JP2006028125A - Method for recovering aminonitrile - Google Patents

Method for recovering aminonitrile Download PDF

Info

Publication number
JP2006028125A
JP2006028125A JP2004211977A JP2004211977A JP2006028125A JP 2006028125 A JP2006028125 A JP 2006028125A JP 2004211977 A JP2004211977 A JP 2004211977A JP 2004211977 A JP2004211977 A JP 2004211977A JP 2006028125 A JP2006028125 A JP 2006028125A
Authority
JP
Japan
Prior art keywords
aminonitrile
ammonia
solution
recovering
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004211977A
Other languages
Japanese (ja)
Other versions
JP2006028125A5 (en
JP4522772B2 (en
Inventor
Nobutaka Kokubu
信孝 國分
Takayuki Saito
隆幸 斉藤
Haruo Sakai
春夫 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004211977A priority Critical patent/JP4522772B2/en
Publication of JP2006028125A publication Critical patent/JP2006028125A/en
Publication of JP2006028125A5 publication Critical patent/JP2006028125A5/ja
Application granted granted Critical
Publication of JP4522772B2 publication Critical patent/JP4522772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for recovering aminonitrile obtained by Strecker reaction, and the like, from a reaction liquid with an industrially easy means in high yield. <P>SOLUTION: The method for the recovery of aminonitrile comprises the addition of an inorganic salt to an aqueous solution of aminonitrile containing ammonia, the removal of ammonia by distillation and the separation of the aminonitrile phase. The amount of the inorganic salt is preferably 10-40 mass% based on the amount of water in the aqueous solution of aminonitrile containing ammonia, and the molar ratio of the aminonitrile to the ammonia in the aminonitrile aqueous solution containing ammonia is preferably 1:1-1:10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学活性アミノ酸の前駆体であるアミノニトリルの回収方法に関する。光学活性アミノ酸は医薬品などの出発原料として広く利用されている。例えば、メトキシカルボニル−L−tert−ロイシンは医薬品の製造中間体として有用な非天然型アミノ酸である。 The present invention relates to a method for recovering an amino nitrile which is a precursor of an optically active amino acid. Optically active amino acids are widely used as starting materials for pharmaceuticals and the like. For example, methoxycarbonyl-L-tert-leucine is a non-natural amino acid useful as a pharmaceutical intermediate.

これまでにアミノニトリルを回収する回収方法として、以下のものが提案されている。例えば、特許文献1では、アミノニトリル水溶液中のアンモニアを鉱酸によりアンモニウム塩とし、このアンモニウム塩によりアミノニトリルを飽和させ、アミノニトリルを飽和した水相と相分離させる際、低級アルコールなどの有機溶剤によりアミノニトリルを抽出させる方法が開示されている。しかしこの方法では、アンモニウム塩の塩析効果が低いばかりか、アミノニトリルが溶解した低級アルコールが一部水相側に溶け込み、回収後の収率は低下してしまうという欠点がある。さらに分相後、用いた有機溶剤を完全に留去させ、工業的には精製リサイクルさせなければならず、操作の煩雑さやコスト面から見ても工業的に不利なため好ましくない。特許文献2、および特許文献3では、アミノニトリル水溶液中のアンモニアを主体とする低沸物を系外へ蒸留法により留去することで、アミノニトリルを回収する方法が開示されている。しかし、この蒸留法でも、相当量のアミノニトリルが水相に溶け込んでおり収率を低下させるうえ、アンモニアを留去の際には高温に加熱するか、もしくは高真空に減圧する必要があるため、副反応による大幅な収率低下や高真空系蒸留設備の設置が必要になるなど、工業的回収法としては多くの欠点を有している。 The following have been proposed as a recovery method for recovering aminonitrile. For example, in Patent Document 1, when ammonia in an amino nitrile aqueous solution is converted to an ammonium salt with a mineral acid, the amino nitrile is saturated with the ammonium salt, and phase separation is performed with the saturated aqueous phase of the amino nitrile, an organic solvent such as a lower alcohol is used. Discloses a method for extracting aminonitrile. However, this method has a disadvantage that not only the salting out effect of the ammonium salt is low, but also the lower alcohol in which the aminonitrile is dissolved partially dissolves in the aqueous phase, and the yield after recovery is lowered. Further, after the phase separation, the used organic solvent must be completely distilled off, and it must be purified and recycled industrially, which is not preferable because it is industrially disadvantageous from the viewpoint of operational complexity and cost. Patent Document 2 and Patent Document 3 disclose a method for recovering aminonitrile by distilling off a low-boiling substance mainly composed of ammonia in an aminonitrile aqueous solution out of the system by a distillation method. However, even in this distillation method, a considerable amount of aminonitrile is dissolved in the aqueous phase, resulting in a decrease in yield, and it is necessary to heat the ammonia to a high temperature or to reduce the pressure to a high vacuum when distilling off the ammonia. However, it has many disadvantages as an industrial recovery method, such as a significant reduction in yield due to side reactions and the need to install a high-vacuum distillation facility.

