JP2006028265A - Liquid encapsulation resin composition, electronic component device and its manufacturing process - Google Patents

Liquid encapsulation resin composition, electronic component device and its manufacturing process Download PDF

Info

Publication number
JP2006028265A
JP2006028265A JP2004206370A JP2004206370A JP2006028265A JP 2006028265 A JP2006028265 A JP 2006028265A JP 2004206370 A JP2004206370 A JP 2004206370A JP 2004206370 A JP2004206370 A JP 2004206370A JP 2006028265 A JP2006028265 A JP 2006028265A
Authority
JP
Japan
Prior art keywords
resin composition
sealing resin
liquid sealing
weight
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206370A
Other languages
Japanese (ja)
Inventor
Takashi Masuko
崇 増子
Kazuyoshi Tendou
一良 天童
Mitsuo Katayose
光雄 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004206370A priority Critical patent/JP2006028265A/en
Publication of JP2006028265A publication Critical patent/JP2006028265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid encapsulation resin which does not cure before solder melts and cures quickly after bump joining and has high productivity and highly reliable heat resistance, an electronic component device using it and a manufacturing process of the electronic component device. <P>SOLUTION: The liquid encapsulation resin composition contains at least a cyanate ester resin having ≥2 cyanate ester groups in a molecule, has viscosity at 25°C of ≤50 Pa×s, a rate of increase in the viscosity at 25°C of ≤500% after it is left for 24 hours at 25°C, a gel time at 260°C of 1-120 seconds, a Tg after curing of 100-300°C and contains a compound having the function of a flux. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液状封止樹脂組成物、電子部品装置および電子部品装置の製造方法に関するものである。   The present invention relates to a liquid sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.

半導体素子の高集積化、高密度化と半導体パッケージの小型薄型化の要求から、半導体素子をフェイスダウン方式で配線回路基板に接続実装されるフリップチップ実装パッケージが急激にその生産量を伸ばしてきている。このパッケージの実装方式は、これまでのワイヤボンディングによる接続ではなく、半導体素子表面と配線回路基板とをはんだ等の金属バンプで電気的に接続することで、小型化薄型化を可能にしている。しかしながら、配線回路基板、はんだの熱膨張係数が異なるために、冷熱衝撃試験時に熱応力が発生し易い。このため、接合部位にクラックが生じ、回路の作動信頼性は大きく低下する。
そこで、熱応力を緩和する目的から液状封止材(通称、アンダーフィル材と呼ばれる。)の注入による封止が行われる。しかし、この方式では、アンダーフィル材を注入する前に、はんだバンプの表面に形成された酸化膜を還元除去し、はんだバンプの基板上電極に対する濡れ性を確保する目的で、予めフラックス材を基板上に塗布し、リフロー炉での加熱により、はんだバンプ付き半導体素子を基板上に実装させたのち、有機溶剤によって前記フラックス材の残渣を洗浄除去させるプロセスが必要であるため、工程が煩雑であるという問題があった。また、前記フラックス材残渣に、大量の廃液が発生し、環境に対して影響を及ぼす。さらに、半導体素子の高密度化に伴うバンプピッチ、半導体素子と基板間のギャップの縮小は、液状封止材の注入の長時間化、及び前記フラックス材残渣の細部洗浄が技術的に困難となり、組立プロセスの煩雑化とコストの上昇を招く。
Due to the demand for higher integration and higher density of semiconductor devices and smaller and thinner semiconductor packages, flip chip mounting packages that connect and mount semiconductor devices to printed circuit boards in a face-down manner have rapidly increased their production volume. Yes. This package mounting method enables a reduction in size and thickness by electrically connecting the surface of the semiconductor element and the wiring circuit board with metal bumps such as solder, instead of the conventional wire bonding connection. However, since the thermal expansion coefficients of the printed circuit board and the solder are different, thermal stress is likely to occur during the thermal shock test. For this reason, cracks are generated in the joint portions, and the operation reliability of the circuit is greatly reduced.
Therefore, sealing is performed by injecting a liquid sealing material (commonly referred to as an underfill material) for the purpose of relaxing thermal stress. However, in this method, before injecting the underfill material, the oxide film formed on the surface of the solder bump is reduced and removed, and the flux material is preliminarily used for the purpose of ensuring the wettability of the solder bump to the electrode on the substrate. The process is complicated because it is necessary to apply a process of washing and removing the residue of the flux material with an organic solvent after the semiconductor element with solder bumps is mounted on the substrate by coating on the substrate and heating in a reflow furnace. There was a problem. In addition, a large amount of waste liquid is generated in the flux material residue, which affects the environment. Furthermore, the bump pitch accompanying the increase in the density of the semiconductor element, the reduction of the gap between the semiconductor element and the substrate, it becomes technically difficult to extend the time for injecting the liquid sealing material and to finely clean the flux material residue. This complicates the assembly process and increases costs.

以上の問題を解決する手段として、液状封止材を予め基板上に塗布し、はんだバンプ付き半導体素子を仮実装させたのち、リフロー炉での加熱によって、はんだを溶融接続させたのち、液状封止材を硬化させる、一括接合、封止技術が登場した(例えば、非特許文献1、2参照。)。この技術の概念は液状封止材にフラックス活性を有する成分が含まれるため、はんだバンプ付き半導体素子の基板への接合と封止を同時に行えることが特徴であり、特に組立プロセスの簡略化の新しい技術として注目されている。このようなプロセスに適用される液状封止材(通称、ノンフローアンダーフィル材と呼ばれる。)には、低粘度液状形態が可能であること、半導体用途としての実績があること、またコスト的に安価な理由で、エポキシ樹脂が最も多く検討されている。このようなノンフローアンダーフィル材は、一般的に液状エポキシ樹脂、硬化剤、及びフラックス成分を主成分とし、信頼性を高める目的でフィラーが添加される(例えば、特許文献1、2、3参照。)。
IEEE Transactions on components and packaging technologies,vol.25,No.1,p140(2002) IEEE Transactions on components and packaging technologies,vol.26,No.2,p466(2003) 特開2002−121358号公報 特開2002−241469号公報 特開2003−160639号公報
As a means for solving the above problems, a liquid sealing material is applied on a substrate in advance, a semiconductor element with solder bumps is temporarily mounted, and then the solder is melt-connected by heating in a reflow furnace, and then the liquid sealing is performed. Collective joining and sealing technology that hardens the stop material has appeared (for example, see Non-Patent Documents 1 and 2). The concept of this technology is that the liquid encapsulant contains a component having flux activity, so that it is possible to simultaneously bond and seal the semiconductor elements with solder bumps to the substrate, especially in the new assembly process. It is attracting attention as a technology. The liquid sealing material (commonly referred to as a non-flow underfill material) applied to such a process can have a low-viscosity liquid form, has a track record as a semiconductor application, and is cost effective. For reasons of low cost, epoxy resin is most frequently studied. Such a non-flow underfill material generally includes a liquid epoxy resin, a curing agent, and a flux component as main components, and a filler is added for the purpose of improving reliability (see, for example, Patent Documents 1, 2, and 3). .)
IEEE Transactions on components and packaging technologies, vol. 25, no. 1, p140 (2002) IEEE Transactions on components and packaging technologies, vol. 26, no. 2, p466 (2003) JP 2002-121358 A JP 2002-241469 A JP 2003-160639 A

液状封止材は、半田で形成されているバンプを接合させつつ樹脂材料自身は封止する必要があるため、半田が溶融する前には硬化せず、バンプ接合後に速やかに硬化する材料が望ましい。半田が溶融する前に、樹脂材料が硬化してしまうと、バンプ接続性が極端に低下し、逆に硬化が遅いとリフローやパルスヒートで接合させた後にポストキュアが必要になり、組立時間が長くなり、ノンフローアンダーフィル材の本来の目的から外れてしまい、好ましくない。また、このような材料は、ディスペンス塗布により使用されるため、低粘度であることが望ましく、また、製品としての可使時間(ポットライフ)や保管可使時間(シェルライフ)の確保の点で、粘度管理が重要となる。さらに、信頼性を高めるためには、(1)被着体との接着性、(2)耐湿信頼性、(3)熱膨張係数が小さいこと、(4)高Tgであること、等が重要特性として求められる。なおかつ、製品供給時には液状形態である必要がある。しかしながら、従来のエポキシ樹脂ベースのアンダーフィル材では、液状という制約上、材料設計のマージンが狭く、上記特性の両立は極めて困難である。   As the liquid sealing material, it is necessary to seal the resin material itself while bonding bumps formed of solder. Therefore, a material that does not cure before the solder melts and that quickly cures after bump bonding is desirable. . If the resin material is cured before the solder melts, bump connectivity will be extremely reduced. Conversely, if the curing is slow, post-cure will be required after joining by reflow or pulse heat, and assembly time will be required. It becomes long and deviates from the original purpose of the non-flow underfill material. In addition, since these materials are used by dispensing, it is desirable to have a low viscosity, and in terms of securing the pot life and pot life (shell life) of the product. Viscosity management is important. Furthermore, in order to increase reliability, (1) adhesion to an adherend, (2) moisture resistance reliability, (3) a low thermal expansion coefficient, (4) high Tg, etc. are important. Required as a characteristic. Moreover, it is necessary to be in a liquid form when supplying the product. However, the conventional epoxy resin-based underfill material has a narrow material design margin due to the restriction of liquidity, and it is extremely difficult to achieve both of the above characteristics.

本発明は、これらの問題を解決するために鋭意検討した結果、1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂を使用することによって有効に解決できることを見出し、これについてさらに検討を重ねて本発明を完成させるに至った。
本発明は以下に関する。
(1)1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂を少なくとも含有し、かつ25℃における粘度が50Pa・s以下、25℃24時間放置後の25℃における粘度の上昇率が500%以下、260℃におけるゲルタイムが1〜120秒、硬化後のTgが100〜300℃、かつフラックス機能を有する化合物を含有することを特徴とする液状封止樹脂組成物。
(2)銅箔付き基板上に塗布された液状封止樹脂組成物上に半田ボールを載せ、260℃60秒加熱したときの前記半田ボールの銅箔上に対する濡れ広がり率が5%以上のフラックス活性を示す前記(1)に記載の液状封止樹脂組成物。
As a result of intensive studies to solve these problems, the present invention has found that it can be effectively solved by using a cyanate ester resin having two or more cyanate ester groups in one molecule. Over time, the present invention has been completed.
The present invention relates to the following.
(1) Containing at least a cyanate ester resin having two or more cyanate ester groups in one molecule, the viscosity at 25 ° C. is 50 Pa · s or less, and the rate of increase in viscosity at 25 ° C. after standing for 24 hours at 25 ° C. A liquid sealing resin composition comprising a compound having a gel time of 500% or less, a gel time at 260 ° C. of 1 to 120 seconds, a Tg after curing of 100 to 300 ° C., and a flux function.
(2) A flux in which a solder ball is placed on a liquid sealing resin composition applied on a substrate with a copper foil, and when the solder ball is heated at 260 ° C. for 60 seconds, the wet spread ratio of the solder ball on the copper foil is 5% or more. The liquid sealing resin composition according to (1), which exhibits activity.

(3)前記シアネートエステル樹脂が、式(I)で示される常温で液状のシアネートエステル樹脂を少なくとも含有する前記(1)および(2)のいずれかに記載の液状封止樹脂組成物。
(4)前記フラックス機能を有する化合物として、前記シアネートエステル樹脂100重量部に対して、フラックス機能を有する化合物として、1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物0.1〜100重量部を含有してなる前記(1)〜(3)のいずれかに記載の液状封止樹脂組成物。
(5)前記1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物がアルコール物質である前記(4)に記載の液状封止樹脂組成物。
(3) The liquid sealing resin composition according to any one of (1) and (2), wherein the cyanate ester resin contains at least a cyanate ester resin that is liquid at normal temperature represented by the formula (I).
(4) As a compound having the flux function, a compound having at least two —OH functional groups (hydroxyl groups) per molecule as a compound having a flux function with respect to 100 parts by weight of the cyanate ester resin. The liquid sealing resin composition according to any one of (1) to (3), comprising 100 parts by weight.
(5) The liquid sealing resin composition according to (4), wherein the compound containing at least two —OH functional groups (hydroxyl groups) per molecule is an alcohol substance.

(6)配線回路基板と電子部品素子とを、該基板及び素子の少なくともどちらかに予め配設された接続用電極部により電気的に接合させる電子部品装置の製造方法であって、
(a)前記配線回路基板上に、溶融温度は接続用電極部の溶融温度以下で、かつ揮発終了温度は接続用電極部の溶融温度より高いフラックス機能を有する常温で固体状または液状の化合物を含む前記(1)〜(5)のいずれかに記載の液状封止樹脂組成物を塗布し、
(b)電子部品素子を前記(a)の液状封止樹脂組成物付き基板上に搭載し、前記液状封止樹脂組成物を押しのけた接続用電極部を介して前記素子と基板とを接触させることにより仮実装し、かつ素子と基板との間の空隙内に液状封止樹脂組成物を充填させ、
(c)リフロー炉、またはヒータ及び押圧部を備えた装置により、前記(b)の素子付き基板を加熱して、接続用電極部を溶融させて素子を基板上に電気的接合により実装させると同時に、前記液状封止樹脂組成物を硬化させることにより封止する電子部品装置の製造方法。
(7)前記(1)〜(5)のいずれかに記載の液状封止樹脂組成物で封止されてなる電子部品装置。
(6) A method of manufacturing an electronic component device in which a printed circuit board and an electronic component element are electrically joined by a connection electrode portion disposed in advance on at least one of the substrate and the element,
(A) On the wired circuit board, a solid or liquid compound at a room temperature having a flux function that has a melting temperature lower than the melting temperature of the connection electrode portion and a volatilization end temperature higher than the melting temperature of the connection electrode portion. Including the liquid sealing resin composition according to any one of (1) to (5),
(B) The electronic component element is mounted on the substrate with the liquid sealing resin composition of (a), and the element and the substrate are brought into contact with each other through the connection electrode portion that has pushed the liquid sealing resin composition. By temporarily mounting and filling the liquid sealing resin composition in the gap between the element and the substrate,
(C) When the substrate with the element of (b) is heated by a reflow furnace or an apparatus having a heater and a pressing portion, the connecting electrode portion is melted, and the device is mounted on the substrate by electrical bonding. Simultaneously, the manufacturing method of the electronic component apparatus which seals by hardening the said liquid sealing resin composition.
(7) An electronic component device sealed with the liquid sealing resin composition according to any one of (1) to (5).

本発明の液状封止樹脂組成物は、フェイスダウン構造の電子部品装置の素子と配線回路基板間の封止に用いることにより、フラックス材を用いて素子バンプと配線回路基板電極とを金属接続した後に、上記素子と配線回路基板との空隙に封止樹脂を注入するという、従来の煩雑な工程をとらず、容易に一括接合、封止技術による樹脂封止・金属接合形成が可能となり、電子部品装置を高い生産性で製造することができ、かつ高い耐熱信頼性を有する電子部品装置を得ることができる。   The liquid encapsulating resin composition of the present invention is used for sealing between an element of an electronic component device having a face-down structure and a printed circuit board, whereby the element bump and the printed circuit board electrode are metal-connected using a flux material. Later, without taking the conventional complicated process of injecting a sealing resin into the gap between the element and the printed circuit board, it is possible to easily perform batch bonding and resin sealing / metal bonding formation by sealing technology. A component device can be manufactured with high productivity, and an electronic component device having high heat resistance reliability can be obtained.

本発明の液状封止樹脂組成物は、1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂を少なくとも含有することを特徴とする。それによって、硬化後のTgを100〜300℃の範囲内に調整できる材料設計を容易にする。前記のシアネートエステル樹脂としては、1分子中に2個以上のシアネートエステル基を有する化合物であれば特に限定されない。このようなシアネートエステル樹脂としては、例えば、2,2´−ビス(4−シアネートフェニル)イソプロピリデン、2,2´−ビス(4−シアネートフェニル)−1,1,1,3,3,3−ヘキサフルオロイソプロピリデン、1,1´−ビス(4−シアネートフェニル)エタン、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(1−メチルエチリデン))ベンゼン、シアネーテッド フェノール−ジシクロペンタンジエン アダクト、シアネーテッド ノボラック、ビス(4−シアネートフェニル)チオエーテル、等が挙げられ、中でも、常温で液状という点で、1,1´−ビス(4−シアネートフェニル)エタン、1,3−ビス(4−シアネートフェニル−1−(1−メチルエチリデン))ベンゼン、シアネーテッド フェノール−ジシクロペンタンジエン アダクト、シアネーテッド ノボラック(別名:ポリフェノールシアネート、または3−メチレン−1,5−フェニレンシアネート)が好ましく、低粘度すなわち、25℃における粘度を50Pa・s以下にするという点で、下記式(I)で示される1,1´−ビス(4−シアネートフェニル)エタン(別名:4,4´−エチリデンジフェニル ジシアネート、又はシアン酸エチリデンジ−4,1−フェニレン エステル)がより好ましい。これらは単独で又は二種類以上を組み合わせて使用することができる。この場合、25℃における粘度が50Pa・sを超えないように配合比率を調整する。なお、上記の「常温で液状」とは、10〜30℃で液体状態を示すことをいう。
The liquid sealing resin composition of the present invention contains at least a cyanate ester resin having two or more cyanate ester groups in one molecule. Thereby, the material design which can adjust Tg after hardening in the range of 100-300 degreeC is made easy. The cyanate ester resin is not particularly limited as long as it is a compound having two or more cyanate ester groups in one molecule. Examples of such cyanate ester resins include 2,2′-bis (4-cyanatephenyl) isopropylidene and 2,2′-bis (4-cyanatephenyl) -1,1,1,3,3,3. -Hexafluoroisopropylidene, 1,1'-bis (4-cyanatephenyl) ethane, bis (4-cyanate-3,5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (1) -Methylethylidene)) benzene, cyanated phenol-dicyclopentanediene adduct, cyanated novolak, bis (4-cyanatephenyl) thioether, etc. Among them, 1,1′-bis (4 -Cyanatephenyl) ethane, 1,3-bis (4-cyanatephenyl-1- (1-methylethyl) )) Benzene, cyanated phenol-dicyclopentanediene adduct, cyanated novolak (also known as polyphenol cyanate or 3-methylene-1,5-phenylene cyanate), preferably low viscosity, that is, a viscosity at 25 ° C. of 50 Pa · s or less 1,1'-bis (4-cyanatephenyl) ethane (also known as 4,4'-ethylidenediphenyl dicyanate or cyanate ethylidenedi-4,1-phenylene ester represented by the following formula (I) ) Is more preferable. These can be used alone or in combination of two or more. In this case, the blending ratio is adjusted so that the viscosity at 25 ° C. does not exceed 50 Pa · s. In addition, said "liquid at normal temperature" means showing a liquid state at 10-30 degreeC.

一般に1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂は、触媒の存在下、加熱することにより容易に3量化反応による架橋が起こり、Tgの高い樹脂硬化物を与える。その触媒としては、例えば、コバルト、亜鉛、鉄、銅、クロム、マンガン、ニッケル、チタン等の金属ナフテン酸塩などの金属錯体、アセチルアセトナート、またその誘導体の塩、各種カルボン酸塩、アルコキシドなどの有機酸塩等があり、単独でも混合して使用しても良い。その添加量は全シアネートエステル樹脂100重量部に対し、0.001〜2重量部が好ましく、0.005〜1重量部がより好ましく、0.005〜0.5重量部がさらに好ましい。これらの範囲内で、25℃24時間放置後の25℃における粘度の上昇率が500%以下、かつ260℃におけるゲルタイムが1〜120秒となるように、添加量を調整する。0.001重量部より少ないと反応促進効果が低く、硬化時間が長くなり生産性が劣る傾向がある。一方、2重量部より多いと、反応促進効果が高くなり過ぎて、製品としての可使時間(ポットライフ)や保管時間(シェルライフ)が損なわれる傾向がある。   Generally, a cyanate ester resin having two or more cyanate ester groups in one molecule easily undergoes crosslinking by a trimerization reaction by heating in the presence of a catalyst to give a cured resin having a high Tg. Examples of the catalyst include metal complexes such as metal naphthenates such as cobalt, zinc, iron, copper, chromium, manganese, nickel, and titanium, acetylacetonate, salts of derivatives thereof, various carboxylates, alkoxides, and the like. These organic acid salts may be used alone or in combination. The amount added is preferably 0.001 to 2 parts by weight, more preferably 0.005 to 1 part by weight, and still more preferably 0.005 to 0.5 part by weight, based on 100 parts by weight of the total cyanate ester resin. Within these ranges, the addition amount is adjusted so that the rate of increase in viscosity at 25 ° C. after standing at 25 ° C. for 24 hours is 500% or less and the gel time at 260 ° C. is 1 to 120 seconds. When the amount is less than 0.001 part by weight, the reaction promoting effect is low, the curing time becomes long, and the productivity tends to be inferior. On the other hand, when the amount is more than 2 parts by weight, the reaction promoting effect becomes too high, and the usable time (pot life) and storage time (shell life) as a product tend to be impaired.

本発明の液状封止樹脂組成物は25℃で液状である。本明細書において、「液状」とは流動性を示すものを意味し、粘度は、優れた流動充填性の観点から、25℃における粘度が50Pa・s以下、25℃24時間放置後の25℃における粘度の上昇率が500%以下であることを特徴とする。前記の粘度とは、E型回転粘度計を用い、25℃、5rpmの条件で測定したときの値である。24h放置後の粘度上昇率は、次式(1)により算出した。
24h放置後の粘度上昇率=(25℃24h放置後の粘度−配合直後の粘度)×100
/配合直後の粘度 ・・・(式1)
なお、25℃における粘度については、30Pa・s以下がより好ましく、10Pa・s以下がさらに好ましい。前記の粘度が50Pa・sよりも高いと、ディスペンス塗布が困難となる傾向がある。また、25℃24時間放置後の25℃における粘度の上昇率は500%以下であり、300%以下がより好ましく、100%以下がさらにより好ましい。前記の粘度上昇率が500%を超えると、製品としての可使時間(ポットライフ)や保管時間(シェルライフ)が短くなり、生産性が損なわれる傾向がある。
The liquid sealing resin composition of the present invention is liquid at 25 ° C. In the present specification, “liquid” means fluidity, and the viscosity is 25 ° C. after standing at 25 ° C. for 24 hours at a viscosity of 50 Pa · s or less at 25 ° C. from the viewpoint of excellent fluid filling properties. The rate of increase in the viscosity is 500% or less. The viscosity is a value when measured using an E-type rotational viscometer under conditions of 25 ° C. and 5 rpm. The viscosity increase rate after being left for 24 hours was calculated by the following formula (1).
Viscosity increase rate after standing for 24 hours = (viscosity after standing at 25 ° C. for 24 hours−viscosity immediately after blending) × 100
/ Viscosity immediately after compounding (Formula 1)
The viscosity at 25 ° C. is more preferably 30 Pa · s or less, and further preferably 10 Pa · s or less. If the viscosity is higher than 50 Pa · s, dispensing tends to be difficult. The rate of increase in viscosity at 25 ° C. after standing at 25 ° C. for 24 hours is 500% or less, more preferably 300% or less, and even more preferably 100% or less. When the viscosity increase rate exceeds 500%, the pot life (pot life) and storage time (shell life) as a product are shortened, and the productivity tends to be impaired.

本発明の液状封止樹脂組成物は、260℃におけるゲルタイムが1〜120秒であることを特徴とし、5〜90秒であることがより好ましく、10〜60秒であることがさらにより好ましい。。前記のゲルタイムは、ゲルタイマーを用い、配合した液状封止樹脂組成物を260℃の熱盤上に適量たらしたのち、ゲル化し始めるまでの時間を測定したときの値である。ゲルタイムが1秒未満であると接続が困難となる傾向があり、ゲルタイムが120秒を超えると生産性が損なわれる傾向がある   The liquid sealing resin composition of the present invention is characterized in that the gel time at 260 ° C. is 1 to 120 seconds, more preferably 5 to 90 seconds, and still more preferably 10 to 60 seconds. . The gel time is a value obtained by measuring the time until gelation starts after an appropriate amount of the blended liquid sealing resin composition is placed on a hot plate at 260 ° C. using a gel timer. If the gel time is less than 1 second, connection tends to be difficult, and if the gel time exceeds 120 seconds, productivity tends to be impaired.

本発明の液状封止樹脂組成物は、硬化後のTgが100〜300℃であることを特徴とし、120〜280℃であることがより好ましく、150〜250℃であることがさらにより好ましい。前記のTgとは、液状封止樹脂組成物を260℃熱盤上でゲル化させたのち、165℃のオーブン中で2時間加熱して得た硬化物を、DSC(示差走査熱量計)にて、サンプル量:10mg、昇温速度:10℃/分、25〜300℃まで昇温、昇温回数:2回の条件で測定したときの値である。前記のTgが100℃未満では、高温リフロー時の接続信頼性が低下する傾向があり、300℃を超えると、周辺材料の熱ひずみの吸収緩和が困難となる(熱応力が発生し易くなる)傾向がある。   The liquid encapsulating resin composition of the present invention is characterized in that the Tg after curing is 100 to 300 ° C, more preferably 120 to 280 ° C, and even more preferably 150 to 250 ° C. The above Tg means that the cured product obtained by gelling the liquid sealing resin composition on a 260 ° C. hot plate and then heating it in an oven at 165 ° C. for 2 hours is converted into a DSC (differential scanning calorimeter). Sample amount: 10 mg, temperature increase rate: 10 ° C./min, temperature increase to 25-300 ° C., temperature increase: measured at two times. When the Tg is less than 100 ° C., the connection reliability at the time of high-temperature reflow tends to be lowered. Tend.

本発明の液状封止樹脂組成物は、フラックス機能を有する化合物(以下、フラックス剤という。)を含有することを特徴とする。これにより、本発明の液状封止樹脂組成物は、フラックス機能を兼ね備える。前記フラックス機能とは、基板との接合、例えば半田付けの際に、接合すべき金属表面の酸化膜、有機物等を除去し、加熱中の酸化進行を防止し、溶融半田の表面張力を低下させる機能のことである。   The liquid sealing resin composition of the present invention contains a compound having a flux function (hereinafter referred to as a flux agent). Thereby, the liquid sealing resin composition of this invention has a flux function. The flux function is to remove the oxide film, organic matter, etc. on the metal surfaces to be joined at the time of joining to the substrate, for example, soldering, preventing the progress of oxidation during heating, and reducing the surface tension of the molten solder. It is a function.

本発明の液状封止樹脂組成物は、銅箔付き基板上に塗布された液状封止樹脂組成物上に半田ボールを載せ、260℃60秒加熱したときの前記半田ボールの銅箔上に対する濡れ広がり率が5%以上であることが好ましい。図4〜図6は、半田ボール濡れ広がり率試験の工程の一例を示す概略断面図である。前記の半田ボール濡れ広がり率は、図4に示すように、銅箔付き基板(日立化成工業株式会社製MCL−E−679)5の上に液状封止樹脂組成物7を塗布し、これを80℃の熱盤上に設置し、図5に示すように液状封止樹脂組成物7中に半田ボール(千住金属工業株式会社製、M705(Sn/3.0Ag/0.5Cu)、ボール径:200μm、融点:220℃)6を4個添加し、260℃の熱盤上に60秒間放置することにより、半田ボール6を溶融させたのち、室温に冷却後、図6に示す試験片の断面観察により濡れ広がり後の半田ボール6の最大径Sを測定し、次式(2)により4個の各最大径Sからそれぞれ算出した値の平均値である。
半田ボール濡れ広がり率=濡れ広がり後の半田ボール6の最大径S−濡れ広がり前の半田ボール径))×100/濡れ広がり前の半田ボール径・・・(式2)
このときの濡れ広がり率が5%未満であると、はんだボールと配線回路基板との良好な接続が得られなくなる傾向がある。
The liquid encapsulating resin composition of the present invention is obtained by placing a solder ball on the liquid encapsulating resin composition coated on a substrate with a copper foil and wetting the solder ball on the copper foil when heated at 260 ° C. for 60 seconds. The spreading rate is preferably 5% or more. 4 to 6 are schematic cross-sectional views illustrating an example of a solder ball wetting spread rate test process. As shown in FIG. 4, the solder ball wetting and spreading rate is obtained by applying a liquid sealing resin composition 7 on a copper foil substrate (MCL-E-679, manufactured by Hitachi Chemical Co., Ltd.) 5. Installed on an 80 ° C. hot platen, the solder balls (M705 (Sn / 3.0Ag / 0.5Cu), ball diameter, manufactured by Senju Metal Industry Co., Ltd.) in the liquid sealing resin composition 7 as shown in FIG. 6: 200 μm, melting point: 220 ° C.) 4 pieces were added and left on a heating plate at 260 ° C. for 60 seconds to melt the solder balls 6 and then cooled to room temperature, and then the test piece shown in FIG. The maximum diameter S of the solder ball 6 after wetting and spreading is measured by cross-sectional observation, and is an average value calculated from each of the four maximum diameters S by the following equation (2).
Solder ball wetting spread rate = maximum diameter S of solder ball 6 after wetting spread−solder ball diameter before wetting spread)) × 100 / solder ball diameter before wetting spread (Formula 2)
If the wet spreading rate at this time is less than 5%, there is a tendency that good connection between the solder balls and the printed circuit board cannot be obtained.

本発明の液状封止樹脂組成物にフラックス機能を付与するためのフラックス剤とは、常温で固体状、または液状であり、液状封止樹脂組成物にフラックス活性を付与できる化合物または組成物であれば特に限定するものではないが、従来からフラックス液として一般的に用いられてきた、ハロゲン化水素酸アミン塩等のようなフラックス剤は、吸湿処理するとイオンになりやすく、電気特性の大幅な低下をもたらす傾向がある。好ましいフラックス剤としては、例えば、フェノール性水酸基とカルボン酸を有する化合物、トリメリット酸のようなカルボン酸を含む酸無水物、ハイドロキノン骨格を有する化合物等のような酸性度の高いカルボン酸を含む有機酸等の他、1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物が挙げられる。このような−OH官能基(水酸基)を有する化合物としては、アルコール系水酸基、またはフェノール性水酸基を有する化合物であり、アルコール物質(アルコール系化合物)、フェノール系化合物、フェノキシ樹脂等が挙げられる。これらのフラックス剤は単独で、又は2種類以上を組み合わせて用いることができる。
なお、電子部品の実装時に、良好な基板との接合、例えばはんだ付けを行うためには、酸化膜の除去に加えて、電子部品素子及び基板の少なくとも一方に設けられる接続用電極部を構成する材質(例えばはんだ。)の界面張力を低下させ、良好な濡れ広がりを確保する必要がある。そのためには、前記接続用電極部が液体状態であるとき、フラックス剤の揮発が終了しておらず、液体の状態であることが好ましい。すなわち、例えば接続用電極部がはんだ製である場合には、フラックス剤のTGA(Thermal Gravimetory Analysis)法によるTG%(熱重量変化率)が0%、すなわち、残存重量が0になる最低温度(以下、揮発終了温度ともいう。)が、はんだの溶融温度より高く、かつ常温で固体状のフラックス剤を選択する場合は、そのmp(溶融温度)が、実装温度(すなわちはんだの溶融温度)以下となるフラックス剤が好ましい。このように、フラックス剤は、実装時の接続用電極部の素材の溶融温度を考慮して適宜選択される。なお、上記のTG%=0%の温度(揮発終了温度)は、10℃/minの昇温速度、200mL/minのAir流量及び8〜10mgのサンプル重量で測定したときの値である。
The flux agent for imparting a flux function to the liquid sealing resin composition of the present invention is a compound or composition that is solid or liquid at room temperature and can impart flux activity to the liquid sealing resin composition. Although there is no particular limitation, flux agents such as amine hydrohalide salts that have been generally used as flux liquids from the past tend to become ions when subjected to moisture absorption, resulting in a significant reduction in electrical properties. Tend to bring about. Preferred fluxing agents include, for example, organic compounds containing highly acidic carboxylic acids such as compounds having phenolic hydroxyl groups and carboxylic acids, acid anhydrides containing carboxylic acids such as trimellitic acid, and compounds having hydroquinone skeletons. In addition to acids and the like, compounds containing at least two —OH functional groups (hydroxyl groups) per molecule can be mentioned. Examples of such a compound having an —OH functional group (hydroxyl group) are compounds having an alcoholic hydroxyl group or a phenolic hydroxyl group, and examples thereof include an alcohol substance (alcohol compound), a phenolic compound, and a phenoxy resin. These fluxing agents can be used alone or in combination of two or more.
In addition, in order to perform good bonding with the substrate, for example, soldering, when mounting the electronic component, in addition to removing the oxide film, a connection electrode portion provided on at least one of the electronic component element and the substrate is configured. It is necessary to reduce the interfacial tension of the material (for example, solder) to ensure good wetting and spreading. For this purpose, it is preferable that when the connecting electrode portion is in a liquid state, the volatilization of the fluxing agent is not completed and the liquid state is in a liquid state. That is, for example, when the connecting electrode portion is made of solder, the TG% (thermal weight change rate) by the TGA (Thermal Gravity Analysis) method of the flux agent is 0%, that is, the lowest temperature at which the remaining weight becomes 0 ( In the following, the volatilization end temperature is also higher than the melting temperature of the solder, and when a solid flux agent is selected at room temperature, the mp (melting temperature) is equal to or lower than the mounting temperature (that is, the melting temperature of the solder). A fluxing agent is preferred. As described above, the fluxing agent is appropriately selected in consideration of the melting temperature of the material of the connection electrode part at the time of mounting. The temperature of TG% = 0% (the volatilization end temperature) is a value when measured at a heating rate of 10 ° C./min, an Air flow rate of 200 mL / min, and a sample weight of 8 to 10 mg.

上記のフラックス剤は、1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物が好ましく、中でも、低粘度、かつ放置後の粘度上昇を抑制できる点で、アルコール物質が好ましい。アルコール物質としては、分子内にアルコール性の−OH官能基(水酸基)を少なくとも2個含有する化合物であれば特に限定されない。このようなアルコール物質としては、例えば、1,3−ジオキサン−5,5−ジメタノール、1,5−ペンタンジオール、2,5−フランジメタノール、n−ブチルジエタノールアミン、エチルジエタノールアミン、ジエタノールアミン、ジエチレングリコール、テトラエチレングリコール、トリエチレングリコール、ヘキサエチレングリコール、ペンタエチレングリコール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、1,2,6−ヘキサントリオール、2,3,4−トリヒドロキシベンゾフェノン、2´,3´,4´−トリヒドロキシアセトフェノン、3−メチルペンタン−1,3,5−トリオール、グリセリン、トリエタノールアミン、トリメチロールエタン、トリメチロールプロパン、ピロガロール、エリトリトール、N,N−ビス(2−ヒドロキシエチル)イソプロパノールアミン、ペンタエリトリトール、ビス(2−ヒドロキシメチル)イミノトリス(ヒドロキシメチル)メタン、リビトール、ソルビトール、2,4−ジエチル−1,5−ペンタンジオール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、1,3−ブチレングリコール、2−エチル−1,3−ヘキサンジオール、等の他、トリオース、テトロース、ペントース、ヘキソース、グルコース、等の単糖類、また、
下記式(II)で示される2,4−ジエチル−1,5−ペンタンジオール・アジピン酸重縮合物、
(ただし、式(II)中、nは1以上の整数。)
下記式(III)で示されるブチルエチルプロパンジオール・アジピン酸重縮合物、
(ただし、式(III)中、nは1以上の整数。)
等のポリオールが挙げられ、1種類以上を選択できる。
上記のアルコール物質としては、本発明の液状封止樹脂組成物に含まれる他成分と相溶し、バンプ表面との接触効率を高め、前記表面に形成された酸化膜を有効に還元除去できる点で、また、25℃における粘度を50Pa・s以下に抑える目的で、常温で液状、かつ樹脂組成物との相溶性の高い多価アルコール物質が好ましい。
The above fluxing agent is preferably a compound containing at least two —OH functional groups (hydroxyl groups) in one molecule. Among them, an alcohol substance is preferable in that it has a low viscosity and can suppress an increase in viscosity after standing. The alcohol substance is not particularly limited as long as it is a compound containing at least two alcoholic —OH functional groups (hydroxyl groups) in the molecule. Examples of such alcohol substances include 1,3-dioxane-5,5-dimethanol, 1,5-pentanediol, 2,5-furandethanol, n-butyldiethanolamine, ethyldiethanolamine, diethanolamine, diethylene glycol, tetra Ethylene glycol, triethylene glycol, hexaethylene glycol, pentaethylene glycol, 1,2,3-hexanetriol, 1,2,4-butanetriol, 1,2,6-hexanetriol, 2,3,4-trihydroxy Benzophenone, 2 ', 3', 4'-trihydroxyacetophenone, 3-methylpentane-1,3,5-triol, glycerin, triethanolamine, trimethylolethane, trimethylolpropane, pyrogallol, erythri , N, N-bis (2-hydroxyethyl) isopropanolamine, pentaerythritol, bis (2-hydroxymethyl) iminotris (hydroxymethyl) methane, ribitol, sorbitol, 2,4-diethyl-1,5-pentanediol , Propylene glycol monomethyl ether, propylene glycol monoethyl ether, 1,3-butylene glycol, 2-ethyl-1,3-hexanediol, etc., monosaccharides such as triose, tetrose, pentose, hexose, glucose, etc. ,
2,4-diethyl-1,5-pentanediol-adipic acid polycondensate represented by the following formula (II):
(In the formula (II), n is an integer of 1 or more.)
Butylethylpropanediol-adipic acid polycondensate represented by the following formula (III):
(In the formula (III), n is an integer of 1 or more.)
Polyols, such as these, are mentioned, One or more types can be selected.
The above alcohol substance is compatible with other components contained in the liquid sealing resin composition of the present invention, improves the contact efficiency with the bump surface, and can effectively reduce and remove the oxide film formed on the surface. In addition, for the purpose of suppressing the viscosity at 25 ° C. to 50 Pa · s or less, a polyhydric alcohol substance that is liquid at room temperature and highly compatible with the resin composition is preferable.

以上のフラックス剤の含量としては、前記シアネートエステル樹脂100重量部に対して、0.1〜100重量部が好ましい。特にフラックス剤が1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物である場合、この含量が好ましい。0.1重量部より少ないと、フラックス活性を有効に付与できなくなる傾向があり、100重量部を超えると、硬化後のTgが100℃を下回る可能性が高くなり、耐熱性が損なわれる傾向がある上記の範囲内で、25℃24時間放置後の25℃における粘度上昇率の上昇率が500%以下となるように、添加量を調整する。   The content of the above fluxing agent is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the cyanate ester resin. This content is particularly preferred when the fluxing agent is a compound containing at least two —OH functional groups (hydroxyl groups) per molecule. If the amount is less than 0.1 parts by weight, there is a tendency that the flux activity cannot be effectively imparted. If the amount exceeds 100 parts by weight, the Tg after curing tends to be less than 100 ° C., and the heat resistance tends to be impaired. Within a certain range, the addition amount is adjusted so that the rate of increase in viscosity at 25 ° C. after standing at 25 ° C. for 24 hours is 500% or less.

本発明の液状封止樹脂組成物は、(1)25℃における粘度が50Pa・s以下、(2)25℃24時間放置後の25℃における粘度の上昇率が500%以下、(3)260℃におけるゲルタイムが1〜120秒、かつ(4)硬化後のTgが100〜300℃の特性を有効に付与し、さらに場合によっては、可とう性を付与するため、必要に応じて、前記シアネートエステル樹脂に加えて、エポキシ樹脂、ビスマレイミド樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、ビスアリルナジイミド、トリアリルイソシアヌレート、ベンゾオキサジン樹脂等の樹脂を1種類以上組み合わせることもできる。特に、25℃における粘度を50Pa・s以下にするため、上記の樹脂としては液状のものを選択するのが好ましい。前記のビスマレイミド樹脂としては下記式(IV)で示されるポリテトラメチレンエーテルグリコールジ(2−マレイミドアセテート)が液状であり、かつ可とう性を付与できるという点で好ましく使用される。
(ただし、式(IV)中、nは2〜5の整数。)
また、前記のビスアリルナジイミドについては、下記式(V)で示される1,6−ビス(アリルビシクロ〔2.2.1〕ヘプト−5−エン−2,3−ジカルボキシイミド)ヘキサンが液状であり、かつ可とう性を付与できるという点で好ましく使用される。
(ただし、式(V)中、n=6。)
なお、これらの樹脂を組み合わせる場合は、硬化を促進するため、必要に応じて、硬化剤、促進剤、触媒等を添加することができる。このとき、(2)25℃24時間放置後の25℃における粘度の上昇率が500%以下、(3)260℃におけるゲルタイムが1〜120秒となるように、添加量を調整する。これらの樹脂の含量は、シアネートエステル樹脂100重量部に対して、1〜100重量部が好ましい。1重量部より少ないと、改質の効果が得られなくなる傾向があり、100重量部を超えると、硬化後のTgが100℃を下回る可能性が高くなり、耐熱性が損なわれる傾向がある。
The liquid sealing resin composition of the present invention has (1) a viscosity at 25 ° C. of 50 Pa · s or less, (2) an increase rate of viscosity at 25 ° C. after standing at 25 ° C. for 24 hours, and (3) 260 In order to effectively impart the properties of a gel time of 1 to 120 seconds at 4 ° C. and (4) a Tg of 100 to 300 ° C. after curing, and in some cases, to impart flexibility, the cyanate is optionally added. In addition to the ester resin, one or more kinds of resins such as epoxy resin, bismaleimide resin, phenol resin, silicone resin, urethane resin, bisallyl nadiimide, triallyl isocyanurate, and benzoxazine resin can be combined. In particular, in order to set the viscosity at 25 ° C. to 50 Pa · s or less, it is preferable to select a liquid resin as the resin. As the bismaleimide resin, polytetramethylene ether glycol di (2-maleimidoacetate) represented by the following formula (IV) is preferably used because it is liquid and can impart flexibility.
(In the formula (IV), n is an integer of 2 to 5.)
As for the bisallylnadiimide, 1,6-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) hexane represented by the following formula (V) is used. It is preferably used because it is liquid and can impart flexibility.
(In the formula (V), n = 6.)
In addition, when combining these resin, in order to accelerate | stimulate hardening, a hardening | curing agent, an accelerator, a catalyst, etc. can be added as needed. At this time, the addition amount is adjusted so that (2) the rate of increase in viscosity at 25 ° C. after standing at 25 ° C. for 24 hours is 500% or less, and (3) the gel time at 260 ° C. is 1 to 120 seconds. The content of these resins is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the cyanate ester resin. If the amount is less than 1 part by weight, there is a tendency that the effect of the modification cannot be obtained. If the amount exceeds 100 parts by weight, there is a high possibility that the Tg after curing is less than 100 ° C., and the heat resistance tends to be impaired.

上記の樹脂の他に、必要に応じて熱可塑性樹脂を添加することもできる。添加できる熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリイミド樹脂、ウレタン樹脂、シリコーン樹脂、フェノキシ樹脂、アクリル系共重合体等を挙げることができる。前記のフェノキシ樹脂は側鎖に水酸基を含有し、フラックス活性を有するため、フラックス剤としての使用も可能である。さらに、可とう性を付与できる点では、シリコーン系ゴムフィラー等の添加も有効である。これらの樹脂は単独で、又は2種以上を組み合わせて用いることができる。これらの樹脂の含量は、シアネートエステル樹脂100重量部に対して、1〜100重量部が好ましい。1重量部より少ないと、改質の効果が得られなくなる傾向があり、100重量部を超えると、耐熱性が損なわれる傾向がある。   In addition to the above resin, a thermoplastic resin may be added as necessary. Examples of the thermoplastic resin that can be added include polyamide resin, polyimide resin, urethane resin, silicone resin, phenoxy resin, acrylic copolymer, and the like. Since the phenoxy resin contains a hydroxyl group in the side chain and has flux activity, it can be used as a flux agent. Furthermore, addition of a silicone rubber filler or the like is also effective in that flexibility can be imparted. These resins can be used alone or in combination of two or more. The content of these resins is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the cyanate ester resin. If the amount is less than 1 part by weight, the effect of modification tends to be lost, and if it exceeds 100 parts by weight, the heat resistance tends to be impaired.

本発明の液状封止樹脂組成物は、半導体素子等の電子部品素子の封止用途として用いるため高い信頼性が必要である。特に、耐水性、線膨張係数を被着体に近づけるために、無機フィラーを添加することが好ましい。このような無機充填材の種類としては、窒化アルミ、アルミナ、シリカ等があるが、熱放散性とコストの面からシリカ粒子が好ましく、低放射線性であればより好ましい。形状は球状、破砕状、フレーク等があるが、フィラーの高充填化が図られるため、球状であることが望ましい。また、フィラーの添加量は、全組成物に対して10〜80重量%が望ましい。10重量%未満だと、耐湿性や硬化物の熱膨張係数が大きくなる傾向があり、またフィラーの分散ムラも生じる傾向がある。一方、80重量%を超えると、得られる組成物の粘度が高くなり過ぎ、接合時の流動特性が悪化する傾向がある。これら無機フィラーは、単独で又は二種類以上を組み合わせて使用することができる。フィラーの混合・混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。   Since the liquid sealing resin composition of the present invention is used for sealing electronic component elements such as semiconductor elements, high reliability is required. In particular, it is preferable to add an inorganic filler in order to bring the water resistance and linear expansion coefficient closer to the adherend. Examples of such inorganic fillers include aluminum nitride, alumina, silica, and the like, and silica particles are preferable from the viewpoint of heat dissipation and cost, and more preferable if they are low radiation. There are spherical shapes, crushed shapes, flakes, and the like, but spherical shapes are desirable because the filler can be highly filled. Moreover, as for the addition amount of a filler, 10 to 80 weight% is desirable with respect to the whole composition. If it is less than 10% by weight, the moisture resistance and the thermal expansion coefficient of the cured product tend to increase, and the dispersion of the filler also tends to occur. On the other hand, if it exceeds 80% by weight, the viscosity of the resulting composition becomes too high, and the flow characteristics at the time of joining tend to deteriorate. These inorganic fillers can be used alone or in combination of two or more. Mixing and kneading of the filler can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, and a ball mill.

本発明の液状封止樹脂組成物には、前記の成分の他に、必要に応じてカップリング剤、希釈剤、難燃剤、消泡剤等の添加物を添加することもできる。   In addition to the above-described components, additives such as a coupling agent, a diluent, a flame retardant, and an antifoaming agent can be added to the liquid sealing resin composition of the present invention as necessary.

本発明の液状封止樹脂組成物は、例えば、以下のようにして製造することができる。すなわち、シアネートエステル樹脂を含む樹脂、1分子中に−OH官能基(水酸基)を少なくとも2個含有する化合物のようなフラックス剤、及び無機フィラーを所定量配合し、これに必要に応じて各種成分、例えば、硬化剤、硬化促進剤、可塑剤、シランカップリング剤等を所定量配合した組成物を、攪拌釜等の混錬機にかけ、溶融混合する。次に、これを必要に応じてフィルター等を用いてろ過し、ついで減圧脱泡することにより、目的とする液状封止樹脂組成物を製造することができる。   The liquid sealing resin composition of the present invention can be produced, for example, as follows. That is, a predetermined amount of a resin containing a cyanate ester resin, a fluxing agent such as a compound containing at least two —OH functional groups (hydroxyl groups) in a molecule, and an inorganic filler, and various components as necessary. For example, a composition containing a predetermined amount of a curing agent, a curing accelerator, a plasticizer, a silane coupling agent, etc. is applied to a kneader such as a stirring kettle and melt mixed. Next, if necessary, this is filtered using a filter or the like, and then degassed under reduced pressure, whereby the intended liquid sealing resin composition can be produced.

図1に、本発明の液状封止樹脂組成物により製造される本発明の電子部品装置の一例を縦断面図で示す。図1に示すように、配線回路基板1の片面に、複数の接続用電極部2を介して半導体素子3が搭載された構造をとる。配線回路基板1と半導体素子3との間に本発明の液状封止樹脂組成物の硬化物である封止樹脂層4が形成されている。
なお、上記配線回路基板1と半導体素子3とを電気的に接続する上記複数の接続用電極部2は、予め配線回路基板1面に配設されてもよいし、半導体素子3面に配設されてもよい。さらには、予め配線回路基板1面及び半導体素子3面の双方にそれぞれ配設されてもよい。
In FIG. 1, an example of the electronic component apparatus of this invention manufactured with the liquid sealing resin composition of this invention is shown with a longitudinal cross-sectional view. As shown in FIG. 1, a structure in which a semiconductor element 3 is mounted on one side of a printed circuit board 1 via a plurality of connection electrode portions 2 is employed. A sealing resin layer 4 that is a cured product of the liquid sealing resin composition of the present invention is formed between the printed circuit board 1 and the semiconductor element 3.
The plurality of connection electrode portions 2 that electrically connect the wired circuit board 1 and the semiconductor element 3 may be disposed in advance on the surface of the wired circuit board 1 or disposed on the surface of the semiconductor element 3. May be. Furthermore, it may be previously arranged on both the printed circuit board 1 surface and the semiconductor element 3 surface.

配線回路基板1の材質としては、特に限定するものではないが、大別して、セラミック基板、プラスチック基板があり、前記プラスチック基板としては、例えば、エポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板等が挙げられる。本発明の液状封止樹脂組成物は、プラスチック基板と、低融点半田による接続用電極部等の組合せのように耐熱性の問題で接合温度を高温に設定することができないような場合においても、特に限定されることなく、好適に用いられる。
複数の接続用電極部2の材質としては、特に限定するものではないが、例えば半田による低融点、及び高融点バンプ、錫バンプ、銀−錫バンプ、銀−錫−銅バンプ等が挙げられ、また、回路配線基板上の電極部が上記の材質からなるものに対しては、図中の接続用電極部2は金バンプ、銅バンプ等であっても良い。
半導体素子3は、特に限定されず、通常使用されるものが使用できる。例えば、シリコン、ゲルマニウムなどの元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体等の各種半導体が使用される。
The material of the printed circuit board 1 is not particularly limited, but is roughly classified into a ceramic substrate and a plastic substrate. Examples of the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, and a polyimide substrate. . Even when the liquid sealing resin composition of the present invention cannot set the bonding temperature to a high temperature due to the problem of heat resistance, such as a combination of a plastic substrate and a connecting electrode portion using low melting point solder, It does not specifically limit and is used suitably.
The material of the plurality of connection electrode portions 2 is not particularly limited, and examples thereof include a low melting point by solder and a high melting point bump, a tin bump, a silver-tin bump, a silver-tin-copper bump, and the like. Further, for the electrode part on the circuit wiring board made of the above-mentioned material, the connection electrode part 2 in the figure may be a gold bump, a copper bump or the like.
The semiconductor element 3 is not specifically limited, What is normally used can be used. For example, various semiconductors such as elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide are used.

本発明の液状封止樹脂組成物を用いた電子部品装置の製造方法について、図面に基づき順を追って説明する。図2及び図3は、電子部品装置の製造工程の一例を示す概略断面図である。
(1)まず、図2に示すように配線回路基板1上に、溶融温度は接続用電極部2の溶融温度以下で、かつ揮発終了温度は接続用電極部の溶融温度より高い、常温で固体状または液状のフラックス剤を含む本発明の液状封止樹脂組成物7をディスペンス法により塗布する。
(2)ついで、図3に示すように、(1)の基板の液状封止樹脂組成物7の上の所定位置に、基板と電気的接合させるための複数の接続用電極部(ジョイントボール)2が設けられた半導体素子3を搭載し、液状封止樹脂組成物7を加熱ステージ上で溶融して溶融状態とし、上記半導体素子3の接続用電極部2が溶融状態の液状封止樹脂組成物7を押しのけ、接続用電極部2を介して前記素子3と基板1とが接触することにより仮実装し、かつ半導体素子3と配線回路基板1との間の空隙内に溶融状態の液状封止樹脂組成物7を充填させる。
(3)その後、半田リフローによる金属接合を行い実装すると同時に、液状封止樹脂組成物7を硬化させることにより、空隙を封止して封止樹脂層4を形成する(図1参照。)。この時、基板の加熱により半田を溶融させて半導体素子3を基板上に電気的に接合させる半田リフロー方式は、リフロー炉を用いた接合方式であっても、ヒータ及び押圧部を備えた装置により素子搭載と同時に半田融点以上にヒータ部分を加熱し、半田溶融を行う接合方式であっても良い。このようにして、図1に示す電子部品装置を製造する。配線回路基板1上に、液状封止樹脂組成物7を塗布する方法は、ディスペンス法の他、印刷法、転写法などが挙げられる。
A method for manufacturing an electronic component device using the liquid sealing resin composition of the present invention will be described in order with reference to the drawings. 2 and 3 are schematic cross-sectional views showing an example of the manufacturing process of the electronic component device.
(1) First, as shown in FIG. 2, on the printed circuit board 1, the melting temperature is equal to or lower than the melting temperature of the connection electrode portion 2, and the volatilization end temperature is higher than the melting temperature of the connection electrode portion. The liquid sealing resin composition 7 of the present invention containing a state or liquid flux agent is applied by a dispensing method.
(2) Next, as shown in FIG. 3, a plurality of connection electrode portions (joint balls) for electrical bonding to the substrate at predetermined positions on the liquid sealing resin composition 7 of the substrate of (1). 2 is mounted, the liquid sealing resin composition 7 is melted on a heating stage to be in a molten state, and the connecting electrode portion 2 of the semiconductor element 3 is in a molten state. The object 7 is pushed away, the element 3 and the substrate 1 are brought into contact with each other through the connection electrode portion 2 and temporarily mounted, and a molten liquid seal is placed in the gap between the semiconductor element 3 and the printed circuit board 1. The stop resin composition 7 is filled.
(3) Thereafter, metal bonding by solder reflow is performed for mounting, and at the same time, the liquid sealing resin composition 7 is cured, thereby sealing the gap and forming the sealing resin layer 4 (see FIG. 1). At this time, the solder reflow method in which the solder is melted by heating the substrate and the semiconductor element 3 is electrically bonded to the substrate is a bonding method using a reflow furnace. A bonding method in which the heater portion is heated to a temperature equal to or higher than the melting point of the solder simultaneously with the mounting of the element to melt the solder may be used. In this way, the electronic component device shown in FIG. 1 is manufactured. Examples of the method for applying the liquid sealing resin composition 7 on the printed circuit board 1 include a printing method and a transfer method in addition to the dispensing method.

なお、上記電子部品装置の製造方法では、複数の接続用電極部2が設けられた半導体素子3を用いた場合について述べたが、これに限定するものではなく、予め配線回路基板1に複数の接続用電極部2が配設されたものを用いてもよい。
また、液状封止樹脂組成物7の厚み及び重量は、上記同様、搭載される半導体素子3の大きさ及び半導体素子に設けられた球状の接続用電極の大きさ、すなわち、半導体素子3と配線回路基板1との空隙を充填し、封止することにより形成される封止樹脂層4の占める容積により、適宜に設定される。
また、上記電子部品装置の製造方法において、上記(2)の仮実装時には、必ずしも液状封止樹脂組成物7を加熱して溶融させなくてもよい。さらに、液状封止樹脂組成物7を加熱して溶融状態にする際の加熱温度としては、半導体素子3及び配線回路基板1の耐熱性、接続用電極部2の融点、並びに液状封止樹脂組成物7の軟化点、耐熱性等を考慮して適宜に設定されるものである。
In the above-described method for manufacturing an electronic component device, the case where the semiconductor element 3 provided with the plurality of connection electrode portions 2 is used has been described. However, the present invention is not limited to this. An electrode provided with the connecting electrode portion 2 may be used.
Further, the thickness and weight of the liquid sealing resin composition 7 are the same as those described above, and the size of the semiconductor element 3 to be mounted and the size of the spherical connection electrode provided on the semiconductor element, that is, the semiconductor element 3 and the wiring. It is set appropriately depending on the volume occupied by the sealing resin layer 4 formed by filling the gap with the circuit board 1 and sealing.
In the method for manufacturing the electronic component device, the liquid sealing resin composition 7 does not necessarily have to be heated and melted during the temporary mounting of (2). Furthermore, as the heating temperature when the liquid sealing resin composition 7 is heated to a molten state, the heat resistance of the semiconductor element 3 and the printed circuit board 1, the melting point of the connection electrode portion 2, and the liquid sealing resin composition It is appropriately set in consideration of the softening point, heat resistance, etc. of the object 7.

次に、本発明を実施例、比較例に基づいて説明する。なお、本発明はこれらの実施例によって限定されるものではない。   Next, the present invention will be described based on examples and comparative examples. In addition, this invention is not limited by these Examples.

実施例1
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒としてナフテン酸コバルト0.1重量部、助触媒として明和化成株式会社製アリル基変性液状フェノールノボラック樹脂MEH−8000Hを1.9重量部、ペンタエチレングリコール10重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Aを得た。
Example 1
Cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) 100 parts by weight from Lonza, 0.1 part by weight cobalt naphthenate as a catalyst, Meiwa Kasei Co., Ltd. 1.9 parts by weight of allyl group-modified liquid phenol novolac resin MEH-8000H, 10 parts by weight of pentaethylene glycol, 190 parts by weight of spherical silica filler SE-1 (average particle size: 1.0 μm) manufactured by Tokuyama Corporation, Nippon Unicar Co., Ltd. Weighed 1 part by weight of a silane coupling agent (γ-glycidpropyltrimethoxysilane, product name: A-187) manufactured by the company, kneaded and dispersed with three rolls, and then subjected to a vacuum degassing treatment to obtain a liquid sealing resin Composition A was obtained.

実施例2
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒として亜鉛アセチルアセトナート0.01重量部、協和発酵工業株式会社製ポリエステルポリオール(製品名;キョウワポール2000PA)50重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Bを得た。
Example 2
Cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) 100 parts by weight, zinc acetylacetonate 0.01 parts by weight as catalyst, polyester manufactured by Kyowa Hakko Kogyo Co., Ltd. 50 parts by weight of polyol (product name: Kyowapol 2000PA), 190 parts by weight of spherical silica filler SE-1 (average particle size: 1.0 μm) manufactured by Tokuyama Corporation, silane coupling agent (γ-glycid manufactured by Nihon Unicar Co., Ltd.) Propyltrimethoxysilane, product name: A-187) 1 part by weight was weighed, kneaded and dispersed with three rolls, and then subjected to vacuum degassing to obtain a liquid sealing resin composition B.

実施例3
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒としてナフテン酸コバルト0.1重量部、助触媒として明和化成株式会社製アリル基変性液状フェノールノボラック樹脂MEH−8000Hを1.9重量部、大日本インキ化学工業株式会社製ポリエーテル系ビスマレイミド酢酸エステル(ポリテトラメチレンエーテルグリコールジ(2−マレイミドアセテート)、製品名;MIA200)30重量部、ゲンチジン酸5重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Cを得た。
Example 3
Cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) 100 parts by weight from Lonza, 0.1 part by weight cobalt naphthenate as a catalyst, Meiwa Kasei Co., Ltd. 1.9 parts by weight of allyl group-modified liquid phenol novolak resin MEH-8000H, polyether bismaleimide acetate (polytetramethylene ether glycol di (2-maleimide acetate), manufactured by Dainippon Ink & Chemicals, Inc., product name; MIA200 ) 30 parts by weight, 5 parts by weight of gentisic acid, 190 parts by weight of spherical silica filler SE-1 (average particle size: 1.0 μm) manufactured by Tokuyama Corporation, silane coupling agent (γ-glycidpropylpropyltri) manufactured by Nippon Unicar Co., Ltd. Methoxysilane, product name; A-187) single An amount part was weighed, kneaded and dispersed with three rolls, and then subjected to a vacuum detachment treatment to obtain a liquid sealing resin composition C.

実施例4
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒としてナフテン酸銅0.5重量部、助触媒として明和化成株式会社製アリル基変性液状フェノールノボラック樹脂MEH−8000Hを9.5重量部、丸善石油化学株式会社製ビスアリルナジイミド(1,6−ビス(アリルビシクロ〔2.2.1〕ヘプト−5−エン−2,3−ジカルボキシイミド)ヘキサン、製品名;BANI−H)20重量部、巴工業株式会社製フェノキシ樹脂(製品名;PKHP−200)5重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Dを得た。
Example 4
Cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) 100 parts by weight, 0.5 part by weight of copper naphthenate as a catalyst, and Meiwa Kasei Co., Ltd. as a promoter 9.5 parts by weight of an allyl group-modified liquid phenol novolac resin MEH-8000H, bisallylnadiimide (1,6-bis (allylbicyclo [2.2.1] hept-5-ene-2, manufactured by Maruzen Petrochemical Co., Ltd.) , 3-dicarboximide) hexane, product name: BANI-H) 20 parts by weight, phenoxy resin (product name: PKHP-200) 5 parts by weight, Tokuyama Corporation spherical silica filler SE-1 ( Average particle size: 1.0 μm) 190 parts by weight, Nihon Unicar Co., Ltd. silane coupling agent (γ-glycidpropyl) Rimethoxysilane, product name: A-187) 1 part by weight was weighed, kneaded and dispersed with three rolls, and then subjected to a vacuum detachment treatment to obtain a liquid sealing resin composition D.

実施例5
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒として亜鉛アセチルアセトナート0.01重量部、東レ・ダウコーニング・シリコーン株式会社製シリコーンパウダー(製品名;トレフィルE−601)10重量部、ヘキサエチレングリコール10重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Eを得た。
Example 5
100 parts by weight of cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) manufactured by Lonza, 0.01 parts by weight of zinc acetylacetonate as a catalyst, Toray Dow Corning Silicone Co., Ltd. Company-made silicone powder (product name: Trefil E-601) 10 parts by weight, hexaethylene glycol 10 parts by weight, Tokuyama Co., Ltd. spherical silica filler SE-1 (average particle size: 1.0 μm) 190 parts by weight, Nippon Unicar Co., Ltd. Weighed 1 part by weight of a silane coupling agent (γ-glycidpropyltrimethoxysilane, product name: A-187) manufactured by the company, kneaded and dispersed with three rolls, and then subjected to a vacuum degassing treatment to obtain a liquid sealing resin Composition E was obtained.

比較例1
東都化成株式会社製ビスフェノールF型エポキシ樹脂(製品名;YDF−8170C、エポキシ当量:160、性状:液状)100重量部、ジャパンエポキシレジン株式会社製酸無水物系硬化剤(製品名;エピキュアYH306)146重量部、四国化成工業株式会社製イミダゾール系硬化促進剤(製品名;キュアゾール2P4MHZ性状:固体状)1.5重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱泡処理を行い、液状封止樹脂組成物Fを得た。
Comparative Example 1
100 parts by weight of bisphenol F type epoxy resin (product name; YDF-8170C, epoxy equivalent: 160, property: liquid) manufactured by Toto Kasei Co., Ltd., acid anhydride-based curing agent (product name: Epicure YH306) manufactured by Japan Epoxy Resin Co., Ltd. 146 parts by weight, 1.5 parts by weight of an imidazole-based curing accelerator manufactured by Shikoku Kasei Kogyo Co., Ltd. (product name: Curesol 2P4MHZ property: solid), spherical silica filler SE-1 manufactured by Tokuyama Corporation (average particle size: 1.0 μm) ) 190 parts by weight, Nihon Unicar Co., Ltd. silane coupling agent (γ-glycidpropyl propyltrimethoxysilane, product name: A-187) 1 part by weight was weighed, kneaded and dispersed with three rolls, then vacuum degassed A foam treatment was performed to obtain a liquid sealing resin composition F.

比較例2
東都化成株式会社製ビスフェノールF型エポキシ樹脂(製品名;YDF−8170C、エポキシ当量:160、性状:液状)100重量部、明和化成株式会社製フェノールノボラック樹脂(製品名;H−1、OH当量:106、性状:固体状)66重量部、四国化成工業株式会社製イミダゾール系硬化促進剤(製品名;キュアゾール2P4MHZ、性状:固体状)1重量部、トリエタノールアミン10重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱泡処理を行い、液状封止樹脂組成物Gを得た。
Comparative Example 2
Bisphenol F type epoxy resin (product name; YDF-8170C, epoxy equivalent: 160, property: liquid) manufactured by Toto Kasei Co., Ltd., phenol novolac resin (product name; H-1, OH equivalent: manufactured by Meiwa Kasei Co., Ltd.) 106, property: solid) 66 parts by weight, Shikoku Kasei Kogyo Co., Ltd. imidazole curing accelerator (product name: Curezol 2P4MHZ, property: solid) 1 part by weight, triethanolamine 10 parts by weight, Tokuyama Corporation spherical 190 parts by weight of silica filler SE-1 (average particle size: 1.0 μm) and 1 part by weight of a silane coupling agent (γ-glycidpropyltrimethoxysilane, product name: A-187) manufactured by Nihon Unicar Co., Ltd. were weighed. After kneading and dispersing with three rolls, vacuum defoaming treatment was performed to obtain a liquid sealing resin composition G.

比較例3
Lonza社製シアネートエステル樹脂(1,1´−ビス(4−シアネートフェニル)エタン、製品名;Primaset LECy)100重量部、触媒としてナフテン酸コバルト0.1重量部、助触媒として明和化成株式会社製アリル基変性液状フェノールノボラック樹脂MEH−8000Hを1.9重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱法処理を行い、液状封止樹脂組成物Hを得た。
Comparative Example 3
Cyanate ester resin (1,1′-bis (4-cyanatephenyl) ethane, product name; Primaset LECy) 100 parts by weight from Lonza, 0.1 part by weight cobalt naphthenate as a catalyst, Meiwa Kasei Co., Ltd. 1.9 parts by weight of allyl group-modified liquid phenol novolac resin MEH-8000H, 190 parts by weight of spherical silica filler SE-1 (average particle size: 1.0 μm) manufactured by Tokuyama Corporation, silane coupling agent manufactured by Nihon Unicar Corporation ( 1 part by weight of γ-glycidpropyltrimethoxysilane, product name: A-187) was weighed, kneaded and dispersed with three rolls, and then subjected to vacuum degassing treatment to obtain a liquid sealing resin composition H.

比較例4
東都化成株式会社製ビスフェノールF型エポキシ樹脂(製品名;YDF−8170C、エポキシ当量:160、性状:液状)100重量部、明和化成株式会社製フェノールノボラック樹脂(製品名;H−1、OH当量:106、性状:固体状)62重量部、ジャパンエポキシレジン株式会社製酸無水物系硬化剤62重量部(製品名;エピキュアYH306)、四国化成工業株式会社製イミダゾール系硬化促進剤(製品名;キュアゾール2P4MHZ、性状:固体状)1重量部、株式会社トクヤマ製球状シリカフィラーSE−1(平均粒子径:1.0μm)190重量部、日本ユニカー株式会社製シランカップリング剤(γ−グリシドプロピルトリメトキシシラン、製品名;A−187)1重量部を秤量し、3本ロールにて混練・分散後、真空脱泡処理を行い、液状封止樹脂組成物Iを得た。
Comparative Example 4
Bisphenol F type epoxy resin (product name; YDF-8170C, epoxy equivalent: 160, property: liquid) manufactured by Toto Kasei Co., Ltd., phenol novolac resin (product name; H-1, OH equivalent: manufactured by Meiwa Kasei Co., Ltd.) 106, property: solid state 62 parts by weight, Japan Epoxy Resin Co., Ltd. acid anhydride curing agent 62 parts by weight (product name; Epicure YH306), Shikoku Kasei Kogyo Co., Ltd. imidazole curing accelerator (product name: Curezol) 2P4MHZ, properties: 1 part by weight, Tokuyama Co., Ltd. spherical silica filler SE-1 (average particle size: 1.0 μm) 190 parts by weight, Nihon Unicar Co., Ltd. silane coupling agent (γ-glycidpropylpropyltri) Methoxysilane, product name: A-187) Weigh 1 part by weight, knead and disperse with 3 rolls, then vacuum release A foam treatment was performed to obtain a liquid sealing resin composition I.

実施例1〜5の樹脂組成物特性を表1に、比較例1〜4の樹脂組成物特性を表2にそれぞれ示す。
表中の粘度とは、E型回転粘度計を用い、25℃、5rpmの条件で測定したときの値である。粘度上昇率とは、25℃24h放置後の粘度上昇率であり、次式(1)により算出した。
24h放置後の粘度上昇率=(25℃24h放置後の粘度−配合直後の粘度)×100
/配合直後の粘度 ・・・(式1)
表中のゲルタイムとは、ゲルタイマーを用い、配合した液状封止樹脂組成物を260℃の熱盤上に適量たらしたのち、ゲル化し始めるまでの時間を測定したときの値である。また、Tgとは、液状封止樹脂組成物を260℃熱盤上でゲル化させたのち、165℃のオーブン中で1時間加熱して得た硬化物を、DSCで測定したときの値である。なお、DSC測定条件は次の通りである。サンプル量:約10mg、昇温速度:10℃/分、25℃から300℃まで昇温、昇温回数:2回。
The resin composition characteristics of Examples 1 to 5 are shown in Table 1, and the resin composition characteristics of Comparative Examples 1 to 4 are shown in Table 2, respectively.
The viscosity in the table is a value when measured using an E-type rotational viscometer under the conditions of 25 ° C. and 5 rpm. The viscosity increase rate is the viscosity increase rate after being left at 25 ° C. for 24 hours, and was calculated by the following formula (1).
Viscosity increase rate after standing for 24 hours = (viscosity after standing at 25 ° C. for 24 hours−viscosity immediately after blending) × 100
/ Viscosity immediately after compounding (Formula 1)
The gel time in the table is a value obtained by measuring the time until gelation starts after a suitable amount of the blended liquid sealing resin composition is placed on a hot plate at 260 ° C. using a gel timer. Moreover, Tg is a value when the cured product obtained by gelling the liquid sealing resin composition on a 260 ° C. hot plate and then heating in a 165 ° C. oven for 1 hour is measured by DSC. is there. The DSC measurement conditions are as follows. Sample amount: about 10 mg, temperature increase rate: 10 ° C./min, temperature increase from 25 ° C. to 300 ° C., temperature increase: 2 times.

表中の半田ボール濡れ広がり率とは、図4に示すように、銅箔付き基板(日立化成工業株式会社製MCL−E−679)5の上に液状封止樹脂組成物7を塗布し、これを80℃の熱盤上に設置し、図5に示すように液状封止樹脂組成物7中に半田ボール(千住金属工業株式会社製、M705(Sn/3.0Ag/0.5Cu)、ボール径:200μm、融点:220℃)6を4個添加し、260℃の熱盤上に60秒間放置することにより、半田ボール6を溶融させた。室温に冷却後、図6に示すように試験片の断面を観察し、濡れ広がり後の半田ボール6の最大径Sを測定し、次式(2)により4個の各最大径Sからそれぞれ算出した値の平均値である。
半田ボール濡れ広がり率=(濡れ広がり後の半田ボール6の最大径S−濡れ広がり前の半田ボール径)×100/濡れ広がり前の半田ボール径 ・・・・(式2)
With the solder ball wetting spread rate in the table, as shown in FIG. 4, the liquid sealing resin composition 7 is applied on the copper foil substrate (MCL-E-679 manufactured by Hitachi Chemical Co., Ltd.) 5. This was placed on an 80 ° C. hot platen, and solder balls (M705 (Sn / 3.0Ag / 0.5Cu), manufactured by Senju Metal Industry Co., Ltd.) in the liquid sealing resin composition 7 as shown in FIG. Four balls 6 (ball diameter: 200 μm, melting point: 220 ° C.) were added and left on a heating plate at 260 ° C. for 60 seconds to melt the solder balls 6. After cooling to room temperature, the cross section of the test piece is observed as shown in FIG. 6, the maximum diameter S of the solder ball 6 after wetting and spreading is measured, and calculated from each of the four maximum diameters S by the following equation (2). This is the average of the values obtained.
Solder ball wetting spread rate = (maximum diameter S of solder ball 6 after wetting spread−solder ball diameter before wetting spreading) × 100 / solder ball diameter before wetting spreading (Equation 2)

表1及び表2からわかるように、1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂を含まない比較例1、2、4は25℃での粘度及び粘度上昇率が高い傾向があるため、塗布が困難で作業性が低く、可使時間や保管時間が短く生産性が低いおそれがある。耐熱信頼性に関与するTgも低い傾向がある。また、前記シアネートエステル樹脂を含むがフラックス機能を有する化合物を含まない比較例3は、半田ボール濡れ広がり率が不良なため、生産性・接続信頼性に劣る。一方、実施例1〜5の樹脂組成物は、良好な作業性、良好な接続信頼性を維持しつつ、高い生産性、及び良好な耐熱信頼性の確保が期待できることがわかる。 As can be seen from Table 1 and Table 2, Comparative Examples 1, 2, and 4 not containing a cyanate ester resin having two or more cyanate ester groups in one molecule tend to have a high viscosity at 25 ° C. and a viscosity increase rate. Therefore, coating is difficult and workability is low, and the working time and storage time are short, and the productivity may be low. Tg involved in heat resistance reliability also tends to be low. Further, Comparative Example 3 including the cyanate ester resin but not including the compound having a flux function is inferior in productivity and connection reliability because the solder ball wetting spread rate is poor. On the other hand, it can be seen that the resin compositions of Examples 1 to 5 can be expected to ensure high productivity and good heat resistance reliability while maintaining good workability and good connection reliability.

図1は、電子部品装置の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of an electronic component device. 図2は、電子部品装置の製造工程の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the manufacturing process of the electronic component device. 図3は、電子部品装置の製造工程の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of the manufacturing process of the electronic component device. 図4は、半田濡れ広がり率試験の一工程を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing one step of the solder wetting spread rate test. 図5は、半田濡れ広がり率試験の次の工程を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing the next step of the solder wetting spread rate test. 図6は、半田濡れ広がり率試験のさらに次の工程を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a further next step of the solder wetting spread rate test.

符号の説明Explanation of symbols

1 配線回路基板
2 接続用電極部
3 半導体素子
4 封止樹脂層
5 銅箔基板
6 半田ボール
7 液状封止樹脂組成物
DESCRIPTION OF SYMBOLS 1 Wiring circuit board 2 Electrode part 3 for connection 3 Semiconductor element 4 Sealing resin layer 5 Copper foil board | substrate 6 Solder ball 7 Liquid sealing resin composition

Claims (7)

1分子中に2個以上のシアネートエステル基を有するシアネートエステル樹脂を少なくとも含有し、かつ25℃における粘度が50Pa・s以下、25℃24時間放置後の25℃における粘度の上昇率が500%以下、260℃におけるゲルタイムが1〜120秒、硬化後のTgが100〜300℃、かつフラックス機能を有する化合物を含有することを特徴とする液状封止樹脂組成物。   Contains at least a cyanate ester resin having two or more cyanate ester groups in one molecule, has a viscosity at 25 ° C. of 50 Pa · s or less, and a viscosity increase rate at 25 ° C. after standing at 25 ° C. for 24 hours is 500% or less A liquid sealing resin composition comprising a compound having a gel time at 260 ° C. of 1 to 120 seconds, a Tg after curing of 100 to 300 ° C., and a flux function. 銅箔付き基板上に塗布された液状封止樹脂組成物上に半田ボールを載せ、260℃60秒加熱したときの前記半田ボールの銅箔上に対する濡れ広がり率が5%以上のフラックス活性を示す請求項1に記載の液状封止樹脂組成物。   A solder ball is placed on the liquid sealing resin composition applied onto the substrate with copper foil, and when the solder ball is heated at 260 ° C. for 60 seconds, the solder ball exhibits a flux activity of 5% or more on the copper foil. The liquid sealing resin composition according to claim 1. 前記シアネートエステル樹脂が、式(I)で示される常温で液状のシアネートエステル樹脂を少なくとも含有する請求項1および2のいずれかに記載の液状封止樹脂組成物。
The liquid sealing resin composition according to any one of claims 1 and 2, wherein the cyanate ester resin contains at least a cyanate ester resin that is liquid at normal temperature represented by the formula (I).
前記フラックス機能を有する化合物として、前記シアネートエステル樹脂100重量部に対して、1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物0.1〜100重量部を含有してなる請求項1〜3のいずれかに記載の液状封止樹脂組成物。   The compound having 0.1 to 100 parts by weight of a compound having at least two —OH functional groups (hydroxyl groups) per molecule as the compound having the flux function, based on 100 parts by weight of the cyanate ester resin. The liquid sealing resin composition in any one of 1-3. 前記1分子に−OH官能基(水酸基)を少なくとも2個含有する化合物がアルコール物質である請求項4に記載の液状封止樹脂組成物。   The liquid sealing resin composition according to claim 4, wherein the compound containing at least two —OH functional groups (hydroxyl groups) per molecule is an alcohol substance. 配線回路基板と電子部品素子とを、該基板及び素子の少なくともどちらかに予め配設された接続用電極部により電気的に接合させる電子部品装置の製造方法であって、
(a)前記配線回路基板上に、溶融温度は接続用電極部の溶融温度以下で、かつ揮発終了温度は接続用電極部の溶融温度より高い、フラックス機能を有する常温で固体状、または液状の化合物を含む請求項1〜5のいずれかに記載の液状封止樹脂組成物を塗布し、
(b)電子部品素子を前記(a)の液状封止樹脂組成物付き基板上に搭載し、前記液状封止樹脂組成物を押しのけた接続用電極部を介して前記素子と基板とを接触させることにより仮実装し、かつ素子と基板との間の空隙内に液状封止樹脂組成物を充填させ、
(c)リフロー炉、またはヒータ及び押圧部を備えた装置により、前記(b)の素子付き基板を加熱して、接続用電極部を溶融させて素子を基板上に電気的接合により実装させると同時に、前記液状封止樹脂組成物を硬化させることにより封止する電子部品装置の製造方法。
A method of manufacturing an electronic component device in which a printed circuit board and an electronic component element are electrically joined to each other by a connection electrode portion disposed in advance on at least one of the substrate and the element,
(A) On the wiring circuit board, the melting temperature is equal to or lower than the melting temperature of the connecting electrode portion, and the volatilization end temperature is higher than the melting temperature of the connecting electrode portion, which is solid or liquid at room temperature having a flux function. Applying the liquid sealing resin composition according to any one of claims 1 to 5, comprising a compound,
(B) The electronic component element is mounted on the substrate with the liquid sealing resin composition of (a), and the element and the substrate are brought into contact with each other through the connection electrode portion that has pushed the liquid sealing resin composition. By temporarily mounting and filling the liquid sealing resin composition in the gap between the element and the substrate,
(C) When the substrate with the element of (b) is heated by a reflow furnace or an apparatus having a heater and a pressing portion, the connecting electrode portion is melted, and the device is mounted on the substrate by electrical bonding. Simultaneously, the manufacturing method of the electronic component apparatus which seals by hardening the said liquid sealing resin composition.
請求項1〜5のいずれかに記載の液状封止樹脂組成物で封止されてなる電子部品装置。   An electronic component device sealed with the liquid sealing resin composition according to claim 1.
JP2004206370A 2004-07-13 2004-07-13 Liquid encapsulation resin composition, electronic component device and its manufacturing process Pending JP2006028265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206370A JP2006028265A (en) 2004-07-13 2004-07-13 Liquid encapsulation resin composition, electronic component device and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206370A JP2006028265A (en) 2004-07-13 2004-07-13 Liquid encapsulation resin composition, electronic component device and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006028265A true JP2006028265A (en) 2006-02-02

Family

ID=35895012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206370A Pending JP2006028265A (en) 2004-07-13 2004-07-13 Liquid encapsulation resin composition, electronic component device and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006028265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238680A (en) * 2006-03-06 2007-09-20 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device produced by using resin composition
JP2012124271A (en) * 2010-12-07 2012-06-28 Sekisui Chem Co Ltd Flip-chip resin sealing material and method of manufacturing semiconductor packaging body
JP2013010843A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Organic/inorganic hybrid material
WO2019230942A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil laminated plate, resin sheet, and printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238680A (en) * 2006-03-06 2007-09-20 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device produced by using resin composition
JP2012124271A (en) * 2010-12-07 2012-06-28 Sekisui Chem Co Ltd Flip-chip resin sealing material and method of manufacturing semiconductor packaging body
JP2013010843A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Organic/inorganic hybrid material
WO2019230942A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil laminated plate, resin sheet, and printed wiring board
CN112204108A (en) * 2018-06-01 2021-01-08 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JPWO2019230942A1 (en) * 2018-06-01 2021-07-15 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7322877B2 (en) 2018-06-01 2023-08-08 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TWI816807B (en) * 2018-06-01 2023-10-01 日商三菱瓦斯化學股份有限公司 Resin compositions, prepregs, metal foil-clad laminates, resin sheets, and printed wiring boards

Similar Documents

Publication Publication Date Title
US9431314B2 (en) Thermosetting resin composition for sealing packing of semiconductor, and semiconductor device
TWI552237B (en) A semiconductor wafer bonding method, a semiconductor wafer bonding method, a semiconductor device manufacturing method, and a semiconductor device
WO2005108459A1 (en) Liquid epoxy resin composition
JP6800140B2 (en) Flip-chip mount manufacturing method, flip-chip mount, and pre-supplied underfill resin composition
JP3971995B2 (en) Electronic component equipment
JP2007051184A (en) Thermosetting epoxy resin composition and semiconductor device produced by using the same
JP2007189210A (en) Method of assembling flip-chip-type semiconductor device and semiconductor device produced by method
WO2010084858A1 (en) Surface mounting method for component to be mounted, structure with mounted component obtained by the method, and liquid epoxy resin composition for underfill used in the method
JP3999840B2 (en) Resin sheet for sealing
JP4417122B2 (en) Resin composition for sheet-like semiconductor encapsulation
JP2002121358A (en) Resin composition for thermosetting liquid sealing, assembling technique of semiconductor element and semiconductor device
JP2009024099A (en) Liquid epoxy resin composition and semiconductor device
JPWO2018225800A1 (en) Film adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP6179247B2 (en) Electronic component device manufacturing method and electronic component device
JP2003212964A (en) Liquid sealing resin composition, method for assembling semiconductor element, and semiconductor device
JP2003128874A (en) Liquid resin composition, manufacturing method of semiconductor device and semiconductor device
JP5493327B2 (en) Resin composition for sealing filling, semiconductor device and method for manufacturing the same
JP2003301026A (en) Liquid sealing resin composition, semiconductor device and its manufacturing method
JP2006028265A (en) Liquid encapsulation resin composition, electronic component device and its manufacturing process
JP5115900B2 (en) Liquid resin composition and semiconductor device using the same
JP2012212922A (en) Formation method of solder bump, solder bump, semiconductor device and manufacturing method therefor
JP4940768B2 (en) Liquid resin composition and method for manufacturing semiconductor device
JP2008198745A (en) Solder bump forming method, solder bump, semiconductor device and manufacturing method of semiconductor device
JP4655501B2 (en) Liquid encapsulating resin composition, electronic component device, and manufacturing method thereof
JP2005206664A (en) Semiconductor sealing resin composition