JP2006029672A - 潜熱流体ループを使用する熱輸送装置 - Google Patents

潜熱流体ループを使用する熱輸送装置 Download PDF

Info

Publication number
JP2006029672A
JP2006029672A JP2004208541A JP2004208541A JP2006029672A JP 2006029672 A JP2006029672 A JP 2006029672A JP 2004208541 A JP2004208541 A JP 2004208541A JP 2004208541 A JP2004208541 A JP 2004208541A JP 2006029672 A JP2006029672 A JP 2006029672A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
condenser
heat
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004208541A
Other languages
English (en)
Inventor
Terushige Fujii
照重 藤井
Haruo Kawasaki
春夫 川崎
Shinichi Toyama
伸一 遠山
Hitoshi Asano
等 浅野
Katsumi Sugimoto
勝美 杉本
Masanobu Wada
賢宣 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Japan Aerospace Exploration Agency JAXA
Original Assignee
Kobe University NUC
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Japan Aerospace Exploration Agency JAXA filed Critical Kobe University NUC
Priority to JP2004208541A priority Critical patent/JP2006029672A/ja
Publication of JP2006029672A publication Critical patent/JP2006029672A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 簡単、軽量な構造で温度制御することが出来る2相流体ループ式装置を提供する。
【解決手段】 閉ループを形成する2相流体ループ式の熱輸送装置は、熱源から熱を吸収し作動流体を蒸気にするための蒸発器(11)と、作動流体の熱を放熱し凝縮させるための凝縮器(12)と、前記蒸発器の出口と前記凝縮器の入口を連結する蒸気管(14)と、前記凝縮器の出口と前記蒸発器の入口を連結する液管(15)と、前記液管の途中に設けられたポンプと(13)、作動流体に圧力をかけるため、前記液管の途中に接続されたアキュムレータ(16)と、前記蒸気管に設けられ、前記蒸発器から前記凝縮器へ輸送される蒸気の量を調節するための、開度を変化させることが出来る絞り(17)と、前記蒸発器の表面温度を測定する温度測定器(18)と、前記蒸発器の表面温度を設定温度に合わせるため、前記絞りの開度を調節する制御器(19)と、を備える。
【選択図】 図1

