JP2006029190A - Method for diagnosing life of high temperature part in gas turbine - Google Patents

Method for diagnosing life of high temperature part in gas turbine Download PDF

Info

Publication number
JP2006029190A
JP2006029190A JP2004208558A JP2004208558A JP2006029190A JP 2006029190 A JP2006029190 A JP 2006029190A JP 2004208558 A JP2004208558 A JP 2004208558A JP 2004208558 A JP2004208558 A JP 2004208558A JP 2006029190 A JP2006029190 A JP 2006029190A
Authority
JP
Japan
Prior art keywords
temperature
extracted
gas temperature
local gas
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208558A
Other languages
Japanese (ja)
Other versions
JP4354358B2 (en
Inventor
Eisaku Ito
栄作 伊藤
Takashi Hiyama
貴志 檜山
Satoru Haneda
哲 羽田
Takeshi Iida
雄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004208558A priority Critical patent/JP4354358B2/en
Publication of JP2006029190A publication Critical patent/JP2006029190A/en
Application granted granted Critical
Publication of JP4354358B2 publication Critical patent/JP4354358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately performing life diagnosis of a high temperature part of a gas turbine. <P>SOLUTION: Local gas temperature transmitted to each high temperature part is calculated for each assumed operation condition by performing CFD analysis by giving a plurality of boundary conditions corresponding to a plurality of operation conditions assumed in actual operation in relation to combustion gas of main flow and mixing fluid at first. A correlation chart of each assumed operation condition and local gas temperature is created for each high temperature part based on a CFD analysis result next. Corresponding local gas temperature for each operation condition at a time of actual operation is extracted from the correlation chart based on the correlation chart and operation condition accumulated accompanying actual operation for a desired high temperature part and operation time for each extracted local gas temperature is extracted from operation information next. Each extracted operation time is weighted by weighting factor determined for each local gas temperature and each weighted operation time is accumulated next. Then, remaining life is determined by comparing accumulated operation time with reference value determined for the high temperature part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電設備やジェットエンジン等のガスタービンにおける高温部品の寿命を診断する方法に関する。   The present invention relates to a method for diagnosing the lifetime of high-temperature components in a gas turbine such as a power generation facility or a jet engine.

一般に、ガスタービンは、圧縮機、燃焼器、及びタービンを主な構成要素とし、互いに主軸で直結された圧縮機とタービンの間に燃焼器が配設されてなり、作動流体となる空気が主軸の回転により圧縮機に吸入されて圧縮され、その圧縮空気が燃焼器に導入されて燃料とともに燃焼し、その高温高圧の燃焼ガスがタービンに吐出されてタービンとともに主軸を回転駆動させる。このようなガスタービンは、主軸の前端に発電機等を接続することで発電設備の駆動源として活用され、また、タービンの前方に燃焼ガス噴射用の排気口を配設することでジェットエンジンとして活用される。   In general, a gas turbine includes a compressor, a combustor, and a turbine as main components. A combustor is disposed between a compressor and a turbine that are directly connected to each other through a main shaft, and air serving as a working fluid is used as a main shaft. , And the compressed air is introduced into the combustor and combusted together with the fuel. The high-temperature and high-pressure combustion gas is discharged to the turbine to drive the main shaft together with the turbine. Such a gas turbine is used as a drive source for power generation equipment by connecting a generator or the like to the front end of the main shaft, and as a jet engine by disposing an exhaust port for combustion gas injection in front of the turbine. Be utilized.

具体的には、図5に示すように、ガスタービン1は、大きくは、圧縮機2、燃焼器3、及びタービン4から構成される。燃焼器3は、圧縮機2とタービン4の間に形成された空洞を有する車室5に取り付けられており、燃焼領域を有する内筒6、この内筒6の前端に連結された尾筒7、内筒6と同心状に配設された外筒8、内筒6の中心軸線上に後端から配設されたパイロット燃料ノズル9、このパイロット燃料ノズル9の周囲に円周方向で等間隔に配設された複数のメイン燃料ノズル10、尾筒7の側壁に連結され車室5に開口するバイパスダクト11、このバイパスダクト11に配設されたバイパス弁12、このバイパス弁12の開閉度合いを調整するバイパス弁可変機構13を備える。   Specifically, as shown in FIG. 5, the gas turbine 1 is mainly composed of a compressor 2, a combustor 3, and a turbine 4. The combustor 3 is attached to a casing 5 having a cavity formed between the compressor 2 and the turbine 4, and an inner cylinder 6 having a combustion region, and a tail cylinder 7 connected to the front end of the inner cylinder 6. The outer cylinder 8 concentrically with the inner cylinder 6, the pilot fuel nozzle 9 disposed from the rear end on the central axis of the inner cylinder 6, and circumferentially spaced around the pilot fuel nozzle 9 A plurality of main fuel nozzles 10, a bypass duct 11 connected to the side wall of the transition piece 7 and opening to the passenger compartment 5, a bypass valve 12 provided in the bypass duct 11, and the degree of opening and closing of the bypass valve 12 A variable bypass valve mechanism 13 is provided.

タービン4では、主軸に、これと同軸状で複数段に亘ってロータディスク15が設けられ、各ロータディスク15の外周からは複数枚の動翼16が放射状に延出している。このロータディスク15と動翼16は、主軸と共に一体的に回転する。また、主軸に沿って動翼16と交互に配置される態様で、タービン4本体に対して固定の静翼17が設けられている。   In the turbine 4, a rotor disk 15 is provided on the main shaft in a plurality of stages coaxially with the main shaft, and a plurality of blades 16 extend radially from the outer periphery of each rotor disk 15. The rotor disk 15 and the rotor blade 16 rotate together with the main shaft. In addition, stationary vanes 17 are provided to the turbine 4 main body in such a manner that the blades 16 are alternately arranged along the main shaft.