特開昭49−14423号公報JP-A-49-14423 特開昭54−88219号公報JP 54-88219 A 特開昭54−88221号公報Japanese Patent Laid-Open No. 54-88221

前述のように従来技術である系内アンモニアを無機塩に変換した塩析効果と低級アルコール類抽出での処理、あるいは物理的なアンモニア留去のみでは、どちらの方法も工業的に簡便且つ高収率にアミノニトリルを回収するには限界があり、アミノ酸合成工業の重要な問題となっていた。本発明はこのような従来からの問題点を解決するためになされたものであり、アミノニトリルを工業的に簡便な手段で且つ高収率で回収するための新規回収方法を提供することである。 As described above, both methods are industrially simple and high yielding by the salting out effect obtained by converting ammonia in the system into an inorganic salt and the treatment by extraction with lower alcohols or by physical distillation of ammonia. However, there is a limit to recovering the aminonitrile, which has been an important problem in the amino acid synthesis industry. The present invention has been made to solve such conventional problems, and is to provide a novel recovery method for recovering aminonitrile in an industrially simple means and in a high yield. .

本発明者らは前記の課題を解決するため鋭意研究を行った結果、無機塩存在下で、アミノニトリル水溶液中に含まれるアンモニアを留去することにより、水溶液中でのアミノニトリルの塩析効果が著しく向上することを見出した。この知見を利用することにより、効率的に高収率のアミノニトリルを回収する本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found out the salting-out effect of aminonitrile in an aqueous solution by distilling off ammonia contained in the aminonitrile aqueous solution in the presence of an inorganic salt. Has been found to be significantly improved. By utilizing this knowledge, the present invention for efficiently recovering a high yield of aminonitrile was completed.

即ち本発明は、アンモニアを含むアミノニトリル水溶液に、無機塩を添加した後、アンモニアを留去し、次いでアミノニトリル相を分離することを特徴とするアミノニトリルの回収方法に関する。 That is, the present invention relates to a method for recovering an aminonitrile characterized by adding an inorganic salt to an aqueous aminonitrile solution containing ammonia, distilling off the ammonia, and then separating the aminonitrile phase.

アンモニアを含むアミノニトリル水溶液に無機塩の添加と、アンモニアの留去を行うことにより著しく塩析効果を向上させることが可能となり、アミノニトリル相を分離するだけで、簡便な操作で高収率にアミノニトリルを回収することが出来る。   It is possible to significantly improve the salting-out effect by adding an inorganic salt to an aqueous aminonitrile solution containing ammonia and distilling off the ammonia. By simply separating the aminonitrile phase, a high yield can be achieved with a simple operation. Aminonitrile can be recovered.