Description

本発明は、熱輸送装置に関し、特に潜熱流体ループ、即ち2相流体ループを使用して熱輸送を行う熱輸送置に関する。
近年宇宙開発の分野では、大型の宇宙飛行体が開発され、このような大型の宇宙飛行体に搭載される機器は、大型化され、種類も多くなっている。このため、これらの搭載機器からの発熱量が多くなり、大型の排熱装置、熱輸送装置が必要となる。また、宇宙飛行体、宇宙ステーション等では少ない動力で大量の熱を輸送する必要がある。このため、従来のヒートポンプを用いた熱輸送装置では対応が困難である。
そのため、発熱体である搭載機器の周囲に作動流体を循環させ、この作動流体の相変化による潜熱を利用して熱を輸送する2相流体ループ式熱輸送装置が使用されている。
この2相流体ループでは、循環する作動流体が電子機器等の発熱部へ液相で送られ、作動流体は、発熱部で吸熱して蒸気相に変化する。この蒸気相は放熱部へ送られ、ここで放熱して再び液相に戻される。2相の作動流体はポンプで駆動される。
この熱輸送装置では、作動流体を蒸発させることによって蒸発潜熱を利用して熱負荷を吸収して輸送するので、作動流体の単位質量あたりの熱輸送量が大きく、ポンプ動力が少なくてすみ、また熱輸送装置を小型化、軽量化することが出来るという利点がある。
しかし、2相が共存する流れでは、流動が不安定になりやすい。このような不安定な2相流体ループに対して安定した制御を行うのは困難であり、蒸発部の急激な温度上昇などにより流体の液相が失われドライアップする場合がある。
2相流体ループを制御する場合、2相流体の圧力と温度とは対応した関係があるので、圧力を変化させることにより、飽和温度を変化させることが出来る。そのため、温度を一定にするには、2相流体ループの圧力を制御する必要がある。
そのため、2相流体ループの一部に圧力調整用のアキュムレータを接続し、このアキュムレータでループ内の圧力を調整することにより、安定した熱輸送が行えるようにしている。
図4に従来の潜熱を利用した2相流体ループ式熱制御システムの概略図を示す。このシステムは、熱源から熱を吸収するための蒸発器1と、熱を放熱するための凝縮器2と、蒸発器1で蒸気になった作動流体を凝縮器2へ蒸気を輸送する蒸気管4と、凝縮器2で液相に戻された作動流体を蒸発器1へ輸送する液管5とを備える。液管5の途中には、作動流体を駆動するためのポンプ3が設けられている。また、液管5の凝縮器2とポンプ3の間には、蒸発器1の圧力を一定に保持するためのアキュムレータ6が接続されている。
このシステムにおいては、電子機器等の搭載機器(図示せず)からの熱は、搭載機器に接続された蒸発器1内の液体状態の作動流体に吸熱される。蒸発器1内の作動流体は吸熱して蒸気となり、蒸気管4を通って、凝縮器2へ輸送される。この蒸気の作動流体は、凝縮器2で、ラジエータ(図示せず)の作用によって、凝縮して液体に戻る。この液体の作動流体は、ポンプ3へ移動し、ここで加圧されて再度蒸発器1へ輸送される。
この熱制御システムでは、蒸発器1の温度を一定に保持する必要がある。従来は、アキュムレータ6によりアキュムレータ6内の蒸気の圧力を制御することにより、蒸発器1の温度を制御していた。
アキュムレータ6の内部圧力を制御するために、従来は熱式アキュムレータが用いられていた。熱式アキュムレータでは、加熱装置6aと冷却装置(図示せず)を用いて、アキュムレータ内の蒸気と液体の容積比を変えて、流体ループ内の圧力を調整していた。しかし、この熱式アキュムレータは、無重力の宇宙空間では上記と液を分離する工夫が必要であり、また相変化に要する時間遅れが生じ、高精度の制御ができないという問題があった。
特許文献1の熱輸送装置では、この問題を解決するため、機械式アキュムレータを使用する。この装置では、アキュムレータに容積可変形の貯留層を設け、貯留層の容積を変化させることにより、媒体液をループ内へ出し入れし、これによって閉ループ内の圧力を短時間で調整することが出来る。
しかし、この熱輸送装置では、アキュムレータに付随する機械的な機器が複雑になり、システム全体の重量が増大する。その結果、小型軽量で熱輸送量が大きいという2相流体ループの利点が損なわれてしまう。
そのため、簡単な構造で、軽量で、しかも能力の大きい、能動的な熱輸送装置の開発が望まれている。
特開平6−1300号
本発明の目的は、簡単な構造で、軽量で、高能力な熱輸送装置を提供することである。
特に本発明の目的は、簡単、軽量な構造で温度制御することが出来る2相流体ループ式の熱輸送装置を提供することである。
本発明による熱輸送装置は、アキュムレータの温度又は圧力を制御することにより、温度制御するのではなく、2相流体ループ内に絞りを設け、絞りの開度を変えることにより閉ループ全体の温度制御を行う。具体的には、蒸発器の出口と凝縮器の入口を結ぶ蒸気管に絞りを設け、絞りの開度を変化させることにより蒸気圧を制御し、それにより蒸発器の表面温度を制御する。