このような構成のもと、圧縮機2で圧縮された圧縮空気は、車室5内に流入し(図中の白抜き矢印参照)、内筒6の外周面と外筒8の内周面とで形成される管状空間を経た後ほぼ180度反転して(図中の実線矢印参照)、内筒6内に後端側から導入される。次いで、パイロット燃料ノズル9から噴出された燃料と混合されて拡散火炎となって燃焼し、これと同時に、メイン燃料ノズル10から噴出された燃料と混合されて拡散火炎に放出されることで主火炎となって燃焼し、高温高圧の燃焼ガスが生成する。この燃焼ガスは、尾筒7内を経由してその前端から吐出され、タービン4に導入される。   Under such a configuration, the compressed air compressed by the compressor 2 flows into the passenger compartment 5 (see the white arrow in the figure), and the outer peripheral surface of the inner cylinder 6 and the inner peripheral surface of the outer cylinder 8. After being passed through the tubular space formed by the above, it is reversed approximately 180 degrees (see solid arrow in the figure) and introduced into the inner cylinder 6 from the rear end side. Subsequently, it is mixed with the fuel ejected from the pilot fuel nozzle 9 and burned as a diffusion flame, and at the same time, it is mixed with the fuel ejected from the main fuel nozzle 10 and released into the diffusion flame, thereby being discharged into the main flame. And burns to produce high-temperature and high-pressure combustion gas. This combustion gas is discharged from its front end via the inside of the transition piece 7 and introduced into the turbine 4.

タービン4に送り込まれた燃焼ガスは、動翼16と静翼17とを交互に経て流動した後、外部へ排出される。その際、動翼16は燃焼ガスから揚力を受けてロータディスク15と共に軸回転し、これにより主軸が回転駆動される。なお、バイパスダクト11から尾筒7内へは車室5内の圧縮空気の一部が供給され、これにより内筒6内の燃焼ガス濃度が調整される。   The combustion gas sent to the turbine 4 flows through the moving blades 16 and the stationary blades 17 alternately, and is then discharged to the outside. At that time, the moving blade 16 receives lift from the combustion gas and rotates with the rotor disk 15, thereby rotating the main shaft. A part of the compressed air in the passenger compartment 5 is supplied from the bypass duct 11 into the tail cylinder 7, thereby adjusting the combustion gas concentration in the inner cylinder 6.

ところで、このようなガスタービン1においては、定期的な保守点検及びこれに伴う部品交換は欠かせない。高温高圧の燃焼ガスが流動するため、ガスタービン1を構成する種々の部品のうち、特に、燃焼ガスの流通経路に存在し燃焼ガスより熱が与えられて高温になる動翼16や静翼17等の高温部品は、運転の経過に連れて熱影響により損傷していくからである。   By the way, in such a gas turbine 1, periodic maintenance and inspection and accompanying parts replacement are indispensable. Since the high-temperature and high-pressure combustion gas flows, among the various components constituting the gas turbine 1, in particular, the moving blade 16 and the stationary blade 17 that are present in the combustion gas flow path and are heated by the combustion gas to become high temperature. This is because high-temperature parts such as these are damaged due to the influence of heat as the operation progresses.

一方、高温部品の交換を含めた保守点検には莫大な費用がかかるため、長期的なコスト低減の観点から、安全性の確保を踏まえつつ的確なタイミングで保守点検を行うべく、高温部品の損傷の程度を見極め、その残り寿命を正確に判断することが重要である。また、高温部品の損傷の程度は、プラントごとの実際のガスタービン1の運転条件によって大きく変動するため、その損傷程度の見極めにあたっては、実際の運転条件を考慮することが重要である。ここでいう運転条件としては、圧縮機2へ吸入される空気の圧力(大気圧)や温度(大気温度)、車室5内の圧力(車室圧)、バイパス弁12の開閉度合い(バイパス弁開度)、車室圧と大気圧との比率(圧力比)、尾筒7の出口での燃焼ガス温度分布(燃焼器出口ガス温度分布)や燃焼ガス圧力分布(燃焼器出口ガス圧力分布)、タービン4の入口での燃焼ガス温度(タービン入口ガス温度)や出口での燃焼ガス温度(タービン出口ガス温度)、外部へ放出される燃焼ガスの温度(排ガス温度)等が相当する。   On the other hand, maintenance inspections including replacement of high-temperature parts are very expensive. From the viewpoint of long-term cost reduction, damage to high-temperature parts is required so that maintenance inspections can be performed at an appropriate timing while ensuring safety. It is important to determine the degree of the above and accurately determine the remaining life. In addition, since the degree of damage to the high-temperature parts varies greatly depending on the actual operating conditions of the gas turbine 1 for each plant, it is important to consider the actual operating conditions when determining the degree of damage. The operating conditions here include the pressure (atmospheric pressure) and temperature (atmospheric temperature) of the air sucked into the compressor 2, the pressure in the passenger compartment 5 (vehicle compartment pressure), and the degree of opening and closing of the bypass valve 12 (bypass valve). Opening), the ratio between the passenger compartment pressure and the atmospheric pressure (pressure ratio), the combustion gas temperature distribution (combustor outlet gas temperature distribution) and the combustion gas pressure distribution (combustor outlet gas pressure distribution) at the outlet of the tail cylinder 7 The combustion gas temperature at the inlet of the turbine 4 (turbine inlet gas temperature), the combustion gas temperature at the outlet (turbine outlet gas temperature), the temperature of the combustion gas released to the outside (exhaust gas temperature), and the like correspond.