以下、本発明をさらに具体的に説明する。
本発明の回収方法で用いるアミノニトリル水溶液は、アンモニア含むものであれば如何なる方法で得られたものでも使用可能であるが、通常はアルデヒドとシアン化水素を出発原料として用い、得られたシアノヒドリンのヒドロキシル基をアンモニアによりアミノ基に置換するか、あるいはアルデヒド、シアン化水素、およびアンモニアを水中で一括反応させても得ることができる。これらは一般にStrecker反応と呼ばれるアミノニトリル合成技術である。このようにして得られた反応液であるアミノニトリル水溶液中には未反応原料のアンモニアおよび若干量ではあるが中間体のシアノヒドリンなどが含まれる。アミノニトリル水溶液中のアンモニア含量に関しては特に限定されないが、アミノニトリル含量とアンモニア含量のモル比が1:1〜10の範囲、好ましくは1:2〜6の範囲を選択すると好都合である。モル比1未満では、シアノヒドリンのアミノ化反応の平行が逆反応に傾きアミノニトリル収量が低下してしまう恐れがある。またモル比10を超えるとアンモニアの留去に時間を要し工業的に好ましくなくなる恐れがある。
Hereinafter, the present invention will be described more specifically.
The aqueous amino nitrile solution used in the recovery method of the present invention may be any one obtained by any method as long as it contains ammonia. Usually, an aldehyde and hydrogen cyanide are used as starting materials, and the hydroxyl group of the obtained cyanohydrin is used. Can be obtained by substituting an amino group with ammonia, or by collectively reacting aldehyde, hydrogen cyanide, and ammonia in water. These are aminonitrile synthesis techniques generally referred to as the Strecker reaction. The aminonitrile aqueous solution, which is the reaction solution thus obtained, contains unreacted raw material ammonia and a slight amount of intermediate cyanohydrin. The ammonia content in the aminonitrile aqueous solution is not particularly limited, but it is convenient to select a molar ratio of the aminonitrile content to the ammonia content in the range of 1: 1 to 10, preferably 1: 2 to 6. If the molar ratio is less than 1, the amination reaction of cyanohydrin tends to be reversed and the aminonitrile yield may be reduced. On the other hand, when the molar ratio exceeds 10, it takes time to distill off ammonia, which may be industrially unfavorable.

本発明でアンモニアを含むアミノニトリル水溶液に添加する無機塩としては、アミノニトリル水溶液に溶解しやすく、塩析効果が高いものが好ましい。具体的には、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化マグネシウム、および硫化カルシウムなどが挙げられるが、その中でも特に炭酸カリウムが好ましい。 As the inorganic salt added to the aminonitrile aqueous solution containing ammonia in the present invention, those which are easily dissolved in the aminonitrile aqueous solution and have a high salting-out effect are preferable. Specifically, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, lithium sulfide, sodium sulfide, potassium sulfide, magnesium sulfide, and calcium sulfide Among them, potassium carbonate is particularly preferable.

無機塩の添加方法としては一括あるいは分割で添加しても良い。無機塩の添加量は、系中の水分量に対して10〜40質量%の範囲、好ましくは20〜30質量%の範囲に選択すると好都合である。無機塩を添加することで、系が3相に相分離する。上層、中層、および下層はそれぞれ、アミノニトリル相、アンモニア水相、および無機塩を含む水相から主になっている。40質量%を超えるとアミノニトリルは完全な飽和状態とはなるが、無機塩は水相に溶け切らず底に沈殿してしまい、工業的操作が行いにくくなる場合もある。10質量%未満ではアミノニトリルは完全な飽和状態には達せず、アミノニトリルの塩析効果が低下する傾向がある。更に回収に時間を要し、回収後の収率も低下する場合がある。 As an addition method of the inorganic salt, it may be added all at once or dividedly. The amount of the inorganic salt added is conveniently selected in the range of 10 to 40% by mass, preferably in the range of 20 to 30% by mass with respect to the amount of water in the system. By adding an inorganic salt, the system is phase-separated into three phases. Each of the upper layer, the middle layer, and the lower layer mainly comprises an aminonitrile phase, an aqueous ammonia phase, and an aqueous phase containing an inorganic salt. If it exceeds 40% by mass, the amino nitrile becomes completely saturated, but the inorganic salt does not completely dissolve in the aqueous phase but precipitates at the bottom, which may make it difficult to perform industrial operations. If the amount is less than 10% by mass, the amino nitrile does not reach a completely saturated state, and the salting out effect of the aminonitrile tends to decrease. Furthermore, it takes time for the recovery, and the yield after the recovery may also decrease.