本発明の1態様では、閉ループを形成する2相流体ループ式の熱輸送装置は、
熱源から熱を吸収し作動流体を蒸気にするための蒸発器と、
作動流体の熱を放熱し凝縮させるための凝縮器と、
前記蒸発器で蒸気になった作動流体を前記凝縮器へ輸送するため、前記蒸発器の出口と前記凝縮器の入口を連結する蒸気管と、
前記凝縮器で液体になった作動流体を前記蒸発器へ輸送するため、前記凝縮器の出口と前記蒸発器の入口を連結する液管と、
作動流体を前記蒸発器の入口へ向かって送るため、前記液管の途中に設けられたポンプと、
作動流体に圧力をかけるため、前記液管の途中に接続されたアキュムレータと、
前記蒸気管に設けられ、前記蒸発器から前記凝縮器へ輸送される蒸気の量を調節するための、開度を変化させることが出来る絞りと、
前記蒸発器の表面温度を測定する温度測定器と、
前記蒸発器の表面温度と設定温度の差に応じて、前記絞りの開度を調節する制御器と、を備える。
前記絞りは蒸気弁であっても良い。
前記制御器は、前記温度測定器に温度を測定させる温度測定部と、予め設定した設定温度、上限温度、下限温度を記憶する記憶部と、測定した温度と、前記記憶部に記憶した温度とを比較する温度比較部と、温度比較の結果により、前記絞りを開閉制御する弁制御部とを備えてもよい。
前記絞りの開度を段階的又は連続的に変化させても良い。
本発明の別の態様では、蒸発器と、凝縮器と、蒸気管と、液管と、ポンプと、アキュムレータと、絞りとを備える2相流体ループ式の熱輸送装置において、前記蒸発器の表面温度を制御する方法が提供される。この方法は、
(a)前記蒸発器の表面の設定温度と、上限温度と、下限温度とを設定し、
(b)前記蒸発器の表面温度を測定し、
(c)測定した前記表面温度を、前記上限温度、前記下限温度と比較し、
(d)前記表面温度が前記上限温度より高いときは、前記絞りの開度を大の位置にし、
前記表面温度が前記下限温度より低いときは、前記絞りの開度を小の位置にし、
前記表面温度が前記上限温度と前記下限温度の間のときは、前記絞りの開度を変化させない、
ステップを備える。
ステップ(b)〜(d)を複数回繰り返し実施することが出来る。
本発明では、蒸気管に設けられた絞りの開度を変えることにより、絞りの前後の圧力損失が変化する。絞りの流出側には、アキュムレータがあり、アキュムレータの圧力が基準の圧力となり、圧力損失の変化は、絞りの上流側の圧力変化に寄与する。そして、絞り上流側に位置する蒸発器内部の作動流体の飽和圧力が変化し、それに伴い、飽和温度が変化する。そのため、蒸発器の表面温度を制御することが出来る。
本発明によれば、2相流体ループ式の熱輸送装置において、軽量で、簡単な構造により、流体の循環速度を変化させ、蒸発器の表面温度を一定に制御することが出来る。
以下、本発明の実施の形態及び実施例を説明する。図1は、本発明の実施の形態による2相流体ループを使用した熱輸送装置の概略図である。図1の装置は、搭載機器(図示せず)に接続され、搭載機器から熱を吸収するための蒸発器11を備える。蒸発器11内では、液管は例えば、平行に延びる複数の管に分岐し、電子機器等の搭載機器から熱を吸収しやすくなっている。蒸発器11内で、液体の作動流体は、搭載機器から熱を吸収して蒸気となる。蒸発器11内の複数の管は、蒸発器11の出口で、1本の管にまとまり、蒸気管につながる。
熱輸送装置は、熱を放熱するための凝縮器12を備える。凝縮器12内では、蒸気の作動流体は、ラジエータ(図示せず)の作用によって熱を吸収され、液体に戻る。凝縮器12については公知なので、これ以上詳述しない。
熱輸送装置は、蒸発器11の出口と、凝縮器12の入口を接続する蒸気管14を備える。蒸気管14は、蒸発器11で蒸気になった作動流体を凝縮器12へ輸送する。蒸気管14は、例えば、外径9mmの銅管又はアルミニウム管である。蒸気管14の材質は、内部を流れる作動流体の種類によって、その腐食性などを考慮して変えることが出来る。
熱輸送装置は、凝縮器12の出口と、蒸発器11の入口を接続する液管15を備える。液管15は、凝縮器12で液相に戻された作動流体を蒸発器11へ輸送する。液管15は、例えば、外径6mmの銅管又はアルミニウム管である。液管15の外径は、蒸発器11で吸熱する熱量によって変えることが出来る。
液管15の途中には、凝縮器12の出口から蒸発器11の入口へ向かって、作動流体を駆動するためのポンプ13が設けられる。本実施の形態では、ポンプ13はギアポンプであるが、他のポンプを使用することも出来る。また、液管15の凝縮器12とポンプ13の間には、液管15内の液体に圧力をかけるため、アキュムレータ16が接続されている。
更に、蒸気管14の途中には、絞りとして蒸気弁17が設けられている。蒸気弁17は、開度を変化させることが出来、蒸発器11から凝縮器12へ輸送される蒸気の量を調節することが出来る。蒸気弁17の開度は、大と小の2段階とすることが出来、又は3以上の段階をとるようにすることも出来る。又は、開度が連続的に変化するようにすることもできる。
