば、単色光を太陽光スペクトルの特性に、より近づけることができ、精度の高い分光感度測定が可能となる。 In particular, the irradiation intensity in the wavelength band 400nm~800nm of monochromatic light, if it is a 5mW / cm 2 ~10mW / cm 2 , the monochromatic light on the characteristics of the solar spectrum, it is possible to more approximate, accurate spectral Sensitivity measurement is possible.

なお、本発明に係る太陽電池の分光感度測定装置は、色素増感型太陽電池への適用が、より効果的である。   In addition, the spectral sensitivity measuring device of the solar cell according to the present invention is more effective when applied to a dye-sensitized solar cell.

本発明に係る太陽電池の分光感度測定装置によれば、簡易構造、且つ、低コストでありながら、同時に、従来よりも出射光の照射強度を増大することができる。   According to the spectral sensitivity measuring device for a solar cell according to the present invention, it is possible to increase the irradiation intensity of the emitted light as compared with the related art while simultaneously having a simple structure and low cost.

以下、図面を用いて本発明の実施形態の一例に係る太陽電池の分光感度測定装置について詳細に説明する。   Hereinafter, a spectral sensitivity measuring device for a solar cell according to an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の一例に係る太陽電池の分光感度測定装置(以下、単に「分光感度測定装置」と称す。)100の光学系統図を示したものである。   FIG. 1 shows an optical system diagram of a spectral sensitivity measuring device (hereinafter, simply referred to as “spectral sensitivity measuring device”) 100 for a solar cell according to an example of this embodiment.

この分光感度測定装置100は、2つの長波長光源102A及び短波長光源102Dを有する入射光学系102と、入射光学系102の光源102A、102Dから出射される光を分光し、所定スペクトルの単色光を出射可能な分光光学系104と、分光光学系104から入射される光を被測定物(例えば、色素増感型太陽電池セル)110に照射する出射光学系106と、バイアス光源108Aからのバイアス光を被測定物110に照射するバイアス光学系108と、を備えている。   This spectral sensitivity measuring apparatus 100 splits light emitted from the light source 102A, 102D of the incident optical system 102 and the incident optical system 102 having the two long wavelength light sources 102A and the short wavelength light source 102D, and monochromatic light having a predetermined spectrum. Optical system 104 that can emit light, an output optical system 106 that irradiates the object to be measured (for example, a dye-sensitized solar cell) 110 with light incident from the spectral optical system 104, and a bias from a bias light source 108A And a bias optical system 108 that irradiates the object 110 with light.

入射光学系102は、ハロゲンランプからなる長波長光源102Aと、この長波長光源102Aから出射された一部の光を集光し、分光光学系104へ導く第1レンズ102Bと、長波長光源102Aから出射された光の他の一部を反射し、分光光学系104へ導く第1集光鏡102Cと、キセノンランプからなる短波長光源102Dと、この短波長光源102Dから出射された一部の光を集光し、分光光学系104へ導く第2レンズ102Eと、短波長光源102Dから出射された光の他の一部を反射し、分光光学系104へ導く第2集光鏡102Fと、長波長光源102Aと短波長光源102Dとを切り替える光源切替えステージ102Gと、を有して構成されている。   The incident optical system 102 includes a long-wavelength light source 102A composed of a halogen lamp, a first lens 102B that collects a part of light emitted from the long-wavelength light source 102A and guides it to the spectroscopic optical system 104, and a long-wavelength light source 102A. 102C of the 1st condensing mirror which reflects the other part of the light radiate | emitted from the light, and guides it to the spectroscopic optical system 104, the short wavelength light source 102D which consists of a xenon lamp, and the one part emitted from this short wavelength light source 102D A second lens 102E that collects light and guides it to the spectroscopic optical system 104; a second condensing mirror 102F that reflects another part of the light emitted from the short wavelength light source 102D and guides it to the spectroscopic optical system 104; A light source switching stage 102G for switching between the long wavelength light source 102A and the short wavelength light source 102D is provided.