高温部品の損傷程度を見極める手法としては、FEM(Finite Element Method:有限要素法)解析やCFD(Computational Fluid Dynamics:数値流体力学)解析を用いて、高温部品の寿命を診断する方法がある(例えば特許文献1)。この寿命診断方法では、ガスタービンの適所に設置したセンサからの情報と実際の運転条件とに基づいて境界条件を定め、その高温部品の損傷程度をFEM解析により推測するようになっている。
特開2002−108440号公報
As a method for determining the degree of damage to a high-temperature part, there is a method of diagnosing the lifetime of a high-temperature part by using FEM (Finite Element Method) analysis or CFD (Computational Fluid Dynamics) analysis (for example, Patent Document 1). In this life diagnosis method, boundary conditions are determined based on information from sensors installed at appropriate positions of the gas turbine and actual operating conditions, and the degree of damage of the high-temperature parts is estimated by FEM analysis.
JP 2002-108440 A

しかし、上記した従来の寿命診断方法によれば、高温部品に熱を与えるそもそもの根源である主流の燃焼ガスからの熱流れの算出方法を明示しておらず、最も重要な局所ガス温度の予測精度が問題となる。たとえば、高温部品によっては、局所ガス温度が解析値と実際値とでかけ離れる場合がある。実際のタービン4内を流通する流体には、主流の燃焼ガスの他に、意図的に混入される混入流体が在り、この混入流体の温度や流量の影響を無視できないからである。   However, according to the conventional life diagnosis method described above, the calculation method of the heat flow from the mainstream combustion gas, which originally heats the high-temperature parts, is not specified, and the most important local gas temperature is predicted. Accuracy is a problem. For example, depending on the high-temperature parts, the local gas temperature may vary widely between the analysis value and the actual value. This is because the fluid flowing through the actual turbine 4 includes a mixed fluid intentionally mixed in addition to the mainstream combustion gas, and the influence of the temperature and flow rate of the mixed fluid cannot be ignored.

その場合、実際値とはかけ離れた解析値の局所ガス温度に基づいて高温部品の損傷程度が推測されることになり、結果として実際の状況とは相違する損傷程度をもってして残り寿命が判断されることになる。従って、高温部品の寿命判断の正確性に欠けるという問題がある。   In that case, the extent of damage to the high-temperature parts is estimated based on the local gas temperature of the analysis value far from the actual value, and as a result, the remaining life is judged with the degree of damage different from the actual situation. Will be. Therefore, there is a problem that the life judgment of high temperature parts is not accurate.

そこで本発明は、上記の問題に鑑みてなされたものであり、ガスタービンにおける高温部品の寿命判断を正確に行える寿命診断方法を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a life diagnosis method capable of accurately determining the life of high temperature components in a gas turbine.

上記目的を達成するため、本発明は、ガスタービンを構成する部品のうち主流の燃焼ガスより熱が与えられて高温になる高温部品についての寿命診断方法において、以下の第1〜第5ステップを含む。先ず事前準備として、第1、第2ステップを順に経る。第1ステップでは、主流の燃焼ガス及びこれに混入される混入流体について、実際の運転で想定される複数の運転条件に対応した複数の境界条件を与えてCFD解析を行い、想定の運転条件ごとに、各高温部品に伝達される局所ガス温度を算出する。続く第2ステップでは、第1ステップでのCFD解析の結果に基づき、高温部品ごとに、想定の各運転条件と局所ガス温度との相関図を作成する。   To achieve the above object, according to the present invention, in a life diagnosis method for a high-temperature part that is heated by heat from the mainstream combustion gas among the parts constituting the gas turbine, the following first to fifth steps are performed. Including. First, as a preliminary preparation, the first and second steps are sequentially performed. In the first step, CFD analysis is performed on the mainstream combustion gas and the mixed fluid mixed therein, by giving a plurality of boundary conditions corresponding to a plurality of operating conditions assumed in actual operation, and for each assumed operating condition. Next, the local gas temperature transmitted to each high temperature component is calculated. In the subsequent second step, a correlation diagram between each assumed operating condition and the local gas temperature is created for each high-temperature part based on the result of the CFD analysis in the first step.

続いて、実際の寿命評価の場面として、第3〜第5ステップを順に経る。第3ステップでは、所望の高温部品について、第2ステップで作成した相関図、及び実際の運転に伴って蓄積されている運転情報に基づき、相関図より実際の運転時の運転条件ごとに対応する局所ガス温度を抽出し、抽出した局所ガス温度ごとの運転時間を運転情報より抽出する。続く第4ステップでは、第3ステップで抽出した各運転時間を局所ガス温度ごとに定められた重み係数で重み付けし、重み付けした各運転時間を累積する。そして第5ステップでは、第4ステップでの累積運転時間を当該高温部品に定められた基準値と比較して残り寿命を判断する。   Subsequently, as the actual life evaluation scene, the third to fifth steps are sequentially performed. In the third step, for the desired high-temperature part, based on the correlation diagram created in the second step and the operation information accumulated with the actual operation, the correlation diagram corresponds to each operating condition during actual operation. The local gas temperature is extracted, and the operation time for each extracted local gas temperature is extracted from the operation information. In the subsequent fourth step, each operation time extracted in the third step is weighted with a weighting factor determined for each local gas temperature, and each weighted operation time is accumulated. In the fifth step, the remaining service life is determined by comparing the accumulated operation time in the fourth step with a reference value determined for the high temperature component.