熱輸送装置は、温度計を備え、温度計の熱電対は、蒸発器11の表面に設けられ、表面温度を測定するようになっている。また、制御器19が設けられる。制御器19は、温度計18により測定した蒸発器11の表面温度を予め記憶した設定温度と比較し、比較した結果に基づいて蒸気弁17の開度を制御し、その結果、蒸発器11の表面温度を制御することが出来る。制御器19については、図2を参照して後述する。また、制御方法については、図3を参照して後述する。
この装置においては、電子機器等からの熱は蒸発器11内で液体の作動流体に吸熱され、作動流体は吸熱して蒸気となる。この蒸気の作動流体は、蒸発器11の出口から蒸気管14を通って、凝縮器12の入口へ輸送される。このとき、蒸気の流量は蒸気弁17により調節される。凝縮器12へ戻った蒸気の作動流体は、凝縮器12で放熱して液体に戻る。この液体の作動流体は、凝縮器12の出口から液管15へ送られ、ポンプ13により駆動されて再度蒸発器11へ輸送される。
本実施の形態では、蒸気−液体の2相の作動流体として、HCFC123を使用した。作動流体としては、作動温度、圧力に応じて他の流体、例えばアンモニア等も使用することが出来る。
本実施の形態の装置では、温度計18により、蒸発器の表面温度を測定し、蒸発器の表面温度に応じて、蒸気管14に設けられた蒸気弁17の開度を変化させ、蒸気の流量を調節することができる。即ち、蒸発器の表面温度が設定温度より高くなった場合は、蒸気弁17の開度を大きくし、蒸気管14を流れる蒸気の流量をふやし、より多くの熱量を凝縮器12に輸送する。その結果、蒸発器11の飽和圧力が低下し、蒸発器11の表面温度Tが低下する。反対に、蒸発器11の表面温度Tが設定温度より低くなった場合は、蒸気弁17の開度を小さくし、蒸気管14を流れる蒸気の流量を減少させ、凝縮器12へ輸送する熱量を減少させる。その結果、蒸発器11の飽和圧力が高くなり、蒸発器11の表面温度Tが高くなる。このようにして、蒸気弁の開度を調節することにより、蒸気弁の上流側にある蒸発器内部の作動流体の飽和圧力が変化し、それに伴い飽和温度が変化する。そのため、蒸発器の表面温度を制御することが出来る。
図2は、本実施の形態による蒸気弁17を制御するための制御器19のブロック図を示す。制御器19は、温度計18に温度を測定させる温度測定部31と、予め設定した設定温度T0、上限温度Tmax、下限温度Tmin等の温度データを記憶する記憶部33と、測定した温度Tと、記憶部33に記憶した設定温度T0等の温度とを比較する温度比較部32と、温度比較の結果により、蒸気弁17を開閉制御する弁制御部34とを備える。
本実施の形態による蒸気弁17を制御することにより、蒸発器11の表面温度Tを制御する動作を図3のフローチャートにより説明する。制御開始前に、制御器19により、蒸発器11の表面温度を維持すべき設定温度T0を設定する。同時に、設定温度T0に対して、制御温度幅Δtだけ高い上限温度Tmaxと、設定温度T0に対してΔtだけ低い下限温度Tminを設定する。即ち、
Tmax = T0 + Δt
Tmin = T0 − Δt
とし、蒸発器11の表面温度TをT0±Δtの範囲内に維持するように制御する。
ステップ101で、温度制御プログラムを起動し、制御が開始される。ステップ102で、制御器19の温度測定部31の指示により、温度計18により蒸発器11の表面温度Tを測定する。本実施の形態では、蒸発器11の出口付近の表面温度Tを測定する。ステップ103で、制御器19の温度比較部32は、蒸発器11の表面温度Tを、設定した上限温度Tmaxと比較する。表面温度Tが上限温度Tmaxより高いときは、ステップ104へ進み、ステップ104でそのときの蒸気弁17の開度が小の位置か大の位置か判定する。蒸気弁17の開度が小の位置であれば、ステップ105で蒸気弁17の開度を大の位置にし、ステップ102へ戻る。蒸気弁17の開度が大の位置であれば、蒸気弁17の開度を変化させずに、ステップ102へ戻る。
ステップ103で、表面温度Tが上限温度Tmaxより高くないときは、ステップ107に進み、ステップ107で、制御器19の温度比較部32は、蒸発器11の表面温度Tを、設定した下限温度Tminと比較する。表面温度Tが下限温度Tminより低ければ、ステップ108で、そのときの蒸気弁17の開度が小の位置か大の位置か判定する。蒸気弁17の開度が大の位置であれば、ステップ109で蒸気弁17の開度を小の位置にし、ステップ102へ戻る。蒸気弁17の開度が小の位置であれば、蒸気弁17の開度を変化させずに、ステップ102へ戻る。
ステップ107で、表面温度Tが下限温度Tminより低くないとき、即ち表面温度Tが下限温度Tminと上限温度Tmaxの間に入っているときは、制御器19の弁制御部34は、蒸気弁17の開度を変化させずに、ステップ102へ戻る。