本発明の方法では、アミノニトリル水溶液中のアンモニアは、無機塩を添加した後に留去する。留去後のアミノニトリル中に含まれるアンモニア含量は、総質量に対して10質量%以下、0.1質量%以上の範囲、好ましくは8質量%以下、0.5質量%以上、さらに好ましくは6質量%以下、0.7質量%以上の範囲にすると操作上好都合である。この範囲であれば、3相に分離していた処理液が2相へと変化しやすい。すなわち、アンモニアを留去することで、塩析効果がほとんど見られない中層のアンモニア水相に溶け込んでいたアミノニトリルがアンモニア水相の減少、消滅により、上層のアミノニトリル相に戻る。これにより、分相後に回収したアミノニトリルの回収率が向上する。アンモニア含量が10質量%を超えると、アミノニトリルはアンモニア水相に溶け残っており、溶液の状態は3相のままの状態である。そのため、アミノニトリル回収後の収率は大きく向上しない場合がある。   In the method of the present invention, ammonia in the aminonitrile aqueous solution is distilled off after the inorganic salt is added. The ammonia content contained in the aminonitrile after the distillation is in the range of 10% by mass or less and 0.1% by mass or more, preferably 8% by mass or less, more preferably 0.5% by mass or more, more preferably based on the total mass. When it is in the range of 6% by mass or less and 0.7% by mass or more, it is convenient in operation. If it is this range, the process liquid isolate | separated into 3 phases will change easily to 2 phases. That is, by distilling off the ammonia, the aminonitrile dissolved in the middle aqueous ammonia phase, where the salting-out effect is hardly observed, returns to the upper aminonitrile phase due to the decrease or disappearance of the aqueous ammonia phase. Thereby, the recovery rate of the aminonitrile recovered after phase separation is improved. If the ammonia content exceeds 10% by mass, the amino nitrile remains undissolved in the aqueous ammonia phase, and the solution remains in the three-phase state. Therefore, the yield after aminonitrile recovery may not be greatly improved.

アンモニア留去時の温度は、好ましくは0〜50℃の範囲、より好ましくは20〜40℃の範囲に選択するのが良い。0℃未満では、反応液が凍ってしまい、取扱いが煩雑になることがある。50℃を超えると、アンモニア中でのアミノニトリルの安定性が低下することがあり、アミノニトリル回収後の収率に影響する恐れがある。 The temperature at the time of distilling off ammonia is preferably selected in the range of 0 to 50 ° C, more preferably in the range of 20 to 40 ° C. If it is less than 0 degreeC, a reaction liquid will freeze and handling may become complicated. If it exceeds 50 ° C., the stability of the aminonitrile in ammonia may decrease, which may affect the yield after recovery of the aminonitrile.

アンモニア留去時の圧力は、好ましくは50〜760Torrの範囲、より好ましくは100〜600Torrの範囲に選択するのが良い。   The pressure at the time of distilling off ammonia is preferably selected in the range of 50 to 760 Torr, more preferably in the range of 100 to 600 Torr.

以上のように、無機塩の添加及びアンモニア分の留去の操作を行った後、生成したアミノニトリル相を分離することにより、高収率でアミノニトリルを回収することが出来る。アミノニトリル相の相分離方法は、静置後に2相分離等の通常の相分離操作を適用すればよい。 As described above, the amino nitrile can be recovered in a high yield by separating the produced aminonitrile phase after the operation of adding the inorganic salt and distilling off the ammonia content. As the phase separation method of the amino nitrile phase, a normal phase separation operation such as two-phase separation may be applied after standing.

本発明の方法で用いるアミノニトリルとしては特に限定されるものではないが、代表例としては、tert−ロイシンニトリル、ロイシンニトリル、アラニンニトリル、フェニルアラニンニトリル、p−クロロフェニルアラニンニトリル、およびp−ヒドロキシフェニルアラニンニトリルなどがある。その中でも特にtert−ロイシンニトリルが最も好ましく、適している。   The amino nitrile used in the method of the present invention is not particularly limited, but representative examples include tert-leucine nitrile, leucine nitrile, alanine nitrile, phenylalanine nitrile, p-chlorophenylalanine nitrile, and p-hydroxyphenylalanine nitrile. and so on. Of these, tert-leucine nitrile is most preferred and suitable.

以下、実施例などの具体例を挙げて、本発明をより具体的に説明する。下記する実施例は、何れも本発明の最良の一例ではあるものの、本発明はこれら実施例により、限定を受けるものではない。 Hereinafter, the present invention will be described more specifically with reference to specific examples such as examples. The following examples are all the best examples of the present invention, but the present invention is not limited by these examples.

各実施例、比較例において、アンモニアの分析方法であるホルモール法分析、およびアンモニア留去後の溶液中のアミノニトリル純度の分析法であるガスクロマトグラフィー(以下GCと略す)は、それぞれ以下に示す分析方法および分析条件により測定した。
(ホルモール分析法)
以下の手順に従い実施した。
100mlメスフラスコにサンプルであるアミノニトリル溶液を1.0g程度秤り取り、純粋で100倍に希釈する。300mlビーカーに純水100mlを秤り取り、先ほど希釈したアミノニトリル水溶液を10ml添加する。硫酸および水酸化ナトリウムでpHを7.0に調整する。予めpHを7.0に調整した37%ホルマリン水溶液を40ml添加する。1/10N水酸化ナトリウム水溶液でpHが7.0になるまで滴定する。このようにして得られた滴定値から、(1)式によりアンモニア量を算出した。
アンモニア量(重量%)
=(0.1(N)×滴定量(ml)×f×17.03)/サンプル量(mg)×100 (1)
(fは1/10N水酸化ナトリウム水溶液のファクターを示す。)
(GC分析条件)
カラム: GLサイエンス社製 TC−1
0.53mm×30m:df=1.5μm
温度: 50→200℃
キャリアーガス: H2 100kPa
検出器: 島津製作所社製 GC−1700AF
FID T=200℃
サンプル量: 2μL
In each example and comparative example, the formol method analysis, which is an analysis method of ammonia, and the gas chromatography (hereinafter abbreviated as GC), which is the analysis method of aminonitrile purity in the solution after the ammonia is distilled off, are shown below. It was measured according to the analysis method and analysis conditions.
(Formol analysis method)
The following procedure was followed.
About 1.0 g of the sample amino nitrile solution is weighed into a 100 ml volumetric flask and diluted pure 100 times. 100 ml of pure water is weighed into a 300 ml beaker, and 10 ml of the aminonitrile aqueous solution diluted previously is added. Adjust the pH to 7.0 with sulfuric acid and sodium hydroxide. 40 ml of 37% formalin aqueous solution whose pH is adjusted to 7.0 in advance is added. Titrate with 1 / 10N aqueous sodium hydroxide until pH is 7.0. From the titration value thus obtained, the amount of ammonia was calculated by the equation (1).
Ammonia amount (wt%)
= (0.1 (N) x titer (ml) x f x 17.03) / sample amount (mg) x 100 (1)
(F represents a factor of 1 / 10N sodium hydroxide aqueous solution.)
(GC analysis conditions)
Column: TC-1 manufactured by GL Sciences
0.53 mm × 30 m: df = 1.5 μm
Temperature: 50 → 200 ° C
Carrier gas: H2 100 kPa
Detector: GC-1700AF manufactured by Shimadzu Corporation
FID T = 200 ℃
Sample volume: 2 μL

実施例1
温度センサー、コンデンサー、および減圧コック弁を備えた3L容セパラブルフラスコに25質量%アンモニア水溶液(和光純薬工業社製)1200g(17.6モル、16.7モル%、15.5質量%/溶液)を秤り取り、温度を15℃に制御した。これに予め合成した94.9質量%ピバルアルデヒドシアノヒドリン溶液420g(3.52モル、83.3モル%、以下PVACHと略す)を添加し、40℃で10時間攪拌することで、tert−ロイシンアミノニトリル(以下TLNと略す)を合成した。
攪拌終了後、上記溶液を冷浴で15℃まで冷却し、炭酸カリウム(和光純薬工業社製)321g(2.32モル、25質量%/水分量)を添加した。添加後、温度を30℃、圧力を500Torrに制御し、3時間攪拌することでアンモニアを留去した。アンモニア分析により、アンモニア量を測定した。この溶液を3L容分液ロートに移した後、下層の水相と上層のTLN相を分相し、TLN溶液S−1を得た。得られたTLN溶液をカールフィッシャー水分測定装置(三菱化学社製、MCI MOISTUREMETER MODEL CA−03)により水分量を、GC(島津製作所社製、GAS CHROMATOGRAPH GC−1700AF)によりTLNの面積百分率を測定し、PVACHに対する収率を算出した。残アンモニア量およびTLNの収率を表1に示した。
Example 1
In a 3 L separable flask equipped with a temperature sensor, a condenser, and a pressure reducing cock valve, 1200 g (17.6 mol, 16.7 mol%, 15.5 wt% / 25 wt% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, Ltd.) The solution was weighed and the temperature was controlled at 15 ° C. To this was added 420 g (3.52 mol, 83.3 mol%, hereinafter abbreviated as PVACH) of a 94.9% by mass pivalaldehyde cyanohydrin solution synthesized in advance, and the mixture was stirred at 40 ° C. for 10 hours, thereby tert-leucine. Aminonitrile (hereinafter abbreviated as TLN) was synthesized.
After completion of the stirring, the above solution was cooled to 15 ° C. with a cold bath, and 321 g (2.32 mol, 25 mass% / water content) of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After the addition, the temperature was controlled at 30 ° C. and the pressure at 500 Torr, and the ammonia was distilled off by stirring for 3 hours. The amount of ammonia was measured by ammonia analysis. After this solution was transferred to a 3 L separatory funnel, the lower aqueous phase and the upper TLN phase were separated to obtain a TLN solution S-1. For the obtained TLN solution, the moisture content was measured by a Karl Fischer moisture measuring device (MCI MOISTUREMETER MODEL CA-03 manufactured by Mitsubishi Chemical Corporation), and the area percentage of TLN was measured by GC (Shimadzu Corporation, GAS CHROMATOGRAPH GC-1700AF). The yield based on PVACH was calculated. The amount of residual ammonia and the yield of TLN are shown in Table 1.

実施例2
実施例1のアンモニア留去時の温度30℃、圧力500Torrを温度40℃、圧力600Torrに変えた点以外は、実施例1に記載と同様な操作を行い、TLN溶液S−2を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。
Example 2
A TLN solution S-2 was obtained in the same manner as described in Example 1, except that the temperature at the time of ammonia distillation in Example 1 was changed to 30 ° C. and the pressure 500 Torr was changed to 40 ° C. and the pressure 600 Torr. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例3
実施例2のアンモニア留去時の温度を40℃から50℃に変えた点以外は、実施例2に記載と同様な操作を行い、TLN溶液S−3を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。
Example 3
TLN solution S-3 was obtained in the same manner as described in Example 2, except that the temperature at the time of distilling off ammonia in Example 2 was changed from 40 ° C. to 50 ° C. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例4
実施例1の炭酸カリウムの添加量を321g(25質量%/水分量)から514g(40質量%/水分量)に変えた点以外は、実施例1に記載と同様な操作を行い、TLN溶液S−4を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。
Example 4
The same operation as described in Example 1 was carried out except that the amount of potassium carbonate added in Example 1 was changed from 321 g (25% by mass / water content) to 514 g (40% by mass / water content). S-4 was obtained. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例5
温度センサー、コンデンサー、および減圧コック弁を備えた3L容セパラブルフラスコに25質量%アンモニア水溶液(和光純薬工業社製)1918g(28.2モル、11.1モル%、16.9質量%/溶液)を秤り取り、温度を15℃に制御した。これに予め合成した94.9質量%PVACH溶液420g(3.52モル、88.9モル%)を添加し、40℃で10時間攪拌することで、TLNを合成した。
攪拌終了後、上記溶液を冷浴で15℃まで冷却し、炭酸カリウム(和光純薬工業社製)501g(3.62モル、25質量%/水分量)を添加した。添加後、温度を30℃、圧力を500Torrに制御し、10時間攪拌することでアンモニアを留去した。アンモニア分析により、アンモニア量を測定した。この溶液を3L容分液ロートに移した後、下層の水相と上層のTLN相を分相し、TLN溶液S−5を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。
Example 5
In a 3 L separable flask equipped with a temperature sensor, a condenser, and a pressure reducing cock valve, 1918 g (28.2 mol, 11.1 mol%, 16.9 wt% / The solution was weighed and the temperature was controlled at 15 ° C. TLN was synthesized by adding 420 g (3.52 mol, 88.9 mol%) of a 94.9% by mass PVACH solution synthesized beforehand and stirring at 40 ° C. for 10 hours.
After completion of the stirring, the above solution was cooled to 15 ° C. in a cold bath, and 501 g (3.62 mol, 25 mass% / water content) of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After the addition, the temperature was controlled at 30 ° C. and the pressure at 500 Torr, and the ammonia was distilled off by stirring for 10 hours. The amount of ammonia was measured by ammonia analysis. After this solution was transferred to a 3 L separatory funnel, the lower aqueous phase and the upper TLN phase were separated to obtain a TLN solution S-5. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例1
温度センサー、コンデンサーを備えた3L容セパラブルフラスコに25質量%アンモニア水溶液(和光純薬工業社製)1200g(17.6モル、16.7モル%、15.5質量%/溶液)を秤り取り、温度を15℃に制御した。これに予め合成した94.9質量%PVACH溶液420g(3.52モル、83.3モル%)を添加し、40℃で10時間攪拌することで、TLNを合成した。
攪拌終了後、上記溶液を冷浴で15℃まで冷却し、炭酸カリウム(和光純薬工業社製)321g(2.32モル、25質量%/水分量)を添加した。添加後、アンモニア分析によりアンモニア量を測定した。この溶液を3L容分液ロートに移した後、下層の水相と上層のTLN相を分相し、TLN溶液N−1を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。尚、この時の溶液の状態は3相分離のままであった。
Comparative Example 1
1200 g (17.6 mol, 16.7 mol%, 15.5 wt% / solution) of 25 mass% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a 3 L separable flask equipped with a temperature sensor and a condenser. And the temperature was controlled at 15 ° C. TLN was synthesized by adding 420 g (3.52 mol, 83.3 mol%) of a 94.9% by mass PVACH solution synthesized in advance and stirring at 40 ° C. for 10 hours.
After completion of the stirring, the above solution was cooled to 15 ° C. with a cold bath, and 321 g (2.32 mol, 25 mass% / water content) of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After the addition, the amount of ammonia was measured by ammonia analysis. After this solution was transferred to a 3 L separatory funnel, the lower aqueous phase and the upper TLN phase were separated to obtain a TLN solution N-1. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1. In addition, the state of the solution at this time remained three-phase separation.

比較例2
温度センサー、コンデンサーを備えた3L容セパラブルフラスコに25質量%アンモニア水溶液(和光純薬工業社製)1200g(17.6モル、16.7モル%、15.5質量%/溶液)を秤り取り、温度を15℃に制御した。これに予め合成した94.9質量%PVACH溶液420g(3.52モル、83.3モル%)を添加し、40℃で10時間攪拌することで、TLNを合成した。
攪拌終了後、上記溶液の温度を30℃、圧力を500Torrに制御し、10時間攪拌することでアンモニアを留去した。アンモニア分析によりアンモニア量を測定した。この溶液を3L容分液ロートに移した後、下層の水相と上層のTLN相を分相し、TLN溶液N−2を得た。得られたTLN溶液について、実施例1と同様の測定を行い、その結果を表1に示した。
Comparative Example 2
1200 g (17.6 mol, 16.7 mol%, 15.5 wt% / solution) of 25 mass% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a 3 L separable flask equipped with a temperature sensor and a condenser. And the temperature was controlled at 15 ° C. TLN was synthesized by adding 420 g (3.52 mol, 83.3 mol%) of a 94.9% by mass PVACH solution synthesized in advance and stirring at 40 ° C. for 10 hours.
After completion of the stirring, the temperature of the solution was controlled at 30 ° C., the pressure was controlled at 500 Torr, and the ammonia was distilled off by stirring for 10 hours. The amount of ammonia was measured by ammonia analysis. After this solution was transferred to a 3 L separatory funnel, the lower aqueous phase and the upper TLN phase were separated to obtain a TLN solution N-2. The obtained TLN solution was measured in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2006028125
Figure 2006028125

Claims (6)

アンモニアを含むアミノニトリル水溶液に、無機塩を添加した後、アンモニアを留去し、次いでアミノニトリル相を分離することを特徴とするアミノニトリルの回収方法。 A method for recovering an aminonitrile, comprising adding an inorganic salt to an aminonitrile aqueous solution containing ammonia, distilling off the ammonia, and then separating the aminonitrile phase. 無機塩の添加量がアンモニアを含むアミノニトリル水溶液中の水分量に対して10〜40質量%であることを特徴とする請求項1記載のアミノニトリルの回収方法。 The method for recovering an aminonitrile according to claim 1, wherein the amount of the inorganic salt added is 10 to 40% by mass with respect to the amount of water in the aminonitrile aqueous solution containing ammonia. アンモニアを含むアミノニトリル水溶液中のアミノニトリル含量とアンモニア含量のモル比が1:1〜10であることを特徴とする請求項1記載のアミノニトリルの回収方法。 The method for recovering an aminonitrile according to claim 1, wherein the molar ratio of the aminonitrile content to the ammonia content in the aminonitrile aqueous solution containing ammonia is 1: 1 to 10. アンモニアの留去を、アンモニア含量が総質量に対して10質量%以下になるまで行うことを特徴とする請求項1記載のアミノニトリルの回収方法。 The method for recovering an aminonitrile according to claim 1, wherein the ammonia is distilled off until the ammonia content becomes 10% by mass or less based on the total mass. 0〜50℃の温度でアンモニアを留去することを特徴とする請求項1記載のアミノニトリルの回収方法。 The method for recovering an aminonitrile according to claim 1, wherein ammonia is distilled off at a temperature of 0 to 50 ° C. 50〜760Torrの圧力でアンモニアを留去することを特徴とする請求項1記載のアミノニトリルの回収方法。
The method for recovering an aminonitrile according to claim 1, wherein ammonia is distilled off at a pressure of 50 to 760 Torr.
JP2004211977A 2004-07-20 2004-07-20 Aminonitrile recovery method Expired - Fee Related JP4522772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211977A JP4522772B2 (en) 2004-07-20 2004-07-20 Aminonitrile recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211977A JP4522772B2 (en) 2004-07-20 2004-07-20 Aminonitrile recovery method

Publications (3)

Publication Number Publication Date
JP2006028125A true JP2006028125A (en) 2006-02-02
JP2006028125A5 JP2006028125A5 (en) 2007-08-09
JP4522772B2 JP4522772B2 (en) 2010-08-11

Family

ID=35894896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211977A Expired - Fee Related JP4522772B2 (en) 2004-07-20 2004-07-20 Aminonitrile recovery method

Country Status (1)

Country Link
JP (1) JP4522772B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914423A (en) * 1972-06-10 1974-02-07
JPS5488219A (en) * 1977-12-19 1979-07-13 Sumitomo Chem Co Ltd Purification of aminonitrile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914423A (en) * 1972-06-10 1974-02-07
JPS5488219A (en) * 1977-12-19 1979-07-13 Sumitomo Chem Co Ltd Purification of aminonitrile

Also Published As

Publication number Publication date
JP4522772B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
CN101205160B (en) Continuous method for decarboxylation of carboxylic acid
AU2015224414B2 (en) Refining method of organic amine
JP4522772B2 (en) Aminonitrile recovery method
CA3016962A1 (en) Industrial process for the preparation of (5s,10s)-10-benzyl-16-methyl-11,14,18-trioxo-15,17,19-trioxa-2,7,8-trithia-12-azahenicosan-5-aminium (e)-3-carboxyacrylate salt
JP2010037286A (en) Method for producing n-propyl acetate
CN108633276A (en) The manufacturing method of five thia cycloheptane of 1,2,3,5,6-
JP4887720B2 (en) Process for producing optically active fluorinated benzyl alcohol
CN1262535C (en) Method ofr synthesizing S-(1)-2.2 dimethylcyclopropane formamide
US6407281B1 (en) Process for producing optically active cysteine derivatives
JPH0717941A (en) Production of n-alkoxycarbonylamino acid
JP5122871B2 (en) Process for producing optically active N-benzyloxycarbonylamino acid and diastereomeric salt
JP2004175703A (en) METHOD FOR PRODUCING N-ALKOXYCARBONYL-tert-LEUCINE
JP4873207B2 (en) Method for purifying optically active carboxylic acid chloride
JPH1129544A (en) Production of n-alkoxycarbonylated, n-alkenyloxycarbonylated or n-arylalkoxycarbonylated amino acids
JP4851668B2 (en) Method for producing dialdehyde monoethylene acetal aminonitrile
JP4129765B2 (en) Method for producing racemic aminopentanenitrile
US7041853B2 (en) Process for producing 4-bromothioanisole
JP2001114744A (en) Method for producing n-hydrocarbon oxycarbonylamino acid
JP2000344756A (en) Purification of oxazole
JP2010100651A (en) Process for production of 3-hydroxytetrahydrofuran
KR0167723B1 (en) Purification of hydroxy isobutylic acid
JP2000033201A (en) Recovery of tetrahydrofuran
EP3510016A1 (en) Process for the production of n-boc-2-amino-3,3-dimethylbutyric acid
JPH0820569A (en) Method for purifying t-butyl cyanoacetate
JP2003104917A (en) METHOD OF PRODUCTION FOR m-DIALKYLBENZENE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees