JP2006029643A - Freezer for freezing refrigerator - Google Patents

Freezer for freezing refrigerator Download PDF

Info

Publication number
JP2006029643A
JP2006029643A JP2004206725A JP2004206725A JP2006029643A JP 2006029643 A JP2006029643 A JP 2006029643A JP 2004206725 A JP2004206725 A JP 2004206725A JP 2004206725 A JP2004206725 A JP 2004206725A JP 2006029643 A JP2006029643 A JP 2006029643A
Authority
JP
Japan
Prior art keywords
refrigerant
carbon dioxide
dryer
refrigerator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206725A
Other languages
Japanese (ja)
Inventor
Kiyoshi Katagai
清 片貝
Masayuki Morishima
正行 森島
Kazuhiko Kondo
和彦 近藤
Hitoshi Aoki
均史 青木
Mitsuhiko Ishino
光彦 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004206725A priority Critical patent/JP2006029643A/en
Publication of JP2006029643A publication Critical patent/JP2006029643A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezer capable of efficiently absorbing water in the case of a carbon dioxide refrigerant and reducing factors for causing the global warming and destruction of an ozone layer by considering a problem that a dryer is not used and a water supplement agent is added in a refrigerant circuit using a carbon dioxide as a refrigerant, although a water absorption effect is hardly observed and a possibility of the breakage of synthetic zeolite for drying is large when dehydrating by a dryer inserted into a general refrigerant circuit using the carbon dioxide as the refrigerant in series. <P>SOLUTION: In this freezer, the refrigerant circuit is constituted to allow the carbon dioxide refrigerant compressed at two steps by a compressor to pass through a radiator, a dryer, a capillary tube, an electric expansion valve, and an evaporator for cooling the inside of a cooling vessel sequentially and return to a compression part at one step of the compressor. A desiccant in the dryer is substantially a molecular sieve which removes moisture in the refrigerant circuit but does not absorb the carbon dioxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二酸化炭素冷媒を使用した冷凍冷蔵庫用冷凍装置に関する。   The present invention relates to a refrigeration apparatus for a refrigerator using a carbon dioxide refrigerant.

圧縮機、放熱器、膨張機構及び蒸発器を含む冷凍回路に冷媒として二酸化炭素を循環さ
せる冷凍装置において、圧縮機に用いる冷凍機油に特定のものを使用し、冷凍回路中の水
分を捕捉するための乾燥装置の乾燥剤として合成ゼオライトを使用したものがある(例え
ば、特許文献1参照)。
In a refrigeration system that circulates carbon dioxide as a refrigerant in a refrigeration circuit including a compressor, a radiator, an expansion mechanism, and an evaporator, a specific refrigeration oil used in the compressor is used to capture moisture in the refrigeration circuit There is one using synthetic zeolite as a desiccant in the drying apparatus (for example, see Patent Document 1).

また、冷媒の流路を四方弁の切り替えによって冷房運転と暖房運転とに切り替える業務
用空気調和機に関する冷媒回路において、室外熱交換器とキャピラリチューブの間に、水
分除去のためにモレキュラーシーブスを収納したドライヤを接続し、このドライヤの振動
を抑えてモレキュラーシーブスの粉化を抑えるものがある(例えば、特許文献2参照)。
特開2001−255043号公報 特開2001−141341号公報
In a refrigerant circuit for commercial air conditioners that switches the refrigerant flow path between a cooling operation and a heating operation by switching a four-way valve, molecular sieves are stored between the outdoor heat exchanger and the capillary tube for moisture removal. Some dryers are connected and vibrations of the dryer are suppressed to prevent the molecular sieves from being pulverized (see, for example, Patent Document 2).
JP 2001-255043 A JP 2001-141341 A

二酸化炭素を冷媒とする一般的な冷媒回路では、冷媒回路に直列に挿入された乾燥器で
脱水すると、吸水効果もほとんどなく、乾燥用の合成ゼオライトの破損の怖れも大きいこ
とが知られている。つまり、二酸化炭素を冷媒とする冷媒回路では、乾燥器を用いず、水
分補足剤を添加することが知られている。
In a general refrigerant circuit using carbon dioxide as a refrigerant, it is known that dehydration with a dryer inserted in series in the refrigerant circuit has almost no water absorption effect and the possibility of damage to the synthetic zeolite for drying is great. Yes. That is, it is known that in a refrigerant circuit using carbon dioxide as a refrigerant, a moisture supplement is added without using a dryer.

第1発明の冷凍装置は、圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライ
ヤ、キャピラリチューブ、電動式膨張弁、冷却庫内を冷却するための蒸発器を順次通って
前記圧縮機の一段圧縮部へ帰還する冷媒回路を構成し、前記ドライヤの乾燥剤として実質
的に前記冷媒回路中の水分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収
納したことを特徴とする。
In the refrigeration apparatus according to the first aspect of the present invention, the carbon dioxide refrigerant compressed in two stages by the compressor passes through the radiator, the dryer, the capillary tube, the electric expansion valve, and the evaporator for cooling the inside of the refrigerator in order. A refrigerant circuit that returns to the first stage compression unit of the machine is configured, and a molecular sieve that substantially removes moisture in the refrigerant circuit but does not adsorb carbon dioxide is housed as a desiccant for the dryer.

第2発明の冷凍装置は、圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライ
ヤ、第1キャピラリチューブ、第1電動式膨張弁、気液分離器、第2キャピラリチューブ
、第2電動式膨張弁、冷却庫内を冷却するための蒸発器を順次通って前記圧縮機の一段目
圧縮部へ帰還する第1冷媒路と、前記気液分離器で分離された冷媒ガスを前記圧縮機の二
段目圧縮部へ導入する第2冷媒路を構成し、前記ドライヤの乾燥剤として実質的に前記第
1、第2冷媒路からなる冷媒回路中の水分除去はするが二酸化炭素を吸着しないモレキュ
ラーシーブを収納したことを特徴とする。
In the refrigeration apparatus according to the second aspect of the invention, the carbon dioxide refrigerant compressed in two stages by the compressor includes a radiator, a dryer, a first capillary tube, a first electric expansion valve, a gas-liquid separator, a second capillary tube, a second A first refrigerant path that sequentially passes through an electric expansion valve and an evaporator for cooling the inside of the refrigerator and returns to the first stage compression unit of the compressor, and the refrigerant gas separated by the gas-liquid separator is compressed. The second refrigerant path to be introduced into the second stage compression section of the machine is configured, and as a desiccant for the dryer, water is substantially removed from the refrigerant circuit consisting of the first and second refrigerant paths, but carbon dioxide is adsorbed. It is characterized by storing the molecular sieve that does not.