熱輸送装置の運転中は、一定時間後に、ステップ102で、温度計18により蒸発器11の表面温度Tを測定し、図3に示す制御動作を繰り返し実行する。
即ち、表面温度Tが上限温度Tmaxより高ければ、蒸気弁17の開度は大に保たれ、表面温度Tが下限温度Tminより低ければ、蒸気弁17の開度は小に保たれる。表面温度Tが下限温度Tminと上限温度Tmaxの間であれば、蒸気弁17の開度は大であるか小であるかにかかわらず変化させない。
このようにして、装置を運転している間、温度制御を継続して行う。
本実施の形態では、蒸気弁17の開度を、絞った小の位置と開いた大の位置の2段階とした。
本発明の別の実施の形態として、蒸気弁17の開度は、絞った小の位置と開いた大の位置の間に幾つかの位置を設け、小から大まで段階的に変化させるようにすることも出来る。
この場合、1回目の測定で、蒸発器11の表面温度Tが設定温度T0に等しければ、蒸気弁17の開度を変化させない。蒸発器11の表面温度Tが上限温度Tmaxより高ければ、蒸気弁17の開度を最大にする。
逆に、蒸発器11の表面温度Tが下限温度Tminより低ければ、蒸気弁17の開度を最小にする。蒸発器11の表面温度Tが設定温度T0と下限温度Tminの間のときは、表面温度Tが設定温度T0より低いほど、蒸気弁17の開度が小さくなるように蒸気弁17の開度を小さくする。表面温度Tが、設定温度T0と上限温度Tmaxの間のときは、表面温度Tが設定温度T0より高いほど、蒸気弁17の開度が大きくなるように蒸気弁17の開度を大きくする。制御器19の弁制御部34は、表面温度Tと設定温度T0の差に応じて蒸気弁17の開度を制御する。
又は、蒸気弁17の開度は、PID制御とすることも出来る。
蒸気弁17の開度を連続的に変化させることもできる。蒸発器11の表面温度Tが設定温度T0に等しければ、蒸気弁17の開度を変化させない。蒸発器11の表面温度Tが上限温度Tmaxより高ければ、蒸気弁17の開度を最大にする。蒸発器11の表面温度Tが下限温度Tminより低ければ、蒸気弁17の開度を最小にする。蒸発器11の表面温度Tが下限温度Tminと上限温度Tmaxの間のときは、表面温度Tに応じて、蒸気弁17の開度を最大と最小の間の位置に調節する。
熱輸送装置において、本発明の実施の形態により蒸気弁の開度を変化させる場合と、蒸気弁の開度を変化させない場合について、蒸発器にかかる熱負荷を急に変化させた場合の蒸発器の表面温度の変化を測定した。蒸気弁の開度を変化させない場合については、アキュムレータによる圧力調節も行っていない。具体的には、蒸発器の熱負荷を次のように変化させた。なお、本実験では蒸気弁の開度は最大と最小とその間の幾つかの段階をとりえる。
No.1 600W → 500W
No.2 600W → 700W
No.3 600W → 1000W
蒸発器の圧力と表面温度の変化を比較した結果を表1に示す。
表1において、左側は蒸気弁の制御がない場合を示し、右側は本発明の実施の形態による蒸気弁の制御がある場合を示す。弁制御無しの場合(従来)の蒸発器の圧力と表面温度の変化は、熱負荷を変化させる前と、変化させた後定常値になった後の値を示す。弁制御有りの場合(本発明の実施の形態)は、熱負荷を変化させる前と、過渡状態で蒸発器の圧力と、表面温度が最も大きく変化したときの値(括弧内)と、蒸気弁の開度を変化させた後、定常値になった後の値を示す。
左側の蒸気弁の制御がない場合では、熱負荷を600Wから500Wに減少させると、蒸発器圧力と、蒸発器表面温度は変化する。
右側の本発明の実施の形態では、熱負荷を600Wから500Wに減少させると、蒸発器圧力と、蒸発器表面温度は一時的に変化するが、蒸気弁の開度を小さくすることにより、蒸発器圧力と、蒸発器表面温度は元に戻ることがわかる。
No.3の600Wから1000Wに変化させた場合は、弁制御無しの従来例では、ドライアウトを起こしたが、本発明の実施の形態では、蒸発器圧力と、蒸発器表面温度は元に戻る。
表1.熱負荷の変化と蒸発器の圧力/表面温度の変化
Figure 2006029672
表1から、本発明の実施の形態による温度制御では、熱負荷を変化させると、一時的に蒸発器の表面温度が変化するが、蒸気弁の開度を変化させ蒸発器圧力を制御することにより、蒸発器の表面温度は元の値に戻ることがわかる。このように、本発明の実施の形態によれば、蒸発器の表面温度を一定に維持することが出来る。
本発明の実施の形態による熱輸送置のブロック図。 本発明の実施の形態による制御器のブロック図。 本発明の実施の形態による熱制御のフロー図。 従来の熱輸送装置の概略図。
符号の説明
1 蒸発器
2 凝縮器
3 ポンプ
4 蒸気管
5 液管
6 アキュムレータ
11 蒸発器
12 凝縮器
13 ポンプ
14 蒸気管
15 液管
16 アキュムレータ
17 蒸気弁
18 温度計
19 制御器