これにより、CFD解析において、主流の燃焼ガスと共に混入流体の熱流れを解析対象としているため、高温部品を問わず、局所ガス温度の解析値が実際値と同等になる。従って、その局所ガス温度に基づいて推測される高温部品の損傷程度も実際の状況に近いものとなり、正確に高温部品の寿命判断を行うことが可能になる。この場合、高温部品に生じるクリープ変形や高温酸化に対して有効に寿命判断が行える。   As a result, in the CFD analysis, the heat flow of the mixed fluid is analyzed along with the mainstream combustion gas, so that the analysis value of the local gas temperature is equal to the actual value regardless of the high-temperature parts. Therefore, the degree of damage of the high-temperature component estimated based on the local gas temperature is also close to the actual situation, and it is possible to accurately determine the life of the high-temperature component. In this case, it is possible to determine the life effectively against creep deformation and high temperature oxidation occurring in the high temperature part.

また、実際の寿命評価の場面として、次のような第3〜第5ステップを順に経ても構わない。第3ステップでは、所望の高温部品について、第2ステップで作成した相関図、及び実際の運転に伴って蓄積されている運転情報に基づき、相関図より実際の運転時の運転条件ごとに対応する局所ガス温度を抽出し、抽出した局所ガス温度ごとの運転起動停止回数を運転情報より抽出する。続く第4ステップでは、第3ステップで抽出した各運転起動停止回数を局所ガス温度ごとに定められた重み係数で重み付けし、重み付けした各運転起動停止回数を累積する。そして第5ステップでは、第4ステップでの累積運転起動停止回数を当該高温部品に定められた基準値と比較して残り寿命を判断する。   In addition, as the actual life evaluation scene, the following third to fifth steps may be sequentially performed. In the third step, for the desired high-temperature part, based on the correlation diagram created in the second step and the operation information accumulated with the actual operation, the correlation diagram corresponds to each operating condition during actual operation. The local gas temperature is extracted, and the operation start / stop count for each extracted local gas temperature is extracted from the operation information. In the subsequent fourth step, each operation start / stop count extracted in the third step is weighted with a weighting factor determined for each local gas temperature, and each weighted operation start / stop count is accumulated. In the fifth step, the remaining life is determined by comparing the cumulative operation start / stop count in the fourth step with a reference value determined for the high temperature component.

このようにしても、CFD解析において、高温部品を問わず、局所ガス温度の解析値が実際値と同等になるため、正確に高温部品の寿命判断を行うことが可能になる。この場合、高温部品に生じる低サイクル疲労に対して有効に寿命判断が行える。   Even in such a case, in the CFD analysis, the analysis value of the local gas temperature becomes equal to the actual value regardless of the high temperature component, so that it is possible to accurately determine the life of the high temperature component. In this case, it is possible to determine the life effectively against the low cycle fatigue generated in the high temperature part.

本発明のガスタービンにおける高温部品の寿命診断方法によれば、正確に高温部品の寿命判断を行うことが可能になるため、ガスタービンの保守点検のタイミングを的確に定めることができ、その結果として長期的なコスト低減を実現できる。   According to the life diagnosis method for high-temperature parts in the gas turbine of the present invention, it is possible to accurately determine the life of high-temperature parts, so that the timing of maintenance and inspection of the gas turbine can be accurately determined, and as a result Long-term cost reduction can be realized.

以下に、本発明の一実施形態であるガスタービンにおける高温部品の寿命診断方法について、図1に示す手順に従って説明する。本実施形態の寿命診断の手順は、事前準備の段階と、実際に高温部品の寿命評価を行う段階とに大きく区分される。   Hereinafter, a life diagnosis method for high-temperature components in a gas turbine according to an embodiment of the present invention will be described according to the procedure shown in FIG. The life diagnosis procedure of the present embodiment is roughly divided into a preliminary preparation stage and an actual life evaluation stage for high-temperature components.

先ず、事前準備の段階について説明する。ステップ#5において、一般に入手が可能なCFD解析プログラムを用いてCFD解析を行う。ここでのCFD解析は、主流の燃焼ガス及びこれに混入される混入流体の熱流れを解析対象とする。混入流体としては、ディスクロータ15や動翼16や静翼17の過度の温度上昇を防止するためのいわゆるフィルム冷却空気、流通経路からの燃焼ガスの漏出を防止するためのいわゆるシール空気等が相当する。   First, the preliminary preparation stage will be described. In step # 5, CFD analysis is performed using a generally available CFD analysis program. In this CFD analysis, the heat flow of the mainstream combustion gas and the mixed fluid mixed therein is used as an analysis target. Examples of the mixed fluid include so-called film cooling air for preventing an excessive temperature rise of the disk rotor 15, the moving blade 16 and the stationary blade 17, and so-called sealing air for preventing leakage of combustion gas from the distribution path. To do.