分光光学系104は、入射スリット104Aと、この入射スリット104Aを通過した光を所定スペクトルの単色光に分光する凹面グレーティング104Bと、分光された単色光が通過する出射スリット104Cと、を有して構成されている。   The spectroscopic optical system 104 includes an entrance slit 104A, a concave grating 104B that splits light that has passed through the entrance slit 104A into monochromatic light having a predetermined spectrum, and an exit slit 104C through which the monochromatic light that has been split passes. It is configured.

この分光光学系104の凹面グレーティング104Bは、回転ステージ104D上に固定されており、回転ステージ104を回転させることによって、入射スリット104Aを介して入射される光の波長走査が可能な構造となっている。なお、本実施形態の一例に係る凹面グレーティング104Bは、溝本数1000本/mm、逆線分散3.3nm/mm、F値2.2、波長範囲400〜1200nm、直径150mmとされている。   The concave grating 104B of the spectroscopic optical system 104 is fixed on the rotary stage 104D, and has a structure capable of scanning the wavelength of light incident through the entrance slit 104A by rotating the rotary stage 104. Yes. The concave grating 104B according to an example of this embodiment has a groove number of 1000 / mm, a reverse dispersion of 3.3 nm / mm, an F value of 2.2, a wavelength range of 400 to 1200 nm, and a diameter of 150 mm.

出射光学系106は、分光光学系104から入射された単色光を集光する第3レンズ106Aと、単色光の高次光をカットするフィルタ106Bと、フィルタ106Bを通過した単色光の光量を調整するNDフィルタ106Cと、NDフィルタ106Cを通過した単色光を集光する第4レンズ106Dと、単色光の一部を反射するミラー106E、106Fと、これらミラー106E、106Fによって反射された単色光をモニターする第1、第2フォトディテクタ106G、106Hと、単色光とノイズ成分(迷光)とを識別する光チョッパ106Iと、光チョッパ106Iを通過した単色光を集光し、被測定物110に照射する第5レンズ106Jと、を有して構成されている。   The emission optical system 106 includes a third lens 106A that condenses the monochromatic light incident from the spectroscopic optical system 104, a filter 106B that cuts higher-order light of the monochromatic light, and an ND that adjusts the amount of monochromatic light that has passed through the filter 106B. The filter 106C, the fourth lens 106D that condenses the monochromatic light that has passed through the ND filter 106C, the mirrors 106E and 106F that reflect part of the monochromatic light, and the monochromatic light reflected by these mirrors 106E and 106F are monitored. First and second photodetectors 106G and 106H, a light chopper 106I for identifying monochromatic light and noise components (stray light), and a monochromatic light that has passed through the light chopper 106I is condensed and irradiated onto the object to be measured 110. And a lens 106J.

バイアス光学系108は、キセノンランプからなるバイアス光源108Aと、このバイアス光源108Aから出射された一部の光を集光し、被測定物110へ導く第6レンズ108Bと、バイアス光源108Aから出射された光の他の一部を反射し、被測定物110へ導く第3集光鏡108Cと、を有して構成されている。   The bias optical system 108 includes a bias light source 108A composed of a xenon lamp, a sixth lens 108B that collects a part of the light emitted from the bias light source 108A and guides the light to the object to be measured 110, and the bias light source 108A. A third condenser mirror 108C that reflects the other part of the reflected light and guides it to the object 110 to be measured.

次に、この分光感度測定装置100の作用について説明する。   Next, the operation of the spectral sensitivity measuring apparatus 100 will be described.

入射光学系102の長波長光源102A(又は短波長光源102D)から出射した光は、分光光学系104の入射スリット104Aを介して凹面グレーティング104Bに入射する。そして、凹面グレ−ティング104Bに入射した光は、凹面グレ−ティング104Bで所定スペクトルの単色光に分光された後、出射スリット104Cを介して出射光学系106に出射する。出射光学系106に入射した単色光は、出射光学系106において高次光の除去、光量の調整等がなされた後、被測定物110に照射される。なお、単色光の波長帯域400nm〜1200nmにおける照射強度は、0.5mW/cm以上とされており、特に、単色光の波長帯域400nm〜800nmにおける照射強度は、5mW/cm〜10mW/cmとされている。 The light emitted from the long wavelength light source 102A (or short wavelength light source 102D) of the incident optical system 102 enters the concave grating 104B via the incident slit 104A of the spectroscopic optical system 104. The light incident on the concave surface grating 104B is split into monochromatic light having a predetermined spectrum by the concave surface grating 104B, and then is output to the output optical system 106 through the output slit 104C. The monochromatic light incident on the output optical system 106 is irradiated on the object to be measured 110 after high-order light is removed and the amount of light is adjusted in the output optical system 106. The irradiation intensity in the wavelength band 400nm~1200nm monochromatic light is a 0.5 mW / cm 2 or more, in particular, irradiation intensity in the wavelength band 400nm~800nm of monochromatic light, 5mW / cm 2 ~10mW / cm 2 .

一方、バイアス光学系108のバイアス光源108Aから出射する光は、出射光学系106から照射される単色光に重畳された状態で、被測定物110に照射される。   On the other hand, the light emitted from the bias light source 108 </ b> A of the bias optical system 108 is irradiated onto the object 110 to be measured while being superimposed on the monochromatic light emitted from the emission optical system 106.

本実施形態の一例に係る分光感度測定装置100によれば、分光光学系104は、凹面グレーティング104Bを有して構成されているため、従来よりも単色光の照射強度を増大することができる上に、凹面鏡などの結像素子を用いずに分光光学系を構成することができ、簡易構造、且つ、低コストの装置にすることができる。   According to the spectral sensitivity measuring apparatus 100 according to an example of the present embodiment, the spectroscopic optical system 104 is configured to include the concave grating 104B, so that the irradiation intensity of monochromatic light can be increased as compared with the conventional case. In addition, a spectroscopic optical system can be configured without using an imaging element such as a concave mirror, and a simple structure and a low-cost apparatus can be achieved.

又、凹面グレーティング104Bは、少なくとも400nm〜1200nmの波長帯域の単色光を出射可能とされ、且つ、該単色光の前記波長帯域における照射強度が、0.5mW/cm以上とされているため、1つの凹面グレーティング104Bで太陽電池の分光感度測定に必要な波長帯域(400nm〜1200nm)を全てカバーすることができる上に、その波長帯域において所定の照射強度(0.5mW/cm以上)を確保することができる。 Further, the concave grating 104B can emit monochromatic light in a wavelength band of at least 400 nm to 1200 nm, and the irradiation intensity of the monochromatic light in the wavelength band is 0.5 mW / cm 2 or more. The single concave grating 104B can cover all the wavelength band (400 nm to 1200 nm) necessary for measuring the spectral sensitivity of the solar cell, and can provide a predetermined irradiation intensity (0.5 mW / cm 2 or more) in that wavelength band. Can be secured.

特に、単色光の波長帯域400nm〜800nmにおける照射強度が、5mW/cm〜10mW/cmとされているため、単色光を太陽光スペクトルの特性に、より近づけることができ、精度の高い分光感度測定が可能な上に、5mW/cmを超える照射強度を必要とする太陽電池(例えば、色素増感型太陽電池など)の分光感度測定にも適用が可能である。 In particular, the irradiation intensity in the wavelength band 400nm~800nm of monochromatic light, since there is a 5mW / cm 2 ~10mW / cm 2 , the monochromatic light on the characteristics of the solar spectrum, it is possible to more approximate, accurate spectral In addition to being able to measure sensitivity, the present invention can also be applied to spectral sensitivity measurement of solar cells (for example, dye-sensitized solar cells) that require irradiation intensity exceeding 5 mW / cm 2 .

なお、本発明に係る分光感度測定装置は、上記実施形態における分光感度測定装置100の構造や形状等に限定されるものではない。   The spectral sensitivity measuring apparatus according to the present invention is not limited to the structure, shape, and the like of the spectral sensitivity measuring apparatus 100 in the above embodiment.

従って、例えば、入射光学系102は長波長光源102A及び短波長光源102Dの2つの光源を備えているが、本発明はこれに限定されるものではなく、入射光学系を1つの光源で構成してもよい。又、単色光の照射強度も、上記実施形態において示した数値に限定されるものではない。   Therefore, for example, the incident optical system 102 includes two light sources, a long wavelength light source 102A and a short wavelength light source 102D. However, the present invention is not limited to this, and the incident optical system is configured by one light source. May be. Further, the irradiation intensity of monochromatic light is not limited to the numerical values shown in the above embodiment.

即ち、本発明に係る分光感度測定装置は、分光光学系が凹面グレーティングを有して構成されていればよい。   That is, the spectral sensitivity measuring apparatus according to the present invention only needs to be configured so that the spectral optical system has a concave grating.

なお、本発明に係る分光感度測定装置は、色素増感型太陽電池への適用が、より効果的であるが、色素増感型太陽電池以外の太陽電池に適用することも可能である。   The spectral sensitivity measuring device according to the present invention is more effective when applied to a dye-sensitized solar cell, but can also be applied to solar cells other than the dye-sensitized solar cell.

本発明は、色素増感型太陽電池等の太陽電池の分光感度測定装置に適用することができる。   The present invention can be applied to a spectral sensitivity measuring device for solar cells such as dye-sensitized solar cells.

本発明の実施形態の一例に係る分光感度測定装置の光学系統図Optical system diagram of a spectral sensitivity measuring apparatus according to an example of an embodiment of the present invention 従来の分光感度測定装置を示す概略図Schematic diagram showing a conventional spectral sensitivity measuring device 従来の分光感度測定装置におけるモノクロメータを示す概略図Schematic showing a monochromator in a conventional spectral sensitivity measuring device

符号の説明Explanation of symbols

CUT…被測定セル
10、100…分光感度測定装置
12…単色光源
14…入射光学系
15…分光光学系
16…出射光学系
18…単色光照射装置
20…バイアス光源
22…バイアス光照射装置
24…分光感度測定部
30…モノクロメータ
32…入射スリット
34…出射スリット
36、38…結像素子
40…平面グレーティング
102…入射光学系
102A…長波長光源
102B…第1レンズ
102C…第1集光鏡
102D…短波長光源
102E…第2レンズ
102F…第2集光鏡
102G…光源切替えステージ
104…分光光学系
104A…入射スリット
104B…凹面グレーティング
104C…出射スリット
104D…回転ステージ
106…出射光学系
106A…第3レンズ
106B…フィルタ
106C…NDフィルタ
106D…第4レンズ
106E、106F…ミラー
106G…第1フォトディテクタ
106H…第2フォトディテクタ
106I…光チョッパ
106J…第5レンズ
108…バイアス光学系
108A…バイアス光源
108B…第6レンズ
108C…第3集光鏡
110…被測定物
CUT ... measured cell 10, 100 ... spectral sensitivity measuring device 12 ... monochromatic light source 14 ... incident optical system 15 ... spectroscopic optical system 16 ... emission optical system 18 ... monochromatic light irradiation device 20 ... bias light source 22 ... bias light irradiation device 24 ... Spectral sensitivity measuring unit 30 ... monochromator 32 ... incident slit 34 ... output slit 36, 38 ... imaging element 40 ... planar grating 102 ... incident optical system 102A ... long wavelength light source 102B ... first lens 102C ... first condenser mirror 102D ... short wavelength light source 102E ... second lens 102F ... second condenser mirror 102G ... light source switching stage 104 ... spectroscopic optical system 104A ... entrance slit 104B ... concave grating 104C ... exit slit 104D ... rotation stage 106 ... exit optical system 106A ... first 3 lenses 106B ... Filter 106C ... ND fill 106D ... Fourth lens 106E, 106F ... Mirror 106G ... First photo detector 106H ... Second photo detector 106I ... Optical chopper 106J ... Fifth lens 108 ... Bias optical system 108A ... Bias light source 108B ... Sixth lens 108C ... Third condensing Mirror 110 ... DUT

Claims (4)

光源から出射される光を分光し、所定スペクトルの単色光を出射可能な分光光学系を有する太陽電池の分光感度測定装置において、
前記分光光学系は、凹面グレーティングを有して構成されている
ことを特徴とする太陽電池の分光感度測定装置。
In a spectral sensitivity measuring device for a solar cell having a spectroscopic optical system capable of dispersing light emitted from a light source and emitting monochromatic light of a predetermined spectrum,
The spectroscopic optical system is configured to have a concave grating. A spectral sensitivity measuring device for a solar cell, wherein:
請求項1において、
前記凹面グレーティングは、少なくとも400nm〜1200nmの波長帯域の前記単色光を出射可能とされ、且つ、該単色光の前記波長帯域における照射強度が、0.5mW/cm以上とされている
ことを特徴とする太陽電池の分光感度測定装置。
In claim 1,
The concave grating is capable of emitting the monochromatic light in a wavelength band of at least 400 nm to 1200 nm, and the irradiation intensity of the monochromatic light in the wavelength band is 0.5 mW / cm 2 or more. A spectral sensitivity measuring device for solar cells.
請求項2において、
前記単色光の波長帯域400nm〜800nmにおける照射強度が、5mW/cm〜10mW/cmとされている
ことを特徴とする太陽電池の分光感度測定装置。
In claim 2,
Irradiation intensity in the wavelength band 400nm~800nm of the monochromatic light, the spectral sensitivity measuring device of the solar cell, characterized in that there is a 5mW / cm 2 ~10mW / cm 2 .
請求項1乃至3のいずれかにおいて、
色素増感型太陽電池の分光感度が測定可能とされている
ことを特徴とする太陽電池の分光感度測定装置。
In any one of Claims 1 thru | or 3,
A spectral sensitivity measuring device for a solar cell, characterized in that the spectral sensitivity of the dye-sensitized solar cell can be measured.
JP2004210715A 2004-07-16 2004-07-16 Spectral sensitivity measuring device for solar battery Pending JP2006030034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210715A JP2006030034A (en) 2004-07-16 2004-07-16 Spectral sensitivity measuring device for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210715A JP2006030034A (en) 2004-07-16 2004-07-16 Spectral sensitivity measuring device for solar battery

Publications (1)

Publication Number Publication Date
JP2006030034A true JP2006030034A (en) 2006-02-02

Family

ID=35896569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210715A Pending JP2006030034A (en) 2004-07-16 2004-07-16 Spectral sensitivity measuring device for solar battery

Country Status (1)

Country Link
JP (1) JP2006030034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221857A (en) * 2012-04-17 2013-10-28 Konica Minolta Inc Solar cell evaluation device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221857A (en) * 2012-04-17 2013-10-28 Konica Minolta Inc Solar cell evaluation device and method

Similar Documents

Publication Publication Date Title
US20210018432A1 (en) Reference Switch Architectures for Noncontact Sensing of Substances
TWI664418B (en) System and method for defect detection and photoluminescence measurement of a sample
JP2016109432A (en) Spectrometric measurement device and spectrometric measurement method
WO2020135540A1 (en) Quantum yield measurement method
JP6201547B2 (en) Spectrometer wavelength calibration method
JP2006194812A (en) Spectrofluorometer
US10690591B2 (en) Measurement time distribution in referencing schemes
TW200525132A (en) Improved real-time goniospectrophotometer
JP6038445B2 (en) Automatic analyzer
CN102753949B (en) Spectrophotometer and method for measuring performance thereof
JP2006030034A (en) Spectral sensitivity measuring device for solar battery
JP3140297B2 (en) Spectrometer
JP4141985B2 (en) Spectrofluorometer and sample cell
JPWO2019038823A1 (en) Far-infrared spectrometer and far-infrared spectroscopy method
JP3126647U (en) Laser excitation type photoluminescence measuring device
JPH10115583A (en) Spectrochemical analyzer
US10386234B2 (en) Wideband spectrograph
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
JP2014199185A (en) Spectrometric measurement instrument for pulse light source
JPH0712718A (en) Spectral analysis device
JP2006300671A (en) Spectroscopic detector
CN112985603B (en) Reference switch architecture for non-contact sensing of substances
JPS6319788Y2 (en)
KR20010079209A (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP3692712B2 (en) Emission spectroscopic analyzer and data processing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105