Claims (6)

  1. 閉ループを形成する2相流体ループ式の熱輸送装置において、
    熱源から熱を吸収し作動流体を蒸気にするための蒸発器と、
    作動流体の熱を放熱し凝縮させるための凝縮器と、
    前記蒸発器で蒸気になった作動流体を前記凝縮器へ輸送するため、前記蒸発器の出口と前記凝縮器の入口を連結する蒸気管と、
    前記凝縮器で液体になった作動流体を前記蒸発器へ輸送するため、前記凝縮器の出口と前記蒸発器の入口を連結する液管と、
    作動流体を前記蒸発器の入口へ向かって送るため、前記液管の途中に設けられたポンプと、
    作動流体に圧力をかけるため、前記液管の途中に接続されたアキュムレータと、
    前記蒸気管に設けられ、前記蒸発器から前記凝縮器へ輸送される蒸気の量を調節するための、開度を変化させることが出来る絞りと、
    前記蒸発器の表面温度を測定する温度測定器と、
    前記蒸発器の表面温度と設定温度の差に応じて、前記絞りの開度を調節する制御器と、
    を備えることを特徴とする熱輸送装置。
  2. 請求項1に記載した熱輸送装置であって、前記絞りは蒸気弁である熱輸送装置。
  3. 請求項1に記載した熱輸送装置であって、前記制御器は、
    前記温度測定器に温度を測定させる温度測定部と、
    予め設定した設定温度と、上限温度と、下限温度とを記憶する記憶部と、
    測定した温度と、前記記憶部に記憶した前記上限温度と下限温度温度とを比較する温度比較部と、
    温度比較の結果により、前記絞りの開度を制御する弁制御部とを備える熱輸送装置。
  4. 請求項1に記載した熱輸送装置であって、前記絞りの開度を段階的又は連続的に変化させることができる熱輸送装置。
  5. 蒸発器と、凝縮器と、蒸気管と、液管と、ポンプと、アキュムレータと、絞りとを備える2相流体ループ式の熱輸送装置において、前記蒸発器の表面温度を制御する方法であって、
    (a)前記蒸発器の表面の設定温度と、上限温度と、下限温度とを設定し、
    (b)前記蒸発器の表面温度を測定し、
    (c)測定した前記表面温度を、前記上限温度、前記下限温度と比較し、
    (d)前記表面温度が前記上限温度より高いときは、前記絞りの開度を大の位置にし、
    前記表面温度が前記下限温度より低いときは、前記絞りの開度を小の位置にし、
    前記表面温度が前記上限温度と前記下限温度の間のときは、前記絞りの開度を変化させない、
    ステップを備えることを特徴とする方法。
  6. 請求項5に記載した前記蒸発器の表面温度を制御する方法であって、ステップ(b)〜(d)を複数回繰り返し実施する方法。
JP2004208541A 2004-07-15 2004-07-15 潜熱流体ループを使用する熱輸送装置 Pending JP2006029672A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208541A JP2006029672A (ja) 2004-07-15 2004-07-15 潜熱流体ループを使用する熱輸送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208541A JP2006029672A (ja) 2004-07-15 2004-07-15 潜熱流体ループを使用する熱輸送装置

Publications (1)

Publication Number Publication Date
JP2006029672A true JP2006029672A (ja) 2006-02-02

Family

ID=35896251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208541A Pending JP2006029672A (ja) 2004-07-15 2004-07-15 潜熱流体ループを使用する熱輸送装置

Country Status (1)

Country Link
JP (1) JP2006029672A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052573A1 (es) * 2010-10-21 2012-04-26 Ibérica Del Espacio, S.A. Dispositivo de control térmico regulado por presión.
RU2450222C2 (ru) * 2010-06-17 2012-05-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения холода
JP2012243035A (ja) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd 電子機器の冷却システム
JP2017514100A (ja) * 2014-04-25 2017-06-01 フランケ・テクノロジー・アンド・トレードマーク・リミテッドFranke Technology And Trademark Ltd. 圧力制御手段を備える冷却システム
WO2018137503A1 (zh) * 2017-01-25 2018-08-02 中国科学院工程热物理研究所 一种基于热压转换效应的传热方法及传热系统
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
WO2020188651A1 (ja) * 2019-03-15 2020-09-24 株式会社島津製作所 冷却装置
WO2020246248A1 (ja) * 2019-06-06 2020-12-10 株式会社デンソー 沸騰冷却装置
CN112648752A (zh) * 2019-10-10 2021-04-13 青岛佰腾科技有限公司 一种集热装置液位差除垢的方法
JPWO2021117105A1 (ja) * 2019-12-09 2021-06-17
CN113613476A (zh) * 2021-09-15 2021-11-05 沈阳飞机设计研究所扬州协同创新研究院有限公司 一种用于机载电子设备冷却的环路热管
WO2022230129A1 (ja) * 2021-04-28 2022-11-03 三菱電機株式会社 冷却装置および宇宙構造物
CN115406276A (zh) * 2022-08-03 2022-11-29 上海格熵航天科技有限公司 一种单一热源工质消耗式圆柱形环路热管
CN113531507B (zh) * 2020-04-14 2023-08-04 山东大学 一种温度调整热平衡的太阳能空气加热系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450222C2 (ru) * 2010-06-17 2012-05-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения холода
WO2012052573A1 (es) * 2010-10-21 2012-04-26 Ibérica Del Espacio, S.A. Dispositivo de control térmico regulado por presión.
JP2012243035A (ja) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd 電子機器の冷却システム
JP2017514100A (ja) * 2014-04-25 2017-06-01 フランケ・テクノロジー・アンド・トレードマーク・リミテッドFranke Technology And Trademark Ltd. 圧力制御手段を備える冷却システム
US10808973B2 (en) 2014-04-25 2020-10-20 Franke Technology And Trademark Ltd Cooling system with pressure control
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
WO2018137503A1 (zh) * 2017-01-25 2018-08-02 中国科学院工程热物理研究所 一种基于热压转换效应的传热方法及传热系统
JPWO2020188651A1 (ja) * 2019-03-15 2021-11-25 株式会社島津製作所 冷却装置
WO2020188651A1 (ja) * 2019-03-15 2020-09-24 株式会社島津製作所 冷却装置
WO2020246248A1 (ja) * 2019-06-06 2020-12-10 株式会社デンソー 沸騰冷却装置
CN112648752A (zh) * 2019-10-10 2021-04-13 青岛佰腾科技有限公司 一种集热装置液位差除垢的方法
CN112648752B (zh) * 2019-10-10 2022-09-13 青岛佰腾科技有限公司 一种集热装置液位差除垢的方法
JPWO2021117105A1 (ja) * 2019-12-09 2021-06-17
WO2021117105A1 (ja) * 2019-12-09 2021-06-17 三菱電機株式会社 冷却装置及び人工衛星
JP7250170B2 (ja) 2019-12-09 2023-03-31 三菱電機株式会社 冷却装置及び人工衛星
CN113531507B (zh) * 2020-04-14 2023-08-04 山东大学 一种温度调整热平衡的太阳能空气加热系统
WO2022230129A1 (ja) * 2021-04-28 2022-11-03 三菱電機株式会社 冷却装置および宇宙構造物
JP7462836B2 (ja) 2021-04-28 2024-04-05 三菱電機株式会社 冷却装置および宇宙構造物
CN113613476A (zh) * 2021-09-15 2021-11-05 沈阳飞机设计研究所扬州协同创新研究院有限公司 一种用于机载电子设备冷却的环路热管
CN115406276A (zh) * 2022-08-03 2022-11-29 上海格熵航天科技有限公司 一种单一热源工质消耗式圆柱形环路热管

Similar Documents

Publication Publication Date Title
Wang et al. Study on start-up characteristics of loop heat pipe under low-power
JP2006029672A (ja) 潜熱流体ループを使用する熱輸送装置
Cai et al. Experimental investigation on a novel multi-branch heat pipe for multi-heat source electronics
Wang et al. Experimental study of the loop heat pipe with a flat disk-shaped evaporator
JP6351632B2 (ja) 二相流体による熱輸送装置
JP5768514B2 (ja) ループヒートパイプ及び該ヒートパイプを備えた電子機器
EP2000753B1 (en) System and method for separating components of a fluid coolant for cooling a structure
US7935180B2 (en) Removing non-condensable gas from a subambient cooling system
Zhang et al. A study on thermal performance of a pump-assisted loop heat pipe with ammonia as working fluid
JP2006153418A (ja) 冷凍装置
JP6079343B2 (ja) 冷却装置
TW200306402A (en) Loop heat pipe method and apparatus
Hongxing et al. Investigation on startup behaviors of a loop heat pipe
JP2006313056A (ja) ヒートパイプおよびそれを用いた排熱回収装置
Tian et al. Experimental investigation of a miniature loop heat pipe with eccentric evaporator for cooling electronics
JP2019195042A (ja) 冷却システム並びにその制御方法、制御プログラム、及び廃熱利用システム
US9899789B2 (en) Thermal management systems
JP5136376B2 (ja) ループ型ヒートパイプ及び電子機器
JP2006057925A (ja) 2相流体ループ式熱輸送装置
Fourgeaud et al. Experimental investigations of a Multi-Source Loop Heat Pipe for electronics cooling
JP2006292337A (ja) ヒートパイプ装置
JPH06257969A (ja) ループ型ヒートパイプ
Iwata et al. Experimental study of temperature controllable oscillating heat pipe in space thermal environment
Gai et al. Hysteresis phenomena in flat-type loop heat pipe
JPH02187594A (ja) ヒートパイプ式熱交換器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091019