例えば図2に示すように、フィルム冷却空気(図中の実線矢印参照)としては、動翼16の表面に設けられた複数の噴出孔16aから燃焼ガスの流通経路へ噴出され、動翼16の表面を覆いつつこれに沿って流動するもの、同様に、静翼17の表面に設けられた複数の噴出孔17aから燃焼ガスの流通経路へ噴出され、静翼17の表面を覆いつつこれに沿って流動するものがある。ロータディスク15の外周面に設けられた複数の噴出孔15aから燃焼ガスの流通経路へ噴出され、ロータディスク15の外周面を覆いつつこれに沿って流動するものもある。シール空気(図中の破線矢印参照)としては、ロータディスク15同士の隙間から燃焼ガスの流通経路へ噴出されるものがある。   For example, as shown in FIG. 2, as film cooling air (see solid arrows in the figure), the film cooling air is ejected from a plurality of ejection holes 16 a provided on the surface of the rotor blade 16 to the combustion gas flow path. One that flows along the surface while covering the surface, similarly, is ejected from the plurality of ejection holes 17a provided on the surface of the stationary blade 17 to the flow path of the combustion gas, and covers the surface of the stationary blade 17 along the surface. There is something that flows. Some are ejected from a plurality of ejection holes 15 a provided on the outer peripheral surface of the rotor disk 15 to the flow path of the combustion gas and flow along the outer peripheral surface of the rotor disk 15. As the sealing air (see the broken line arrow in the figure), there is air that is ejected from the gap between the rotor disks 15 to the combustion gas flow path.

また、CFD解析は、実際の運転で想定される種々の運転条件にそれぞれ対応した境界条件を与えて行う。ここでの運転条件としては、大気圧や大気温度、車室圧、バイパス弁開度、圧力比、燃焼器出口ガス温度分布や燃焼器出口ガス圧力分布、タービン入口ガス温度やタービン出口ガス温度、排ガス温度等が相当する。なお、混入流体の混入温度や混入流量は運転条件に対応して定められる。   The CFD analysis is performed by giving boundary conditions corresponding to various operating conditions assumed in actual driving. The operating conditions here are atmospheric pressure, atmospheric temperature, passenger compartment pressure, bypass valve opening, pressure ratio, combustor outlet gas temperature distribution and combustor outlet gas pressure distribution, turbine inlet gas temperature and turbine outlet gas temperature, This corresponds to the exhaust gas temperature. The mixing temperature and mixing flow rate of the mixed fluid are determined according to the operating conditions.

そして、CFD解析により、想定の各種運転条件ごとに、各高温部品(ディスクロータ15、動翼16、静翼17、尾筒7等)に伝達される局所ガス温度を算出する。   Then, the local gas temperature transmitted to each high-temperature component (the disk rotor 15, the moving blade 16, the stationary blade 17, the tail cylinder 7, etc.) is calculated by CFD analysis for each assumed various operating conditions.

次にステップ#10において、上記のCFD解析の結果に基づき、高温部品ごとに、想定の各運転条件と局所ガス温度との相関図を作成する。例えば図3に示すように、各高温部品について、縦軸に局所ガス温度を、横軸に圧力比をとり、この図上にタービン入口温度の等高線T1,T2,T3・・・、及びバイパス弁開度の等高線B1,B2,B3・・・を描く。これで、事前準備が整う。   Next, in step # 10, a correlation diagram between each assumed operating condition and the local gas temperature is created for each high-temperature part based on the result of the CFD analysis. For example, as shown in FIG. 3, the local gas temperature is plotted on the vertical axis and the pressure ratio is plotted on the horizontal axis for each high-temperature component, and the turbine inlet temperature contour lines T1, T2, T3. Draw contour lines B1, B2, B3. Now you are ready.

続いて、実際の高温部品の寿命評価について説明する。先ず、実際のプラント(ガスタービン1)において、これから寿命評価の対象とする所望の高温部品(ディスクロータ15、動翼16、静翼17、尾筒7等)を選定する。続いてステップ#15において、実際の運転に伴って蓄積されている運転情報、すなわち実際のガスタービン1で逐次計測・遠隔監視している履歴データに基づき、その実際の運転時の運転条件(圧力比、タービン入口温度、バイパス弁開度)ごとに対応する局所ガス温度を上記の相関図より抽出する。   Next, actual life evaluation of high-temperature parts will be described. First, in an actual plant (gas turbine 1), desired high-temperature components (disk rotor 15, moving blade 16, stationary blade 17, tail cylinder 7, etc.) to be evaluated for life are selected. Subsequently, in step # 15, based on the operation information accumulated with the actual operation, that is, based on the history data sequentially measured and remotely monitored by the actual gas turbine 1, the operation condition (pressure) at the actual operation is determined. The local gas temperature corresponding to each ratio, turbine inlet temperature, bypass valve opening) is extracted from the above correlation diagram.

次いでステップ#20において、その抽出した局所ガス温度ごとのガスタービン1の運転時間を運転情報(履歴データ)より抽出する。ちなみに、このようにして抽出した各局所ガス温度ごとの運転時間をまとめると、例えば図4に示すようになる。   Next, in step # 20, the operation time of the gas turbine 1 for each extracted local gas temperature is extracted from the operation information (history data). Incidentally, the operation time for each local gas temperature extracted in this way is summarized as shown in FIG. 4, for example.