第3発明の冷凍装置は、圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライ
ヤ、第1キャピラリチューブ、第1電動式膨張弁、気液分離器を経て、冷蔵室用キャピラ
リチューブから第2電動式膨張弁を通って冷蔵室用蒸発器へ流れる通路と、冷凍室用キャ
ピラリチューブから第3電動式膨張弁を通って冷凍室用蒸発器へ流れる通路との並列回路
を経て前記圧縮機の一段圧縮部へ帰還する冷媒回路を構成し、前記ドライヤの乾燥剤とし
て実質的に前記冷媒回路中の水分除去はするが二酸化炭素を吸着しないモレキュラーシー
ブを収納したことを特徴とする。
In the refrigeration apparatus of the third invention, the carbon dioxide refrigerant compressed in two stages by the compressor passes through the radiator, the dryer, the first capillary tube, the first electric expansion valve, and the gas-liquid separator, and then the capillary tube for the refrigerator compartment Through a parallel circuit of a passage flowing from the capillary tube for the freezer compartment to the evaporator for the refrigerating chamber and a passage flowing from the capillary tube for the freezer compartment through the third electric expansion valve to the evaporator for the freezer compartment. A refrigerant circuit that returns to the first stage compression unit of the compressor is configured, and a molecular sieve that substantially removes moisture in the refrigerant circuit but does not adsorb carbon dioxide is housed as a desiccant for the dryer.

第1の発明によって、二酸化炭素冷媒を循環させることにより地球温暖化やオゾン層の
破壊を起こす要因の少ない冷凍装置を提供でき、その場合、ドライヤによって実質的にそ
の冷媒回路中の水分除去はするが二酸化炭素を吸着しないため、冷媒回路中の水分による
悪影響が除去でき、安定した圧縮機の能力を得ることができる。そして、二酸化炭素の吸
着がドライヤによって生じた場合は、循環する冷媒量が減少するが、本発明ではそれがな
いため、所期の冷凍能力を発揮できるものとなる。
According to the first invention, it is possible to provide a refrigeration apparatus that causes less global warming and ozone layer destruction by circulating a carbon dioxide refrigerant. In that case, moisture is substantially removed from the refrigerant circuit by a dryer. Does not adsorb carbon dioxide, the adverse effect of moisture in the refrigerant circuit can be removed, and a stable compressor capacity can be obtained. When carbon dioxide is adsorbed by a dryer, the amount of circulating refrigerant is reduced. However, in the present invention, there is no such effect, so that the intended refrigeration capacity can be exhibited.

第2の発明は、第1の発明の効果に加えて、気液分離器で分離したガス冷媒が圧縮機の
二段目圧縮部によって圧縮されて放熱器へ流入するため、冷凍装置の冷却能力が向上し、
効果的な冷却が得られる冷凍冷蔵庫となる。
In the second invention, in addition to the effects of the first invention, the gas refrigerant separated by the gas-liquid separator is compressed by the second-stage compression part of the compressor and flows into the radiator, so that the cooling capacity of the refrigeration apparatus Improved,
It becomes the refrigerator-freezer from which effective cooling is obtained.

第3の発明は、第1の発明の効果に加えて、冷凍室と冷蔵室を夫々別個の蒸発器で冷却
する方式の冷凍冷蔵庫として効果的である。
In addition to the effects of the first invention, the third invention is effective as a refrigerator-freezer in which the freezer compartment and the refrigerator compartment are cooled by separate evaporators.

本発明は冷凍冷蔵庫用冷凍装置であり、二段階圧縮された二酸化炭素冷媒が、放熱器、
ドライヤ、キャピラリチューブ、冷却庫内を冷却するための蒸発器を順次通って前記圧縮
機の一段圧縮部へ帰還する冷媒回路を構成し、前記ドライヤの乾燥剤として実質的に前記
冷媒回路中の水分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納したこ
とを特徴とする。本発明の実施例を以下に記載する。
The present invention is a refrigeration apparatus for a refrigerator, wherein the carbon dioxide refrigerant compressed in two stages is a radiator,
A refrigerant circuit that sequentially passes through a dryer, a capillary tube, and an evaporator for cooling the inside of the refrigerator and returns to the one-stage compression unit of the compressor is configured, and moisture in the refrigerant circuit is substantially used as a desiccant for the dryer. It is characterized by containing a molecular sieve which is removed but does not adsorb carbon dioxide. Examples of the invention are described below.

次に、本発明の実施の形態について説明する。図1は本発明に係る冷凍冷蔵庫の正面図
、図2は本発明に係る冷凍冷蔵庫本体を正面から見た説明図、図3は本発明に係る冷凍冷
蔵庫の縦断側面図、図4は本発明に係る冷凍装置をブロックで示す構成図、図5は本発明
に係る冷凍装置の冷媒回路配管の説明図である。
Next, an embodiment of the present invention will be described. 1 is a front view of a refrigerator-freezer according to the present invention, FIG. 2 is an explanatory view of the refrigerator-freezer body according to the present invention as viewed from the front, FIG. 3 is a longitudinal side view of the refrigerator-freezer according to the present invention, and FIG. FIG. 5 is an explanatory diagram of refrigerant circuit piping of the refrigeration apparatus according to the present invention.

次に、本発明の実施の形態について説明する。1は本発明の冷却貯蔵庫の一つである冷
凍冷蔵庫であり、全面開口の本体2内を区画して複数の貯蔵室を形成し、これら各貯蔵室
の前面は扉で開閉できる構成である。冷凍冷蔵庫本体2は、外箱(外壁板)2Aと内箱(
内壁板)2Bとの間に発泡断熱材2Cを充填した断熱構造である。冷凍冷蔵庫本体2内に
は、上から冷蔵室3、野菜室4、冷凍室5(上冷凍室6Aと下冷凍室6Bと製氷室7から
なる)が区画形成され、上冷凍室6Aに併設して製氷室7が区画形成され、冷蔵室3内の
底部にはその上方の冷蔵室3と区画板(区画壁)8にて区画された特定低温室9が設けら
れている。
Next, an embodiment of the present invention will be described. Reference numeral 1 denotes a refrigerator-freezer which is one of the cooling storages of the present invention, which has a structure in which a main body 2 having a full opening is partitioned to form a plurality of storage chambers, and the front surfaces of these storage chambers can be opened and closed by doors. The refrigerator-freezer body 2 includes an outer box (outer wall plate) 2A and an inner box (
It is a heat insulating structure filled with foam heat insulating material 2C between the inner wall plate 2B. A refrigerator compartment 3, a vegetable compartment 4, and a freezer compartment 5 (consisting of an upper freezer compartment 6 A, a lower freezer compartment 6 B, and an ice making chamber 7) are formed in the freezer / refrigerator body 2 from above, and are attached to the upper refrigerator compartment 6 A The ice making chamber 7 is partitioned and a specific low temperature chamber 9 partitioned by a refrigerator chamber 3 and a partition plate (partition wall) 8 above is provided at the bottom of the refrigerator 3.

冷蔵室3の前面開口は、冷凍冷蔵庫本体2の一側部にヒンジ装置にて横方向に回動して
開閉される回動式の冷蔵室扉10にて閉塞される。冷蔵室3内には冷蔵室3の側壁に形成
した棚受け42に載置した複数段の棚41が設けられている。野菜室4の前面開口は、野
菜室4内に設けた左右のレールとローラによる支持装置21によって前後方向へ引き出し
可能に支持した上面開口の野菜容器15と共に前方へ引き出される引き出し式扉11にて
閉塞されている。上冷凍室6Aと下冷凍室6Bはそれぞれ野菜室4と同様に、冷凍室内に
設けた左右のレールに対して、それぞれ前後方向へ引き出し可能に支持した容器16、1
7と共に前方へ引き出される引き出し式扉12、13にて閉塞されている。
The front opening of the refrigerating room 3 is closed by a revolving refrigerating room door 10 that is opened and closed by being pivoted laterally by a hinge device at one side of the refrigerator-freezer body 2. In the refrigerating chamber 3, a plurality of shelves 41 placed on a shelf receiver 42 formed on the side wall of the refrigerating chamber 3 are provided. The front opening of the vegetable compartment 4 is a drawer-type door 11 that is drawn forward together with the vegetable container 15 having an upper opening that is supported so that it can be pulled out in the front-rear direction by left and right rails and rollers provided in the vegetable compartment 4. It is blocked. The upper freezer compartment 6A and the lower freezer compartment 6B, like the vegetable compartment 4, are containers 16 and 1 that are supported so that they can be pulled out in the front-rear direction with respect to the left and right rails provided in the freezer compartment.
7 is closed by pull-out doors 12 and 13 that are drawn forward together.

製氷室7内には自動製氷機18と貯氷箱19が設けられ、特定低温室9に併設された冷
蔵室3内の小室には、この自動製氷機18へ供給する製氷用水を貯める給水容器20が収
納されている。製氷用水は給水容器20からポンプ60によって吸い上げられて給水パイ
プ61を介して自動製氷機18の製氷皿22へ供給される。
An automatic ice making machine 18 and an ice storage box 19 are provided in the ice making room 7, and a water supply container 20 for storing ice making water to be supplied to the automatic ice making machine 18 is stored in a small room in the refrigerating room 3 attached to the specific low temperature room 9. Is stored. The ice making water is sucked up by the pump 60 from the water supply container 20 and supplied to the ice making tray 22 of the automatic ice making machine 18 through the water supply pipe 61.

冷蔵室扉10は、外板10Aと内板10Bとの間に発泡性断熱材10Cが充填された断
熱構造をなし、内板10Bの左右両側部には内板10Bと一体成形にて又は別部材にて縦
方向に延びた側壁10D、10Eが形成されている。側壁10D、10E間には、複数段
にポケットと称する物品載置棚38、38A、38B、38C、38Dが形成され、その
中の一つ又は複数に小袋入り調味料45を立てて収納する収納部46を形成している。
The refrigerator door 10 has a heat insulating structure in which a foamable heat insulating material 10C is filled between the outer plate 10A and the inner plate 10B, and is integrally formed with the inner plate 10B on the left and right sides of the inner plate 10B or separately. Side walls 10 </ b> D and 10 </ b> E extending in the vertical direction are formed by the members. Article storage shelves 38, 38A, 38B, 38C, 38D called pockets are formed in a plurality of stages between the side walls 10D, 10E, and storage for storing the seasoning 45 in a sachet in one or more of the shelves. A portion 46 is formed.

24は冷凍装置の冷媒を圧縮する電動圧縮機、25は冷凍装置の冷媒の放熱器である。
26は放熱器25Cの熱によって後述の除霜水を蒸発させるための蒸発皿であり、放熱器
25C上に載置して冷蔵庫本体2の前面下部から引き出し自在である。圧縮機24、放熱
器25C、蒸発皿26は、冷蔵庫本体2の下部に設けた機械室28に設置されている。2
9、30は冷凍装置の冷媒の蒸発器(冷却器)である。31は冷凍室用冷却器である第1
蒸発器(冷却器)29で冷却した冷気を上冷凍室6A、下冷凍室6B及び製氷室7へ循環
する第1送風機である。32は冷蔵室用冷却器である第2蒸発器(冷却器)30で冷却し
た冷気を冷蔵室3、野菜室4及び特定低温室9へ循環する第2送風機である。33は第1
蒸発器(冷却器)29の除霜用ガラス管ヒータ、34は、第2蒸発器(冷却器)30の除
霜用ガラス管ヒータである。第1蒸発器(冷却器)29及び第2蒸発器(冷却器)30の
除霜水は排水管を通って蒸発皿26へ導かれてそこで蒸発する。
Reference numeral 24 denotes an electric compressor that compresses the refrigerant of the refrigeration apparatus, and reference numeral 25 denotes a refrigerant radiator of the refrigeration apparatus.
Reference numeral 26 denotes an evaporating dish for evaporating defrosted water, which will be described later, by heat from the radiator 25C. The compressor 24, the radiator 25 </ b> C, and the evaporating dish 26 are installed in a machine room 28 provided at the lower part of the refrigerator body 2. 2
Reference numerals 9 and 30 denote refrigerant evaporators (coolers) of the refrigeration apparatus. 31 is a freezer cooler
This is a first blower that circulates the cold air cooled by the evaporator (cooler) 29 to the upper freezing room 6A, the lower freezing room 6B, and the ice making room 7. Reference numeral 32 denotes a second blower that circulates the cold air cooled by the second evaporator (cooler) 30, which is a refrigerator for the refrigerator compartment, to the refrigerator compartment 3, the vegetable compartment 4, and the specific low temperature compartment 9. 33 is the first
Defrosting glass tube heater 34 of evaporator (cooler) 29 is a defrosting glass tube heater of second evaporator (cooler) 30. The defrost water from the first evaporator (cooler) 29 and the second evaporator (cooler) 30 is led to the evaporating dish 26 through the drain pipe and is evaporated there.

冷凍装置は図4と図5に示す。冷媒には二酸化炭素冷媒を使用している。圧縮機24は
、冷媒を一段目の圧縮部24Aと二段目の圧縮部24Bによって二段階圧縮するように、
密閉容器内において電動機(モータ)によってそれぞれ回転するロータを備えた公知の2
シリンダの回転式圧縮機(ロータリ圧縮機という)であり、一段目の圧縮部24Aと二段
目の圧縮部24Bを構成するが、冷媒を二段階圧縮する他の形態でもよい。
The refrigeration apparatus is shown in FIGS. Carbon dioxide refrigerant is used as the refrigerant. The compressor 24 compresses the refrigerant in two stages by the first-stage compression unit 24A and the second-stage compression unit 24B.
Two known rotors each having a rotor that is rotated by an electric motor (motor) in a sealed container
Although it is a rotary compressor of a cylinder (referred to as a rotary compressor) and constitutes a first-stage compression section 24A and a second-stage compression section 24B, other forms in which refrigerant is compressed in two stages may be used.

25A〜25Eまでが冷媒の放熱器25を構成しており、これらは空冷式であり、放熱
器25Aはプレート式で構成された初段放熱器であり、機械室28内において送風機81
からの風によって熱交換される。放熱器25Bは冷媒パイプ(チューブ)の周りに多数の
フィンが取り付けられたフィンチューブ式で構成されたメイン放熱器であり、機械室28
内において送風機81からの風によって熱交換されるように、送風機81と共にフレーム
で囲まれたユニット構成である。放熱器25Cは蒸発皿26を載置する金属板の裏面に冷
媒パイプが蛇行状に配置された構成である。放熱器25Dは、冷凍冷蔵庫本体2の外箱(
外壁板)2Aを放熱板とするように、外箱(外壁板)2Aの発泡断熱材2C側の面に取り
付けた冷媒パイプである。
25A to 25E constitute the refrigerant radiator 25, which is an air-cooled type, and the radiator 25A is a first-stage radiator constituted by a plate type.
Heat exchanged by wind from. The radiator 25B is a main radiator composed of a fin tube type in which a large number of fins are attached around a refrigerant pipe (tube).
It is a unit configuration surrounded by a frame together with the blower 81 so that heat is exchanged by wind from the blower 81 inside. The radiator 25C has a configuration in which refrigerant pipes are arranged in a meandering manner on the back surface of a metal plate on which the evaporating dish 26 is placed. The radiator 25D is an outer box of the refrigerator refrigerator body 2 (
It is a refrigerant pipe attached to the surface of the outer casing (outer wall plate) 2A on the foam heat insulating material 2C side so that the outer wall plate) 2A serves as a heat sink.

放熱器25Eは冷凍冷蔵庫本体2の前面開口部の露着きを防止する露着き防止放熱器で
あり、外箱(外壁板)2Aを加温するように外箱(外壁板)2Aの発泡断熱材2C側の面
に取り付けた冷媒パイプであり、冷蔵室3と野菜室4との間の仕切り壁52の前面を加温
する冷媒パイプ25E1と、野菜室4と上冷凍室6Aとの間の仕切り壁の前面を加温する
冷媒パイプ25E2と、上冷凍室6Aと下冷凍室6Bとの間の仕切り壁の前面を加温する
冷媒パイプ25E3を一連のパイプの屈曲によって形成している。
The radiator 25E is an anti-deposition radiator that prevents the front opening of the refrigerator-freezer main body 2 from being deposited, and is a foam heat insulating material for the outer box (outer wall plate) 2A so as to heat the outer box (outer wall plate) 2A. A refrigerant pipe 25E1 for heating the front surface of the partition wall 52 between the refrigerator compartment 3 and the vegetable compartment 4 and a partition between the vegetable compartment 4 and the upper freezer compartment 6A, which are refrigerant pipes attached to the surface on the 2C side. A refrigerant pipe 25E2 for heating the front surface of the wall and a refrigerant pipe 25E3 for heating the front surface of the partition wall between the upper freezing chamber 6A and the lower freezing chamber 6B are formed by bending a series of pipes.

70は乾燥器であるドライヤ、71は気液分離器である。72、73、74は電動式膨
張弁であり、75、76、77はキャピラリチューブであり、電動式膨張弁とキャピラリ
チューブの一対によってそれぞれの減圧装置を構成している。78、79、80は逆止弁
である。図4において肉太の矢印は冷媒の流れ方向を示しており、図5の矢印も冷媒の流
れ方向を示している。
70 is a dryer which is a dryer, and 71 is a gas-liquid separator. Reference numerals 72, 73, and 74 denote electric expansion valves, and reference numerals 75, 76, and 77 denote capillary tubes. A pair of the electric expansion valve and the capillary tube constitute each pressure reducing device. Reference numerals 78, 79 and 80 denote check valves. In FIG. 4, the thick arrow indicates the flow direction of the refrigerant, and the arrow in FIG. 5 also indicates the flow direction of the refrigerant.

図4に示すこのような冷凍回路において、二酸化炭素冷媒が冷凍回路の高圧側において
超臨界域で状態変化する場合は液化しないことがあり、減圧装置による減圧率を大きくす
る必要があるが、1個の電動式膨張弁では十分な減圧が得られない。また、上記のように
放熱器25が空冷方式である場合は、その周囲温度が高い状況では冷媒圧力が高くなり、
減圧装置としてキャピラリチューブだけで所定の圧力まで減圧しようとすれば、ロスが大
きくなりすぎる。このため、二酸化炭素冷媒が冷凍回路の高圧側において超臨界域で状態
変化する場合にも、適正な減圧効果が得られるように、減圧装置としてキャピラリチュー
ブとその下流に電動式膨張弁を配置した構成としている。これによって、冷媒が超臨界域
で状態変化する場合は、キャピラリチューブにおいて超臨界域での冷媒の膨張過程が行わ
れ、電動式膨張弁において気液二相域での冷媒の膨張が行われるようにしている。
In such a refrigeration circuit shown in FIG. 4, when the carbon dioxide refrigerant changes its state in the supercritical region on the high pressure side of the refrigeration circuit, it may not be liquefied, and the decompression rate by the decompression device needs to be increased. A single electric expansion valve cannot provide sufficient pressure reduction. In addition, when the radiator 25 is air-cooled as described above, the refrigerant pressure increases in a situation where the ambient temperature is high,
If an attempt is made to reduce the pressure to a predetermined pressure using only a capillary tube as a pressure reducing device, the loss becomes too large. For this reason, even when carbon dioxide refrigerant changes its state in the supercritical region on the high pressure side of the refrigeration circuit, a capillary tube and an electric expansion valve are arranged downstream of the capillary tube as a pressure reducing device so that an appropriate pressure reducing effect can be obtained. It is configured. As a result, when the state of the refrigerant changes in the supercritical region, the refrigerant expands in the supercritical region in the capillary tube, and the refrigerant expands in the gas-liquid two-phase region in the electric expansion valve. I have to.

このような冷凍回路において、圧縮機24の一段目の圧縮部24Aで圧縮された高温高
圧の冷媒ガスは、放熱器25Aで放熱されて圧縮機24の二段目の圧縮部24Bで圧縮さ
れる。二段目の圧縮部24Bで圧縮された高温高圧の冷媒ガスは、放熱器25Bにおいて
送風機81からの空気によって冷却されて超臨界域で状態変化しながら冷媒温度が低下し
、この冷媒は更に放熱器25C、25Dを経て冷凍冷蔵庫1の周囲温度より若干高めの温
度まで低下する。そして、放熱器25Eへ流入した冷媒によって、冷凍冷蔵庫本体2の前
面開口部が加温され、その部分への露付きを防止するように作用する。
In such a refrigeration circuit, the high-temperature and high-pressure refrigerant gas compressed by the first-stage compression unit 24A of the compressor 24 is radiated by the radiator 25A and compressed by the second-stage compression unit 24B of the compressor 24. . The high-temperature and high-pressure refrigerant gas compressed by the second-stage compression unit 24B is cooled by the air from the blower 81 in the radiator 25B, and the refrigerant temperature is lowered while the state changes in the supercritical region. The temperature drops to a temperature slightly higher than the ambient temperature of the refrigerator-freezer 1 through the containers 25C and 25D. And the front-surface opening part of the refrigerator-freezer main body 2 is heated with the refrigerant | coolant which flowed into the heat radiator 25E, and it acts so that the dew condensation to the part may be prevented.

放熱器25Eを出た冷媒は、ドライヤ70を通って減圧装置であるキャピラリチューブ
75と電動式膨張弁72を通って減圧され温度が低下し、気液分離器71へ流入する。こ
の場合、冷媒が超臨界域で状態変化する場合は、キャピラリチューブ75において超臨界
域での冷媒の膨張過程が行われ、電動式膨張弁72において気液二相域での冷媒の膨張が
行われる。電動式膨張弁72を出た低温冷媒は気液分離器71へ流入し、気液分離器71
で分離されたガス冷媒は、逆止弁78を通って二段目の圧縮部24Bの吸い込み側へ流入
して圧縮されるよう冷媒回路が形成されている。
The refrigerant that has exited the radiator 25E passes through the dryer 70, is reduced in pressure through the capillary tube 75, which is a decompression device, and the electric expansion valve 72, the temperature is lowered, and flows into the gas-liquid separator 71. In this case, when the state of the refrigerant changes in the supercritical region, the refrigerant expansion process in the supercritical region is performed in the capillary tube 75, and the refrigerant expands in the gas-liquid two-phase region in the electric expansion valve 72. Is called. The low-temperature refrigerant that has exited the electric expansion valve 72 flows into the gas-liquid separator 71, and the gas-liquid separator 71.
A refrigerant circuit is formed so that the gas refrigerant separated in step S1 flows through the check valve 78 to the suction side of the second-stage compression unit 24B and is compressed.

気液分離器71で分離された液冷媒は二分され、一方が減圧装置であるキャピラリチュ
ーブ76と電動式膨張弁73を通って減圧され温度が低下し、第1蒸発器(冷却器)29
へ流入する。また、他方が減圧装置であるキャピラリチューブ77と電動式膨張弁74を
通って減圧され温度が低下し、第2蒸発器(冷却器)30へ流入する。第1蒸発器(冷却
器)29と第2蒸発器(冷却器)30へ流入した液冷媒は、そこで蒸発して周囲の空気を
冷却する。第1蒸発器(冷却器)29で蒸発したガス冷媒は、逆止弁79を通って圧縮機
24の一段目の圧縮部24Aの吸い込み側へ流入して圧縮される。また、第2蒸発器(冷
却器)30で蒸発したガス冷媒は、圧縮機24の一段目の圧縮部24Aの吸い込み側へ流
入して圧縮される。このような冷凍サイクルによって第1蒸発器(冷却器)29と第2蒸
発器(冷却器)30が冷却され、それによって後述のように冷凍冷蔵庫本体2内の各室が
冷却される。
The liquid refrigerant separated by the gas-liquid separator 71 is divided into two parts, one of which is decompressed through the capillary tube 76 which is a decompression device and the electric expansion valve 73 to lower the temperature, and the first evaporator (cooler) 29.
Flow into. Further, the pressure is reduced through the capillary tube 77 which is a decompression device and the electric expansion valve 74, and the temperature is lowered, and flows into the second evaporator (cooler) 30. The liquid refrigerant that has flowed into the first evaporator (cooler) 29 and the second evaporator (cooler) 30 evaporates there and cools the surrounding air. The gas refrigerant evaporated in the first evaporator (cooler) 29 passes through the check valve 79 and flows into the suction side of the first stage compression unit 24A of the compressor 24 to be compressed. Further, the gas refrigerant evaporated by the second evaporator (cooler) 30 flows into the suction side of the first-stage compression unit 24A of the compressor 24 and is compressed. With such a refrigeration cycle, the first evaporator (cooler) 29 and the second evaporator (cooler) 30 are cooled, thereby cooling each chamber in the refrigerator-freezer main body 2 as described later.

上記の冷凍装置において、電動式膨張弁72は、制御信号によって正転と逆転の動作を
するステッピングモータによってその弁開度が調節されるものであり、放熱器25の出口
温度に応じて制御回路装置(図示せず)に設定したデータに基づき、前記ステッピングモ
ータが正転又は逆転して弁開度が調節され、適正な冷媒膨張が行われるように制御する。
In the above refrigeration apparatus, the electric expansion valve 72 has its valve opening adjusted by a stepping motor that performs forward and reverse operations according to a control signal, and a control circuit according to the outlet temperature of the radiator 25. Based on data set in an apparatus (not shown), the stepping motor is rotated forward or backward to adjust the valve opening so that proper refrigerant expansion is performed.

また、電動式膨張弁73は、制御信号によって正転と逆転の動作をするステッピングモ
ータによってその弁開度が調節されるものであり、蒸発器(冷却器)29の出口温度に応
じて前記制御回路装置(図示せず)に設定したデータに基づき、前記ステッピングモータ
が正転又は逆転して弁開度が調節され、適正な冷媒膨張が行われるように制御する。
Further, the opening degree of the electric expansion valve 73 is adjusted by a stepping motor that performs forward and reverse operations according to a control signal, and the control is performed according to the outlet temperature of the evaporator (cooler) 29. Based on data set in a circuit device (not shown), the stepping motor rotates forward or backward to adjust the valve opening so that proper refrigerant expansion is performed.

35は第2蒸発器(冷却器)30で冷却された冷気が第2送風機32から導かれる冷気
ダクトであり、冷蔵室3の上壁45上に幅広く配置されその前端は冷蔵室3の前面開口部
の上面に形成した冷気吹き出し口36へ連通している。この冷気吹き出し口36から吹き
出す冷気は、冷蔵室3の前面開口部を矢印のように上から下へ流れる冷気カーテン37を
形成する。第1蒸発器(冷却器)29で冷却した冷気と第2蒸発器(冷却器)30で冷却
した冷気は、夫々第1送風機31及び第2送風機32によって矢印のように循環して各室
を所定温度に冷却する。
Reference numeral 35 denotes a cold air duct through which the cold air cooled by the second evaporator (cooler) 30 is guided from the second blower 32, and is widely disposed on the upper wall 45 of the refrigerator compartment 3, and the front end thereof is the front opening of the refrigerator compartment 3. It communicates with the cold air outlet 36 formed on the upper surface of the part. The cold air blown out from the cold air outlet 36 forms a cold air curtain 37 that flows from the top to the bottom as indicated by the arrow in the front opening of the refrigerator compartment 3. The cold air cooled by the first evaporator (cooler) 29 and the cold air cooled by the second evaporator (cooler) 30 are circulated as indicated by arrows by the first blower 31 and the second blower 32, respectively, and each chamber is circulated. Cool to a predetermined temperature.

第2蒸発器(冷却器)30で冷却した冷気を第2送風機32によって冷蔵室3と野菜室
4とに循環させる冷気循環経路の形成に関し、冷蔵室3の背面部には左右両側に冷気通路
43A、43Bを形成し、この左右配置の冷気通路43A、43B間には第2蒸発器(冷
却器)30の下側へ連通した冷気帰還通路44が形成されている。
Regarding the formation of a cold air circulation path in which the cold air cooled by the second evaporator (cooler) 30 is circulated to the refrigerator compartment 3 and the vegetable compartment 4 by the second blower 32, cold air passages are provided on the left and right sides of the rear portion of the refrigerator compartment 3. 43A and 43B are formed, and a cold air return passage 44 communicating with the lower side of the second evaporator (cooler) 30 is formed between the left and right cold air passages 43A and 43B.

第2蒸発器(冷却器)30で冷却した冷気は、第2送風機32によって冷蔵室3と野菜
室4とに循環される。その経路は、第2送風機32を通過した冷気は、一部が冷気ダクト
35を通って冷気吹き出し口36から吹き出す。第2送風機32を通過した冷気の他の部
分は、冷蔵室3の背面板40の裏側の左右の冷気通路43A、43Bを通って、冷蔵室3
の背面板40に形成した冷気吹き出し口39から冷蔵室3へ吹き出し、冷気通路43A、
43Bを更に下方へ流れつつ一部分の冷気が冷気吹き出し口39Aから特定低温室9へ吹
き出す。
The cold air cooled by the second evaporator (cooler) 30 is circulated between the refrigerator compartment 3 and the vegetable compartment 4 by the second blower 32. In the path, a part of the cold air passing through the second blower 32 is blown out from the cold air outlet 36 through the cold air duct 35. The other part of the cool air that has passed through the second blower 32 passes through the left and right cool air passages 43A and 43B on the back side of the back plate 40 of the refrigerating room 3, and the refrigerating room 3
From the cold air outlet 39 formed in the back plate 40 of the rear plate 40 to the refrigerator compartment 3,
A part of the cold air blows out from the cold air outlet 39A to the specific low temperature chamber 9 while flowing further down 43B.

左右の冷気通路43A、43Bを更に下方へ流れた冷気は、冷気出口50から冷蔵室3
と野菜室4との間に形成した冷気通路51へ供給される。冷気通路51は、冷蔵室3と野
菜室4との間の仕切り壁52と野菜室4の天井板53との間に形成される。仕切り壁52
は冷蔵室3の底壁を構成しており、野菜室4の天井板53は、野菜容器15の上面開口を
略塞ぐ位置に配置されており、野菜室4から前方へ取り外し可能なるよう、野菜室4の左
右壁及び又は仕切り壁52に支持している。冷蔵室3と特定低温室9を冷却した冷気の冷
気の一部は、仕切り壁52に形成した吸い込み口56から冷気通路51へ流入する。野菜
容器15は前方へ引き出し自在であるため、野菜容器15は野菜室4内へ収納されたとき
、野菜室4の天井板53によって野菜容器15の上面開口は天井板53によって覆われた
状態である。
The cold air that has flowed further downward in the left and right cold air passages 43A and 43B passes from the cold air outlet 50 to the refrigerator compartment 3.
And a cold air passage 51 formed between the vegetable compartment 4 and the vegetable compartment 4. The cold air passage 51 is formed between the partition wall 52 between the refrigerator compartment 3 and the vegetable compartment 4 and the ceiling plate 53 of the vegetable compartment 4. Partition wall 52
Constitutes the bottom wall of the refrigerator compartment 3, and the ceiling plate 53 of the vegetable compartment 4 is arranged at a position that substantially closes the top opening of the vegetable container 15, so that the vegetable can be removed forward from the vegetable compartment 4. The left and right walls of the chamber 4 and / or the partition walls 52 are supported. A part of the cool air that has cooled the refrigerator compartment 3 and the specific low temperature chamber 9 flows into the cool air passage 51 from the suction port 56 formed in the partition wall 52. Since the vegetable container 15 can be pulled out forward, when the vegetable container 15 is stored in the vegetable compartment 4, the top opening of the vegetable container 15 is covered with the ceiling plate 53 by the ceiling plate 53 of the vegetable compartment 4. is there.

冷気通路51へ供給された冷気は、冷気通路51を前方へ流れて前端の出口54から野
菜室4へ流下し、野菜容器15と扉11との間に形成された空間から野菜容器15の周囲
に形成された空間を通って、野菜室4の背面に形成した冷気吸い込み口55から吸い込ま
れる。
The cold air supplied to the cold air passage 51 flows forward through the cold air passage 51, flows down from the front end outlet 54 to the vegetable compartment 4, and surrounds the vegetable container 15 from the space formed between the vegetable container 15 and the door 11. The air is sucked from the cold air suction port 55 formed on the back surface of the vegetable compartment 4 through the space formed in the above.

冷蔵室3の裏側の左右冷気通路43A、43Bの間には、背面板40と本体2との間に
冷気帰還通路44が形成されているため、野菜室4の冷気は冷気吸い込み口55から吸い
込まれて冷気帰還通路44へ流れ、第2蒸発器(冷却器)30の下側へ流入して、再び第
2蒸発器(冷却器)30によって冷却される循環をする。
Since a cold air return passage 44 is formed between the back plate 40 and the main body 2 between the left and right cold air passages 43A and 43B on the back side of the refrigerator compartment 3, the cold air in the vegetable compartment 4 is sucked from the cold air suction port 55. Then, it flows into the cool air return passage 44, flows into the lower side of the second evaporator (cooler) 30, and circulates again cooled by the second evaporator (cooler) 30.

このような構成において、各室の温度は、冷蔵室3が約3〜4℃、野菜室4が約3〜6
℃に保たれ、冷凍室5、即ち上冷凍室6Aと下冷凍室6Bと、更に製氷室7が約−18℃
〜−20℃である。また、冷蔵室扉10の内側に設けた貯蔵棚38上は5〜8℃である。
特定低温室9は、0℃よりも高い約1℃のチルド室であったり、0℃よりも低く食品の凍
結温度よりも高い約0〜−1℃の氷温室であったり、また、食品の表面に薄い氷の層が形
成される程度の約−4℃の部分凍結室であったりする。このように特定低温室9は、食品
を特定の温度領域内で冷却保存するためのものであり、他の室に比して厳しい温度制御が
要求される。
In such a configuration, the temperature of each room is about 3 to 4 ° C. in the refrigerator room 3 and about 3 to 6 in the vegetable room 4.
The freezing room 5, that is, the upper freezing room 6A and the lower freezing room 6B, and further the ice making room 7 are maintained at about -18 ° C.
~ -20 ° C. Moreover, it is 5-8 degreeC on the storage shelf 38 provided inside the refrigerator compartment door 10. FIG.
The specific low-temperature chamber 9 is a chilled chamber of about 1 ° C. higher than 0 ° C., an ice greenhouse of about 0 to 1 ° C. lower than 0 ° C. and higher than the freezing temperature of food, It may be a partial freezing chamber at about −4 ° C. so that a thin ice layer is formed on the surface. As described above, the specific low temperature chamber 9 is used for refrigerated storage of food in a specific temperature range, and requires stricter temperature control than other rooms.

このように、本発明の冷凍装置は、圧縮機24で二段階圧縮された二酸化炭素冷媒が、
放熱器25、ドライヤ70、第1キャピラリチューブ75、第1電動式膨張弁72、気液
分離器71を経て、冷蔵室用キャピラリチューブ77、電動式膨張弁74とから冷蔵室用
蒸発器30へ流れる通路と、冷凍室用キャピラリチューブ76、電動式膨張弁73から冷
凍室用蒸発器29へ流れる通路との並列回路を経て圧縮機24の一段圧縮部24Aへ帰還
する冷媒回路を構成している。
Thus, in the refrigeration apparatus of the present invention, the carbon dioxide refrigerant compressed in two stages by the compressor 24 is
After passing through the radiator 25, the dryer 70, the first capillary tube 75, the first electric expansion valve 72, and the gas-liquid separator 71, the refrigerating room capillary tube 77 and the electric expansion valve 74 are transferred to the refrigerating room evaporator 30. A refrigerant circuit is configured to return to the first stage compression unit 24A of the compressor 24 through a parallel circuit of the flowing passage and the passage flowing from the freezer capillary tube 76 and the electric expansion valve 73 to the freezer evaporator 29. .

二酸化炭素冷媒を高圧で圧縮する圧縮機24内では、二酸化炭素が超臨界状態になるこ
とがある。二酸化炭素が超臨界状態にある場合にも、実質的に物理的、化学的な悪影響が
冷凍装置の各部に生じないような材料と潤滑オイルが使用されている。
In the compressor 24 that compresses the carbon dioxide refrigerant at a high pressure, the carbon dioxide may be in a supercritical state. Even when carbon dioxide is in a supercritical state, materials and lubricating oil are used so that substantially no physical or chemical adverse effects occur in each part of the refrigeration apparatus.

このように冷媒回路には二酸化炭素冷媒を使用しており、冷媒回路中の水分を吸着によ
って除去するために、ドライヤ70にはその入口側と出口側に夫々設けたフィルタの間に
乾燥剤としてモレキュラーシーブを収納している。このモレキュラーシーブは、実質的に
冷媒回路中の水分除去はするが二酸化炭素を吸着しない特性を有しており、これによって
、循環する二酸化炭素が不足して冷却能力が低下することが防止される。
In this way, carbon dioxide refrigerant is used in the refrigerant circuit, and in order to remove moisture in the refrigerant circuit by adsorption, the dryer 70 is used as a desiccant between the filters provided on the inlet side and the outlet side, respectively. Contains molecular sieves. This molecular sieve has the characteristic of substantially removing moisture in the refrigerant circuit but not adsorbing carbon dioxide, thereby preventing the cooling capacity from being lowered due to insufficient circulating carbon dioxide. .

また、本発明では、もう一つの実施例として、冷凍冷蔵庫本体2内の各室が単一の蒸発
器(冷却器)によって冷却するように構成することもできる。この場合、上記の各図にお
いて、第1蒸発器(冷却器)29で冷却した冷気を第1送風機31によって冷蔵室3、野
菜室4、冷凍室5へ冷気が循環するように構成することができる。この場合の冷凍装置の
冷媒回路としては、圧縮機24で二段階圧縮された二酸化炭素冷媒が、放熱器25、ドラ
イヤ70、第1キャピラリチューブ75、第1電動式膨張弁72、気液分離器71、第2
キャピラリチューブ76、第2電動式膨張弁73、冷却庫内を冷却するための蒸発器31
を順次通って圧縮機24の一段目圧縮部24Aへ帰還する第1冷媒回路と、気液分離器7
1で分離された冷媒ガスを圧縮機24の二段目圧縮部24Bへ導入する第2冷媒回路を構
成する。
Moreover, in this invention, as another Example, each chamber in the refrigerator-freezer main body 2 can also be comprised so that it may cool with a single evaporator (cooler). In this case, in each said figure, it can comprise so that cold air circulated to the refrigerator compartment 3, the vegetable compartment 4, and the freezer compartment 5 with the 1st air blower 31 by the cold air cooled with the 1st evaporator (cooler) 29. FIG. it can. In this case, as the refrigerant circuit of the refrigeration apparatus, the carbon dioxide refrigerant compressed in two stages by the compressor 24 includes the radiator 25, the dryer 70, the first capillary tube 75, the first electric expansion valve 72, and the gas-liquid separator. 71, second
Capillary tube 76, second electric expansion valve 73, evaporator 31 for cooling the inside of the refrigerator
The first refrigerant circuit that sequentially returns to the first stage compression unit 24A of the compressor 24, and the gas-liquid separator 7
2 constitutes a second refrigerant circuit for introducing the refrigerant gas separated in 1 into the second-stage compression unit 24B of the compressor 24.

このような冷凍装置においても、ドライヤ70の乾燥剤としては、実質的に前記冷媒回
路中の水分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納した構成とす
る。
Also in such a refrigeration apparatus, the desiccant of the dryer 70 is configured to contain a molecular sieve that substantially removes moisture in the refrigerant circuit but does not adsorb carbon dioxide.

このため、上記実施例1および2をも含めた共通の本発明の基本構成は、圧縮機24で
二段階圧縮された二酸化炭素冷媒が、放熱器25で凝縮し、ドライヤ70にて水分を除去
された後、減圧装置としてのキャピラリチューブと電動式膨張弁を順次通って冷却庫内を
冷却するための蒸発器へ入り、この蒸発器を出た冷媒が圧縮機24の一段圧縮部24Aへ
帰還する冷媒回路を構成し、前記ドライヤの乾燥剤として実質的に前記冷媒回路中の水分
除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納したことを特徴とするも
のである。
Therefore, the common basic configuration of the present invention including the first and second embodiments is that the carbon dioxide refrigerant compressed in two stages by the compressor 24 is condensed by the radiator 25 and moisture is removed by the dryer 70. Then, the refrigerant enters the evaporator for cooling the inside of the refrigerator through the capillary tube as the decompression device and the electric expansion valve in sequence, and the refrigerant exiting the evaporator returns to the first stage compression unit 24A of the compressor 24. And a molecular sieve that substantially removes water in the refrigerant circuit but does not adsorb carbon dioxide as a desiccant for the dryer.

本発明は、二酸化炭素冷媒を使用する冷凍回路を備えた冷凍冷蔵庫に適用して効果ある
ため、種々の形態の冷凍冷蔵庫に適用できるものである。
Since the present invention is effective when applied to a refrigerator-freezer provided with a refrigeration circuit using a carbon dioxide refrigerant, the present invention can be applied to refrigerators of various forms.

本発明冷凍冷蔵庫の正面図である。(実施例1)It is a front view of the present invention refrigerator-freezer. (Example 1) 本発明の冷凍冷蔵庫本体を正面から見た説明図である。(実施例1)It is explanatory drawing which looked at the refrigerator-freezer main body of this invention from the front. (Example 1) 本発明冷凍冷蔵庫の縦断側面図である。(実施例1)It is a vertical side view of this invention refrigerator-freezer. (Example 1) 本発明に係る冷凍装置をブロックで示す構成図である。(実施例1)It is a block diagram which shows the freezing apparatus which concerns on this invention with a block. (Example 1) 本発明に係る冷凍装置の冷媒回路配管の説明図である。(実施例1)It is explanatory drawing of refrigerant circuit piping of the freezing apparatus which concerns on this invention. (Example 1)

符号の説明Explanation of symbols

1・・・冷凍冷蔵庫
2・・・冷凍冷蔵庫本体
3・・・冷蔵室
4・・・野菜室
5・・・冷凍室
6・・・製氷室
7・・・自動製氷機
9・・・給水容器
24・・電動圧縮機
24A・・一段目の圧縮部
24B・・二段目の圧縮部
25・・放熱器
25A・・初段放熱器
25B・・メイン放熱器
25C・・蒸発皿放熱器
25D・・壁パイプ
25E・・露着き防止放熱器
29・・第1蒸発器(冷却器)
30・・第2蒸発器(冷却器)
31・・第1送風機
32・・第2送風機
70・・ドライヤ
71・・気液分離器
72・・第1電動式膨張弁
73・・第2電動式膨張弁
74・・第3電動式膨張弁
75・・第1キャピラリチューブ
76・・第2キャピラリチューブ
77・・第3キャピラリチューブ
DESCRIPTION OF SYMBOLS 1 ... Refrigeration refrigerator 2 ... Refrigeration refrigerator main body 3 ... Refrigeration room 4 ... Vegetable room 5 ... Freezing room 6 ... Ice making room 7 ... Automatic ice making machine 9 ... Water supply container 24..Electric compressor 24A..First stage compression section 24B..Second stage compression section 25..Radiator 25A..First stage radiator 25B..Main radiator 25C..Evaporation dish radiator 25D .. Wall pipe 25E ... Anti-deposition radiator 29 ... First evaporator (cooler)
30 ・ ・ Second evaporator (cooler)
31 .. First blower 32 .. Second blower 70 .. Dryer 71 .. Gas-liquid separator 72 .. First electric expansion valve 73 .. Second electric expansion valve 74 .. Third electric expansion valve 75 .. First capillary tube 76 .. Second capillary tube 77 .. Third capillary tube

Claims (3)

圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライヤ、キャピラリチューブ
、電動式膨張弁、冷却庫内を冷却するための蒸発器を順次通って前記圧縮機の一段圧縮部
へ帰還する冷媒回路を構成し、前記ドライヤの乾燥剤として実質的に前記冷媒回路中の水
分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納したことを特徴とする
冷凍冷蔵庫用冷凍装置。
The carbon dioxide refrigerant compressed in two stages by the compressor returns to the one-stage compression section of the compressor through the radiator, the dryer, the capillary tube, the electric expansion valve, and the evaporator for cooling the inside of the refrigerator in order. A refrigerating apparatus for a refrigerator-freezer comprising a refrigerant circuit and containing a molecular sieve that substantially removes water in the refrigerant circuit but does not adsorb carbon dioxide as a desiccant for the dryer.
圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライヤ、第1キャピラリチュ
ーブ、第1電動式膨張弁、気液分離器、第2キャピラリチューブ、第2電動式膨張弁、冷
却庫内を冷却するための蒸発器を順次通って前記圧縮機の一段目圧縮部へ帰還する第1冷
媒路と、前記気液分離器で分離された冷媒ガスを前記圧縮機の二段目圧縮部へ導入する第
2冷媒路を構成し、前記ドライヤの乾燥剤として実質的に前記第1、第2冷媒路からなる
冷媒回路中の水分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納したこ
とを特徴とする冷凍冷蔵庫用冷凍装置。
The carbon dioxide refrigerant compressed in two stages by the compressor is a radiator, dryer, first capillary tube, first electric expansion valve, gas-liquid separator, second capillary tube, second electric expansion valve, inside the refrigerator. A first refrigerant path that sequentially returns to the first stage compression unit of the compressor through the evaporator for cooling the refrigerant, and the refrigerant gas separated by the gas-liquid separator to the second stage compression unit of the compressor The second refrigerant path to be introduced is configured, and a molecular sieve that substantially removes moisture but does not adsorb carbon dioxide in the refrigerant circuit consisting of the first and second refrigerant paths as a desiccant for the dryer is stored. A refrigerating apparatus for a refrigerator-freezer characterized.
圧縮機で二段階圧縮された二酸化炭素冷媒が、放熱器、ドライヤ、第1キャピラリチュ
ーブ、第1電動式膨張弁、気液分離器を経て、冷蔵室用キャピラリチューブから第2電動
式膨張弁を通って冷蔵室用蒸発器へ流れる通路と、冷凍室用キャピラリチューブから第3
電動式膨張弁を通って冷凍室用蒸発器へ流れる通路との並列回路を経て前記圧縮機の一段
圧縮部へ帰還する冷媒回路を構成し、前記ドライヤの乾燥剤として実質的に前記冷媒回路
中の水分除去はするが二酸化炭素を吸着しないモレキュラーシーブを収納したことを特徴
とする冷凍冷蔵庫用冷凍装置。
The carbon dioxide refrigerant compressed in two stages by the compressor passes through the radiator, the dryer, the first capillary tube, the first electric expansion valve, and the gas-liquid separator, and passes through the second electric expansion valve from the cold storage capillary tube. Through the passage flowing through the refrigerator compartment evaporator and the freezer compartment capillary tube
A refrigerant circuit that returns to the first stage compression unit of the compressor through a parallel circuit with a passage that flows through the electric expansion valve to the evaporator for the freezer compartment is configured, and substantially in the refrigerant circuit as a desiccant for the dryer A freezer for a refrigerator that contains a molecular sieve that removes water but does not adsorb carbon dioxide.
JP2004206725A 2004-07-14 2004-07-14 Freezer for freezing refrigerator Pending JP2006029643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206725A JP2006029643A (en) 2004-07-14 2004-07-14 Freezer for freezing refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206725A JP2006029643A (en) 2004-07-14 2004-07-14 Freezer for freezing refrigerator

Publications (1)

Publication Number Publication Date
JP2006029643A true JP2006029643A (en) 2006-02-02

Family

ID=35896222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206725A Pending JP2006029643A (en) 2004-07-14 2004-07-14 Freezer for freezing refrigerator

Country Status (1)

Country Link
JP (1) JP2006029643A (en)

Similar Documents

Publication Publication Date Title
US11073317B2 (en) Refrigerator
US6935127B2 (en) Refrigerator
WO2015093235A1 (en) Sublimation defrost system for refrigeration devices and sublimation defrost method
KR20070011759A (en) Evaporator and refrigerator having the same
JP5847198B2 (en) refrigerator
KR102289303B1 (en) A refrigerator
JP4206792B2 (en) refrigerator
JP2005257149A (en) Refrigerator
JP4624240B2 (en) Refrigeration apparatus and cooling storage with refrigeration apparatus
JP2004324902A (en) Freezing refrigerator
JP2006029643A (en) Freezer for freezing refrigerator
KR100377618B1 (en) Refrigerator with Phase change material
JP2005098605A (en) Refrigerator
JP2007040654A (en) Freezing equipment
KR101306508B1 (en) Binding structure of refrigerator evaporator
JP2015111040A (en) Refrigerator
JP4632897B2 (en) Refrigeration apparatus and cooling storage with refrigeration apparatus
WO2017051643A1 (en) Cooling chamber
JP2013096607A (en) Refrigerator
KR101198180B1 (en) Refrigerator
JP2004011997A (en) Refrigerator
KR101573535B1 (en) A refrigerator
JP2005257247A (en) Refrigerator
JP2007064590A (en) Refrigerator
KR101014189B1 (en) Refrigeration system in refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20051226

Free format text: JAPANESE INTERMEDIATE CODE: A7421