次にステップ#25において、その抽出した各運転時間に局所ガス温度ごとに予め定められた重み係数を掛けて、各運転時間を重み付けする。その重み係数は、局所ガス温度が高いほど大きいものが定められる。実際に高温部品が受ける損傷の程度は、その高温部品に伝達される局所ガス温度の高低に依存して、顕著に変動するからである。ここで重み係数を局所温度ごとに予め定めておくわけであるが、その設定にあたっては、例えば、各高温部品について各局所温度を境界条件として予めFEM解析を行い、そのクリープ変形の度合いを数値化して重み係数としている。なお、クリープ変形の度合いに代えて、高温酸化の度合いを数値化して重み係数としても構わない。   Next, in step # 25, each operation time is weighted by multiplying each extracted operation time by a weighting factor determined in advance for each local gas temperature. The weighting factor is determined to be larger as the local gas temperature is higher. This is because the degree of damage actually received by the high-temperature component varies significantly depending on the local gas temperature transmitted to the high-temperature component. Here, the weighting factor is determined in advance for each local temperature. For this setting, for example, FEM analysis is performed in advance for each high-temperature part using each local temperature as a boundary condition, and the degree of creep deformation is quantified. The weighting factor. Note that, instead of the degree of creep deformation, the degree of high-temperature oxidation may be digitized and used as a weighting factor.

次にステップ#30において、その重み付けした各運転時間を累積する。そしてステップ#35において、累積運転時間を当該高温部品に定められた基準値と比較して、クリープ変形や高温酸化に対しての残り寿命を判断する。これで、実際の高温部品の寿命評価を終える。   Next, in step # 30, the weighted operation times are accumulated. In step # 35, the accumulated operation time is compared with a reference value determined for the high temperature part to determine the remaining life against creep deformation and high temperature oxidation. This completes the life evaluation of actual high-temperature parts.

このような寿命診断方法によれば、CFD解析において、主流の燃焼ガスと共に混入流体の熱流れを解析対象としているため、高温部品を問わず、局所ガス温度の解析値が実際値と同等になる。従って、その局所ガス温度に基づいて推測される高温部品の損傷程度も実際の状況に近いものとなり、正確に高温部品の寿命判断を行うことが可能になる。本実施形態の場合、クリープ変形や高温酸化に対して有効に寿命判断が行える。そうすると、ガスタービン1の保守点検のタイミングを的確に定めることができ、その結果として長期的なコスト低減を実現できる。   According to such a life diagnosis method, in the CFD analysis, since the heat flow of the mixed fluid is analyzed together with the mainstream combustion gas, the analysis value of the local gas temperature becomes equal to the actual value regardless of the high temperature parts. . Therefore, the degree of damage of the high-temperature component estimated based on the local gas temperature is also close to the actual situation, and it is possible to accurately determine the life of the high-temperature component. In the case of this embodiment, the life can be judged effectively against creep deformation and high temperature oxidation. If it does so, the timing of the maintenance inspection of the gas turbine 1 can be determined exactly, and, as a result, long-term cost reduction is realizable.

しかも、CFD解析の結果を相関図に予めまとめ、この相関図を用いて実際の寿命判断を行えるため、実際の寿命判断の際には、本来長時間を必要とするCFD解析時間を要することなく、短時間で行える点で有利である。   In addition, since the results of CFD analysis are preliminarily summarized in a correlation diagram, and the actual lifetime can be determined using this correlation diagram, CFD analysis time that originally requires a long time is not required when determining the actual lifetime. This is advantageous in that it can be performed in a short time.

なお、CFD解析で用いる境界条件としての運転条件のうちで、燃焼器出口ガス温度分布や燃焼器出口ガス圧力分布は、予め試験的に行った燃焼実験でのデータに基づき、タービン入口ガス温度や圧力比等から算出することも可能である。このようにすると、より精度良く局所ガス温度を算出できる。   Of the operating conditions as boundary conditions used in the CFD analysis, the combustor outlet gas temperature distribution and the combustor outlet gas pressure distribution are based on data obtained in a combustion experiment conducted in advance on a trial basis. It is also possible to calculate from the pressure ratio or the like. In this way, the local gas temperature can be calculated with higher accuracy.

その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、ステップ#20〜#30において、抽出したり重み付けしたりする運転時間をガスタービン1の運転起動停止回数に置き換えてもよい。この場合、重み係数を高温部品の低サイクル疲労の度合いより設定しておくことで、高温部品の寿命評価を低サイクル疲労に対して有効に行える。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in steps # 20 to # 30, the operation time to be extracted or weighted may be replaced with the number of operation start / stop times of the gas turbine 1. In this case, by setting the weighting factor based on the degree of low cycle fatigue of the high temperature part, the life evaluation of the high temperature part can be effectively performed for the low cycle fatigue.

本発明は、ガスタービンにおける高温部品の寿命診断に有用である。   The present invention is useful for diagnosing the life of high-temperature components in a gas turbine.

本発明の一実施形態であるガスタービンにおける高温部品の寿命診断の手順を示すフローチャートである。It is a flowchart which shows the procedure of the lifetime diagnosis of the high temperature components in the gas turbine which is one Embodiment of this invention. 混入流体の一例を示す模式図である。It is a schematic diagram which shows an example of the mixing fluid. CFD解析より作成されたある高温部品においての想定の各運転条件と局所ガス温度との相関図の一例を示す模式図である。It is a schematic diagram which shows an example of the correlation diagram of each assumption operating condition and local gas temperature in a certain high temperature component produced from CFD analysis. 相関図及び実際の運転情報より抽出した各局所ガス温度ごとの運転時間をまとめた一例を示す模式図である。It is a schematic diagram which shows an example which put together the operation time for each local gas temperature extracted from the correlation diagram and actual operation information. 一般的なガスタービンの燃焼器付近の縦断面図である。It is a longitudinal cross-sectional view near the combustor of a general gas turbine.

符号の説明Explanation of symbols

1 ガスタービン
2 圧縮機
3 燃焼器
4 タービン
5 車室
6 内筒
7 尾筒
8 外筒
9 パイロット燃料ノズル
10 メイン燃料ノズル
11 バイパスダクト
12 バイパス弁
13 バイパス弁可変機構
15 ロータディスク
16 動翼
17 静翼
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Combustor 4 Turbine 5 Casing 6 Inner cylinder 7 Outer cylinder 8 Outer cylinder 9 Pilot fuel nozzle 10 Main fuel nozzle 11 Bypass duct 12 Bypass valve 13 Bypass valve variable mechanism 15 Rotor disk 16 Moving blade 17 Static Wings

Claims (2)

ガスタービンを構成する部品のうち主流の燃焼ガスより熱が与えられて高温になる高温部品についての寿命診断方法において、
主流の燃焼ガス及びこれに混入される混入流体について、実際の運転で想定される複数の運転条件に対応した複数の境界条件を与えてCFD解析を行い、想定の運転条件ごとに、各高温部品に伝達される局所ガス温度を算出する第1ステップと、
第1ステップでのCFD解析の結果に基づき、高温部品ごとに、想定の各運転条件と局所ガス温度との相関図を作成する第2ステップと、
所望の高温部品について、第2ステップで作成した相関図、及び実際の運転に伴って蓄積されている運転情報に基づき、相関図より実際の運転時の運転条件ごとに対応する局所ガス温度を抽出し、抽出した局所ガス温度ごとの運転時間を運転情報より抽出する第3ステップと、
第3ステップで抽出した各運転時間を局所ガス温度ごとに定められた重み係数で重み付けし、重み付けした各運転時間を累積する第4ステップと、
第4ステップでの累積運転時間を当該高温部品に定められた基準値と比較して残り寿命を判断する第5ステップと、
を含むことを特徴とするガスタービンにおける高温部品の寿命診断方法。
In the life diagnosis method for high-temperature parts that are heated by the mainstream combustion gas among the parts that constitute the gas turbine,
For the mainstream combustion gas and the mixed fluid mixed in it, CFD analysis is performed by giving a plurality of boundary conditions corresponding to a plurality of operating conditions assumed in actual operation. A first step of calculating a local gas temperature transmitted to
A second step of creating a correlation diagram between each assumed operating condition and the local gas temperature for each high-temperature component based on the result of the CFD analysis in the first step;
Based on the correlation diagram created in the second step for the desired high-temperature parts and the operation information accumulated during actual operation, the corresponding local gas temperature is extracted for each operating condition during actual operation from the correlation diagram. A third step of extracting the operation time for each extracted local gas temperature from the operation information;
A fourth step of weighting each operation time extracted in the third step with a weighting factor determined for each local gas temperature, and accumulating each weighted operation time;
A fifth step of judging the remaining life by comparing the accumulated operation time in the fourth step with a reference value determined for the high temperature part;
A life diagnosis method for high-temperature components in a gas turbine, comprising:
ガスタービンを構成する部品のうち主流の燃焼ガスより熱が与えられて高温になる高温部品についての寿命診断方法において、
主流の燃焼ガス及びこれに混入される混入流体について、実際の運転で想定される複数の運転条件に対応した複数の境界条件を与えてCFD解析を行い、想定の運転条件ごとに、各高温部品に伝達される局所ガス温度を算出する第1ステップと、
第1ステップでのCFD解析の結果に基づき、高温部品ごとに、想定の各運転条件と局所ガス温度との相関図を作成する第2ステップと、
所望の高温部品について、第2ステップで作成した相関図、及び実際の運転に伴って蓄積されている運転情報に基づき、相関図より実際の運転時の運転条件ごとに対応する局所ガス温度を抽出し、抽出した局所ガス温度ごとの運転起動停止回数を運転情報より抽出する第3ステップと、
第3ステップで抽出した各運転起動停止回数を局所ガス温度ごとに定められた重み係数で重み付けし、重み付けした各運転起動停止回数を累積する第4ステップと、
第4ステップでの累積運転起動停止回数を当該高温部品に定められた基準値と比較して残り寿命を判断する第5ステップと、
を含むことを特徴とするガスタービンにおける高温部品の寿命診断方法。
In the life diagnosis method for high-temperature parts that are heated by heat from the mainstream combustion gas among the parts constituting the gas turbine,
For the mainstream combustion gas and the mixed fluid mixed in it, CFD analysis is performed by giving a plurality of boundary conditions corresponding to a plurality of operating conditions assumed in actual operation. A first step of calculating a local gas temperature transmitted to
A second step of creating a correlation diagram between each assumed operating condition and the local gas temperature for each high-temperature component based on the result of the CFD analysis in the first step;
Based on the correlation diagram created in the second step for the desired high-temperature parts and the operation information accumulated during actual operation, the corresponding local gas temperature is extracted for each operating condition during actual operation from the correlation diagram. A third step of extracting the number of operation start / stop times for each extracted local gas temperature from the operation information;
A fourth step of weighting each operation start / stop frequency extracted in the third step with a weighting factor determined for each local gas temperature, and accumulating each weighted operation start / stop frequency;
A fifth step of judging the remaining life by comparing the cumulative operation start / stop count in the fourth step with a reference value determined for the high temperature part;
A life diagnosis method for high-temperature components in a gas turbine, comprising:
JP2004208558A 2004-07-15 2004-07-15 Life diagnosis method for high temperature components in gas turbines Expired - Fee Related JP4354358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208558A JP4354358B2 (en) 2004-07-15 2004-07-15 Life diagnosis method for high temperature components in gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208558A JP4354358B2 (en) 2004-07-15 2004-07-15 Life diagnosis method for high temperature components in gas turbines

Publications (2)

Publication Number Publication Date
JP2006029190A true JP2006029190A (en) 2006-02-02
JP4354358B2 JP4354358B2 (en) 2009-10-28

Family

ID=35895850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208558A Expired - Fee Related JP4354358B2 (en) 2004-07-15 2004-07-15 Life diagnosis method for high temperature components in gas turbines

Country Status (1)

Country Link
JP (1) JP4354358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614138A (en) * 2008-06-25 2009-12-30 通用电气公司 In turbo machine, set up method, system and the controller of wheel space temperature alarm
JP2011256734A (en) * 2010-06-07 2011-12-22 Hitachi Ltd Diagnosis method and diagnosis apparatus for service life of high temperature component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294525A (en) * 1989-05-08 1990-12-05 Hitachi Ltd Service line monitoring system for gas turbine
WO2001023725A1 (en) * 1999-09-27 2001-04-05 Hitachi, Ltd. Service life management system for high-temperature part of gas turbine
JP2002108440A (en) * 2000-09-27 2002-04-10 Hitachi Ltd Damage diagnosing device for power generation facilities
WO2002103177A1 (en) * 2001-06-18 2002-12-27 Hitachi, Ltd. Method and system for diagnosing state of gas turbine
JP2003013744A (en) * 2001-06-29 2003-01-15 Ebara Corp Gas turbine control device and cogeneration system
JP2004108291A (en) * 2002-09-19 2004-04-08 Ishikawajima Harima Heavy Ind Co Ltd Part deterioration prediction method and performance deterioration prediction method for gas turbine engine
JP2004176723A (en) * 2002-11-27 2004-06-24 General Electric Co <Ge> Row turbine blade having long and short chord length and high and low temperature performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294525A (en) * 1989-05-08 1990-12-05 Hitachi Ltd Service line monitoring system for gas turbine
WO2001023725A1 (en) * 1999-09-27 2001-04-05 Hitachi, Ltd. Service life management system for high-temperature part of gas turbine
JP2002108440A (en) * 2000-09-27 2002-04-10 Hitachi Ltd Damage diagnosing device for power generation facilities
WO2002103177A1 (en) * 2001-06-18 2002-12-27 Hitachi, Ltd. Method and system for diagnosing state of gas turbine
JP2003013744A (en) * 2001-06-29 2003-01-15 Ebara Corp Gas turbine control device and cogeneration system
JP2004108291A (en) * 2002-09-19 2004-04-08 Ishikawajima Harima Heavy Ind Co Ltd Part deterioration prediction method and performance deterioration prediction method for gas turbine engine
JP2004176723A (en) * 2002-11-27 2004-06-24 General Electric Co <Ge> Row turbine blade having long and short chord length and high and low temperature performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614138A (en) * 2008-06-25 2009-12-30 通用电气公司 In turbo machine, set up method, system and the controller of wheel space temperature alarm
JP2010007663A (en) * 2008-06-25 2010-01-14 General Electric Co <Ge> Method, system and controller for establishing wheel space temperature alarm in turbomachine
JP2011256734A (en) * 2010-06-07 2011-12-22 Hitachi Ltd Diagnosis method and diagnosis apparatus for service life of high temperature component

Also Published As

Publication number Publication date
JP4354358B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
EP2253804B1 (en) System and method of assessing thermal energy levels of a gas turbine engine component
EP3260656B1 (en) Method and system for repairing an airfoil of a compressor blade of a gas turbine engine
US20120266601A1 (en) System and method for removing heat from a turbomachine
JP2017150485A (en) Detectable datum markers for gas turbine engine components for measuring distortion
JP2007138938A (en) Method and device for cooling component of combustion turbine engine
US10684149B2 (en) System and method of measuring turbine vane cooling air consumption during engine operation
JP2018204604A (en) Systems and methods for icing detection of compressors
US10024172B2 (en) Gas turbine engine airfoil
US20150377032A1 (en) Gas turbine engine component with combined mate face and platform cooling
EP3597875A1 (en) Debris separator for a gas turbine engine
JP2009501860A (en) Impingement cooling of turbine shroud segment in vane outer shroud
US9856748B2 (en) Probe tip cooling
EP2881550A1 (en) Method of controlling purge flow in a gas turbomachine and a turbomachine control system
US11568099B2 (en) System and process for designing internal components for a gas turbine engine
US20170175568A1 (en) Acoustic Cleaning of Gas Turbine Engine Components
JP4354358B2 (en) Life diagnosis method for high temperature components in gas turbines
US11340184B2 (en) Engine component performance inspection sleeve and method of inspecting engine component
EP3008309A1 (en) Gas turbine engine flow control device
US10668654B2 (en) Method for disposing a blocking material
EP3043030A1 (en) Anti-rotation vane
US20210404348A1 (en) Turbine engine sealing and method
CN109115370B (en) Air temperature sensor and method for reducing error
EP3647563B1 (en) Gas turbine engine control based on characteristic of cooled air
US11255267B2 (en) Method of cooling a gas turbine and apparatus
US20140060003A1 (en) Turbomachine having a flow monitoring system and method of monitoring flow in a turbomachine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees