JP2006027930A - Black-colored quartz glass, its producing method, and member using the quartz glass - Google Patents

Black-colored quartz glass, its producing method, and member using the quartz glass Download PDF

Info

Publication number
JP2006027930A
JP2006027930A JP2004206457A JP2004206457A JP2006027930A JP 2006027930 A JP2006027930 A JP 2006027930A JP 2004206457 A JP2004206457 A JP 2004206457A JP 2004206457 A JP2004206457 A JP 2004206457A JP 2006027930 A JP2006027930 A JP 2006027930A
Authority
JP
Japan
Prior art keywords
quartz glass
black
silica
black quartz
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206457A
Other languages
Japanese (ja)
Inventor
Shigehisa Todoko
茂久 戸床
Masahito Uchida
雅人 内田
Tsutomu Takahata
努 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004206457A priority Critical patent/JP2006027930A/en
Publication of JP2006027930A publication Critical patent/JP2006027930A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly light-shielding black-colored quartz glass which is substantially free from metal impurities and has mechanical and thermal characteristics equivalent to those of transparent quartz glass, in other words, bending strength, hardness, coefficient of thermal expansion, thermal conductivity and the like, equivalent to those of the transparent quartz glass; and to provide a method for producing the same. <P>SOLUTION: The black-colored quartz glass is silica glass in which crystalline carbon fine particles having an average diameter of 0.05-1 μm are dispersed in an amount of 0.05-2 wt.% and which has a density of 2.15-2.21 g/cm<SP>3</SP>. The black-colored quartz glass has a transmittance in a wavelength region of 200-10,000 nm of ≤1% when its thickness is 1 mm. The black-colored quartz glass is obtained by mixing an amorphous silica powder having an average diameter of 0.1-1 μm and containing hydroxy group in a content of ≥50 ppm and the crystalline carbon fine particles having an average diameter of 0.05-1 μm so that the addition amount of the carbon fine particles to the weight of the silica powder becomes 0.05-2 wt.%, then forming the resulting mixture, and sintering the formed body at 1,100-1,500°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は黒色石英ガラスに関するものである。また、その黒色石英ガラスを用いた分光セル等の光学部品、半導体製造装置用の遮光部材、赤外線熱吸収/蓄熱部材に関するものである。   The present invention relates to black quartz glass. The present invention also relates to an optical component such as a spectroscopic cell using the black quartz glass, a light shielding member for a semiconductor manufacturing apparatus, and an infrared heat absorption / storage member.

石英ガラスは、その紫外域から赤外域にわたる良好な光透過性や低熱膨張性を生かして分光セルなどの光学分野に用いられている。従来この分野において、局所的な遮光が必要な部位には、石英ガラスに微量の遷移金属酸化物を添加した黒色ガラスが用いられ、透明石英ガラスと熱圧着等により接合するなどして光学セルが製造されている。しかしながら近年、光学セルの微細化/薄型化が進んでおり従来の黒色ガラスでは遮光性が不足する場合が生じており、より遮光性が高く、透明石英ガラスと容易に接合できる黒色石英ガラスが求められている。   Quartz glass is used in the optical field such as a spectroscopic cell by taking advantage of its good light transmittance and low thermal expansion from the ultraviolet region to the infrared region. Conventionally, in this field, black glass in which a small amount of transition metal oxide is added to quartz glass is used as a site that requires local light shielding, and an optical cell is formed by bonding to transparent quartz glass by thermocompression bonding or the like. It is manufactured. However, in recent years, optical cells have been miniaturized / thinned, and conventional black glass has insufficient light shielding properties, and there is a need for black quartz glass that has higher light shielding properties and can be easily bonded to transparent quartz glass. It has been.

また石英ガラスは高耐熱性、化学的高純度等の特長も有し、半導体製造用の治具などにも多く用いられている。しかしながら近年、半導体製造プロセスの熱処理工程において、赤外光を素通しする透明石英ガラスによる加熱ロスが問題となっている。また、赤外光を用いた加熱プロセスにおいて、加熱対象物以外を赤外線照射から遮蔽する部材も必要になっている。このことから、赤外線を効果的に遮蔽し、断熱性に優れ、かつ急速加熱冷却時の熱衝撃にも耐え、しかも工程汚染の原因となる金属不純物を含有しない黒色石英ガラスの開発が求められている。   Quartz glass also has features such as high heat resistance and high chemical purity, and is often used in jigs for semiconductor manufacturing. However, in recent years, heating loss due to transparent quartz glass that allows infrared light to pass through has become a problem in the heat treatment step of the semiconductor manufacturing process. In addition, in a heating process using infrared light, a member that shields objects other than the object to be heated from infrared irradiation is also required. For this reason, the development of black quartz glass that effectively shields infrared rays, has excellent heat insulation properties, withstands thermal shock during rapid heating and cooling, and does not contain metal impurities that cause process contamination is required. Yes.

従来、シリカを主成分とする黒色ガラスとして以下のようなものが知られている。   Conventionally, the following are known as black glass mainly composed of silica.

例えば、特許文献1では、石英ガラス中に金属元素化合物を添加した黒色石英ガラスが提案されている。しかしながらこの種の黒色ガラスは遮光性が十分でない場合があり、また含有する金属成分が工程汚染を引き起こすおそれがあることから半導体製造分野に適用することは困難が伴った。   For example, Patent Document 1 proposes black quartz glass in which a metal element compound is added to quartz glass. However, this type of black glass may not have sufficient light-shielding properties, and the metal component contained may cause process contamination, which makes it difficult to apply to the semiconductor manufacturing field.

又、特許文献2では、石英ガラス粉体と炭素形成先駆物質の混合物をアンモニアと反応させた後、発泡させて作製した相対密度の低い黒色石英ガラスが提案されている。しかしながら、このような多孔質なガラスは、本発明が目的とする用途に対して気密性や機械的強度が十分でなかった。   Patent Document 2 proposes a black quartz glass having a low relative density produced by reacting a mixture of quartz glass powder and a carbon-forming precursor with ammonia and then foaming the mixture. However, such a porous glass has insufficient airtightness and mechanical strength for the intended use of the present invention.

更に、特許文献3では、シリカ粉末に炭素源となりうる有機結合材を添加し、熱処理により分解し炭素を生成した後、焼成により炭素をガラスネットワーク中に固溶させた黒色石英ガラスが提案されている。しかしながら、この様な炭素が固溶したオキシカーバイドガラスは硬度や高温粘性が上昇するなど通常の石英ガラスと異なった機械的、熱的物性を有することが知られている。また、熱膨張率も変化すると考えられ、通常の透明石英ガラスと接合あるいは嵌合させて用いることは困難を伴った。   Further, Patent Document 3 proposes a black quartz glass in which an organic binder that can be a carbon source is added to silica powder, decomposed by heat treatment to generate carbon, and then carbon is solid-dissolved in the glass network by firing. Yes. However, it is known that such an oxycarbide glass in which carbon is solid-dissolved has mechanical and thermal properties different from those of ordinary quartz glass, such as an increase in hardness and high-temperature viscosity. In addition, the coefficient of thermal expansion is considered to change, and it is difficult to use it by joining or fitting with ordinary transparent quartz glass.

又、特許文献4には、ガラス中に体積割合で0.1%〜30%の着色粒子を分散させた着色ガラス焼結体が提案されているが、その発明の課題は、ガラスマトリックス中に埋入された着色粒子により、漏洩光を遮蔽することであり、本発明が目指しているような構造部材への応用性については定かではなかった。   Further, Patent Document 4 proposes a colored glass sintered body in which colored particles of 0.1% to 30% are dispersed in a volume ratio in glass. However, the subject of the invention is in the glass matrix. This is to shield the leaked light by the embedded colored particles, and the applicability to the structural member as aimed by the present invention is not clear.

特許第3156733号(特許請求の範囲)Japanese Patent No. 3156733 (Claims) 特許第2743982号(特許請求の範囲)Patent No. 2743982 (Claims) 特開2000−281430号公報(特許請求の範囲)JP 2000-281430 A (Claims) 特開2003−146676号公報(特許請求の範囲)JP 2003-146676 A (Claims)

本発明が解決しようとする課題は、実質的に金属不純物を含有せず、透明石英ガラスと同等の機械的、熱的特性、言い換えれば、同等の曲げ強度、硬度、熱膨張率、熱伝導率などを有する、高遮光性黒色石英ガラス、その製造方法を提供することである。   The problem to be solved by the present invention is that it contains substantially no metal impurities and has the same mechanical and thermal properties as transparent quartz glass, in other words, the same bending strength, hardness, thermal expansion coefficient, thermal conductivity. And the like, and a method for producing the same.

また別の課題は、前記黒色石英ガラスを用いて作製した分光セルなどの光学部品、半導体製造装置用の遮光性部材や赤外線熱吸収/蓄熱部材などの黒色石英ガラス製品を提供することである。   Another object is to provide black quartz glass products such as optical parts such as spectroscopic cells manufactured using the black quartz glass, light-shielding members for semiconductor manufacturing apparatuses, and infrared heat absorption / heat storage members.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、石英ガラス中に結晶質炭素微粒子を分散させてなる系において目標とする物性を有する黒色石英ガラスが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that black quartz glass having target physical properties can be obtained in a system in which crystalline carbon fine particles are dispersed in quartz glass. The present invention has been completed.

本発明の黒色石英ガラスは、シリカ重量に対して0.05〜2重量%の結晶質炭素を含有するが、その存在形態としては、平均粒径が0.05〜1μmの結晶炭素微粒子がシリカマトリックス中に固溶することなく均一に分散した構造を有している。また、当該ガラスの密度は2.15〜2.21g/cm、かつ70MPa以上の高い曲げ強度を有し、熱膨張係数が透明石英ガラスと同等の3×10−7〜9×10−7−1であることを特徴とする。 The black quartz glass of the present invention contains 0.05 to 2% by weight of crystalline carbon based on the weight of silica, and as its form, crystalline carbon fine particles having an average particle diameter of 0.05 to 1 μm are silica. It has a uniformly dispersed structure without being dissolved in the matrix. The glass has a density of 2.15 to 2.21 g / cm 3 and a high bending strength of 70 MPa or more, and a thermal expansion coefficient of 3 × 10 −7 to 9 × 10 −7, which is equivalent to that of transparent quartz glass. It is characterized by K- 1 .

次に本発明の黒色石英ガラスの製造方法について説明する。   Next, the manufacturing method of the black quartz glass of this invention is demonstrated.

本発明の黒色石英ガラスの製造法は非晶質シリカと結晶質炭素との混合粉末を成形し、シリカと炭素を反応あるいは固溶させること無く、緻密に焼結させることに特徴がある。一般に、シリカと炭素は高温域においてCOやSiO等のガスを発生する分解反応を生じやすいことが知られているが、本発明では原料として用いるシリカ及び炭素粉末を適切に選定することでこの分解反応を抑制し緻密な焼結体を得ることを可能にした。   The method for producing black quartz glass according to the present invention is characterized in that a mixed powder of amorphous silica and crystalline carbon is molded and sintered densely without reacting or dissolving the silica and carbon. In general, silica and carbon are known to easily undergo decomposition reactions that generate gases such as CO and SiO at high temperatures. However, in the present invention, this decomposition can be achieved by appropriately selecting silica and carbon powder used as raw materials. It was possible to obtain a dense sintered body by suppressing the reaction.

本発明の黒色石英ガラスに使用される結晶質炭素微粒子としては、焼成時のシリカとの反応を抑制するために、少なくともその粒子表面層が結晶化した炭素原料を用いることが望ましい。炭素添加量はシリカ重量に対して0.05〜2重量%であることが好ましく、さらに好ましくは0.1〜1重量%である。0.05重量%未満では十分な遮光性が得られず、2重量%を超えると焼結が阻害され、機械強度の低下やパーティクル発生の原因となったり、熱膨張率が増大するなどの弊害を生じる。炭素微粒子の平均粒径は、均質かつ緻密な焼結組織を得るため、また同一添加量でより高い光遮蔽性能を得るために、0.05〜1μmであることが好ましく、さらに好ましくは0.07〜0.5μmである。平均粒径0.05μm未満の炭素粉末を用いた場合、焼結時のシリカとの反応が生じ緻密な焼結体が得にくくなり、1μmを超えると十分な遮光性を得るのに必要な炭素添加量が増加し、焼結体の機械特性を低下させる。   As the crystalline carbon fine particles used in the black quartz glass of the present invention, it is desirable to use a carbon raw material in which at least the particle surface layer is crystallized in order to suppress reaction with silica during firing. The amount of carbon added is preferably 0.05 to 2% by weight, more preferably 0.1 to 1% by weight, based on the weight of silica. If it is less than 0.05% by weight, sufficient light-shielding properties cannot be obtained, and if it exceeds 2% by weight, sintering is hindered, resulting in a decrease in mechanical strength, generation of particles, and an increase in the coefficient of thermal expansion. Produce. The average particle size of the carbon fine particles is preferably from 0.05 to 1 μm, more preferably from 0.1 to 1 μm, in order to obtain a homogeneous and dense sintered structure and to obtain higher light shielding performance with the same addition amount. 07-0.5 μm. When carbon powder having an average particle size of less than 0.05 μm is used, a reaction with silica at the time of sintering occurs and it becomes difficult to obtain a dense sintered body, and when it exceeds 1 μm, carbon necessary for obtaining sufficient light shielding properties is obtained. The amount added increases and the mechanical properties of the sintered body are reduced.

本発明の黒色石英ガラスに使用する非晶質シリカ原料には、水酸基含有量の多い微粉末を用いることが好ましい。シリカ粉末中の水酸基量が多いと焼成温度を低下させる効果があり、炭素とシリカの反応を抑制し緻密な焼結体が得やすくなる。水酸基含有量としては、50ppm以上が目安である。非晶質シリカ粉の平均粒径は0.1〜1μmであることが好ましく、さらに好ましくは0.2〜0.6μmである。0.1μm未満では粉末が嵩高くなり成形が困難になり、1μmを超えると焼結に必要な温度が上昇し、シリカと炭素を反応させることなく緻密化することが困難になる。この様なシリカ粉末は、例えば四塩化珪素の高温加水分解法で得られる合成石英ガラスや、珪石を酸水素炎中で熔融して得られる有水熔融石英ガラス、あるいは珪素のアルコキシドを加水分解した後焼成して得られる合成シリカ粉などを所望の粒径に粉砕して得ることが出来る。または、所定粒径の珪石、不定形シリカ、金属珪素などの粉末を酸水素バーナーなどの火炎中に供給して製造される、多量の水酸基を含有した球状シリカ粉を用いることも出来る。シリカ粉末の純度に関しては特に制限は無く、用途に合わせて適宜選択することが出来る。   As the amorphous silica raw material used for the black quartz glass of the present invention, it is preferable to use a fine powder having a high hydroxyl group content. When the amount of hydroxyl groups in the silica powder is large, there is an effect of lowering the firing temperature, and the reaction between carbon and silica is suppressed and a dense sintered body is easily obtained. As a hydroxyl content, 50 ppm or more is a standard. The average particle size of the amorphous silica powder is preferably 0.1 to 1 μm, more preferably 0.2 to 0.6 μm. If it is less than 0.1 μm, the powder becomes bulky and difficult to form, and if it exceeds 1 μm, the temperature required for sintering rises, and it becomes difficult to densify without reacting silica and carbon. Such silica powder is, for example, synthetic quartz glass obtained by high-temperature hydrolysis of silicon tetrachloride, hydrous fused silica glass obtained by melting silica in an oxyhydrogen flame, or hydrolyzed silicon alkoxide. Synthetic silica powder obtained by post-firing can be obtained by pulverizing to a desired particle size. Alternatively, it is also possible to use spherical silica powder containing a large amount of hydroxyl groups, which is produced by supplying a powder of silica, amorphous silica, metallic silicon or the like having a predetermined particle diameter into a flame such as an oxyhydrogen burner. There is no restriction | limiting in particular regarding the purity of a silica powder, According to a use, it can select suitably.

非晶質シリカ粉末と結晶質炭素微粒子との混合は炭素粒子を凝集の無い状態で均一に分散させることが出来れば良く、攪拌型混合機、ボールミル、ロッキングミキサー、V型混合機などの一般的な混合装置を用い、乾燥粉末の状態で混合しても良くまたスラリー状態での混合でもよい。次に、このようにして得られた混合粉末を所望の形状に成形する。成形方法としては、セラミックスの成形に通常用いられる金型プレス成形、冷間静水圧プレス法、鋳込み成形法等のいずれを用いることも可能である。   The mixing of the amorphous silica powder and the crystalline carbon fine particles is not limited as long as the carbon particles can be uniformly dispersed without agglomeration, and it is common for stirring mixers, ball mills, rocking mixers, V-type mixers, Such a mixing apparatus may be used to mix in a dry powder state or a slurry state. Next, the mixed powder thus obtained is formed into a desired shape. As a forming method, any one of a die press forming, a cold isostatic pressing method, a cast forming method and the like which are usually used for forming ceramics can be used.

成形体の焼成は、炭素粒子の酸化とシリカ粒子の結晶化を防ぐため、真空中あるいは不活性ガス中などの無酸素状態で行う。焼結温度としては1100〜1500℃であることが好ましく、さらに好ましくは1200〜1400℃である。1100℃未満ではシリカ粉末の焼結が十分に進まず、1500℃を越えるとシリカ粉末と炭素微粒子の反応が著しく低密度の焼結体となってしまう。また、ホットプレス法や熱間静水圧プレスなどの加圧焼結法を用いることも高密度の焼結体を得るのに有効であり、その場合も1100〜1500℃の焼結温度を選ぶことが好ましい。   The compact is fired in an oxygen-free state such as in a vacuum or in an inert gas in order to prevent oxidation of carbon particles and crystallization of silica particles. It is preferable that it is 1100-1500 degreeC as sintering temperature, More preferably, it is 1200-1400 degreeC. If the temperature is less than 1100 ° C., the sintering of the silica powder does not proceed sufficiently. If the temperature exceeds 1500 ° C., the reaction between the silica powder and the carbon fine particles becomes a significantly low-density sintered body. In addition, using a pressure sintering method such as a hot pressing method or a hot isostatic pressing is also effective for obtaining a high-density sintered body. In this case, a sintering temperature of 1100 to 1500 ° C. should be selected. Is preferred.

このようにして得られた黒色石英ガラスは、紫外から赤外にわたる全波長域の光に対して高い遮蔽能を有し、光学分野全般において有用である。また、極めて高い光遮蔽性能を有するのみならず、熱膨張率が透明石英ガラスとほぼ同等であり透明石英ガラスとの接合が可能であるため、石英ガラス製の光学分析用セルを作製するのに好適である。   The black quartz glass thus obtained has a high shielding ability against light in the entire wavelength range from ultraviolet to infrared, and is useful in the entire optical field. In addition to having extremely high light shielding performance, the coefficient of thermal expansion is almost the same as that of transparent quartz glass and can be joined to transparent quartz glass, so that an optical analysis cell made of quartz glass can be produced. Is preferred.

本発明で得られる黒色石英ガラスは金属不純物を含有せず、かつ透明石英ガラスと同等の十分な機械強度と熱衝撃耐性を有している。加えて、本黒色ガラスは高い赤外吸収率と0.85以上の高い放射率をも有している。この様な特性から、半導体製造に用いる熱処理装置の部材に好適である。例えば、ウェハー熱処理装置において、加熱用の赤外線を透過させる面以外の部分を本発明の黒色石英ガラスで構成することにより炉外に放射される熱を効率的に遮蔽し、エネルギー効率の向上と炉内温度分布の均一化が可能となる。また、赤外ランプを用いてウェハーを急速に昇温する熱処理装置において、赤外光の吸収効率が低いSiウェハーに代わり赤外線を効率的に吸収し、遠赤外線を放射あるいは熱伝導によりSiウェハーを効率的に昇温させる試料台あるいは面上発熱体として用いることが出来る。   The black quartz glass obtained by the present invention does not contain metal impurities and has sufficient mechanical strength and thermal shock resistance equivalent to transparent quartz glass. In addition, the black glass also has a high infrared absorptance and a high emissivity of 0.85 or higher. From such characteristics, it is suitable for a member of a heat treatment apparatus used for semiconductor manufacturing. For example, in a wafer heat treatment apparatus, the heat radiation radiated to the outside of the furnace is efficiently shielded by configuring the portion other than the surface through which infrared rays for heating are transmitted with the black quartz glass of the present invention, thereby improving the energy efficiency and the furnace. The internal temperature distribution can be made uniform. In addition, in a heat treatment device that rapidly heats the wafer using an infrared lamp, it efficiently absorbs infrared rays instead of Si wafers with low absorption efficiency of infrared light, and radiates far infrared rays or heats the Si wafer by heat conduction. It can be used as a sample stage or an on-surface heating element that efficiently raises the temperature.

また、本発明で得られる黒色石英ガラスは、金属汚染を生じない炭素で着色されており、肉眼や光学センサーによる認識が容易である。半導体製造工程で用いられる石英ガラス部材の識別、位置決めなどに有用であり、自動搬送システムに対応することができる。   Moreover, the black quartz glass obtained by the present invention is colored with carbon that does not cause metal contamination, and is easily recognized by the naked eye or an optical sensor. It is useful for identifying and positioning a quartz glass member used in a semiconductor manufacturing process, and can correspond to an automatic conveyance system.

以上のように、本発明によれば、実質的に金属不純物を含有せず、透明石英ガラスと同等の機械的、熱的特性を有する高遮光性黒色石英ガラスおよびその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a highly light-shielding black quartz glass substantially free of metal impurities and having the same mechanical and thermal characteristics as transparent quartz glass and a method for producing the same. it can.

また、前記黒色石英ガラスを用いて作製した分光セルなどの光学部品、半導体製造装置用の遮光性部材や赤外線熱吸収/蓄熱部材などの黒色石英ガラス製品を提供することができる。   Further, it is possible to provide black quartz glass products such as optical parts such as a spectral cell produced using the black quartz glass, a light shielding member for a semiconductor manufacturing apparatus, and an infrared heat absorption / heat storage member.

本発明をさらに詳細に説明するために、以下の実施例を挙げるが、本発明はこれらに限定されるものではない。   In order to describe the present invention in more detail, the following examples are given, but the present invention is not limited thereto.

表1に示す試料は、特に記載がなければ以下の手順で製造した。石英粉を酸水素火炎中で熔融することによって作製した水酸基量が170〜200ppmである熔融石英ガラスを平均粒径が0.3μmとなるように粉砕したシリカ粉と、所定の粒径のグラファイト粉末とを、溶媒を用いずボールミル混合した。得られた混合粉末を金型プレス成形により成形し、真空雰囲気中で焼成を行った。   Samples shown in Table 1 were produced according to the following procedure unless otherwise specified. Silica powder obtained by melting quartz powder in an oxyhydrogen flame and having a hydroxyl group content of 170 to 200 ppm pulverized to an average particle size of 0.3 μm, and graphite powder having a predetermined particle size Were mixed with a ball mill without using a solvent. The obtained mixed powder was molded by die press molding and fired in a vacuum atmosphere.

表1中の試料特性は以下のように測定した。焼結体の密度はアルキメデス法により測定した。透過率は試料を厚さ1mmに加工し、厚さ方向の透過率を分光光度計を用いて測定し、200〜10000nmの波長域で最も高い数値を記載した。曲げ強度は試料を4mm×3mm×40mmに加工し、JISR1601に基づき4点曲げ法により測定した。熱膨張係数はレーザー熱膨張計により真空中で測定した。放射率は試料を50mm×50mm×2mmに加工し、210℃にて赤外線放射計により測定した。   The sample characteristics in Table 1 were measured as follows. The density of the sintered body was measured by the Archimedes method. The transmittance was measured by processing the sample to a thickness of 1 mm, measuring the transmittance in the thickness direction using a spectrophotometer, and recorded the highest value in the wavelength range of 200 to 10,000 nm. The bending strength was measured by a four-point bending method based on JIS R1601 after processing a sample to 4 mm × 3 mm × 40 mm. The thermal expansion coefficient was measured in a vacuum with a laser thermal dilatometer. The emissivity was measured with an infrared radiometer at 210 ° C. after processing the sample into 50 mm × 50 mm × 2 mm.

NO.2〜5、8、9、12、15、16、19、20では、密度は2.15〜2.21g/cmであり、厚さ1mmにおいて200〜10000nmの波長域の透過率が1%以下であり、70MPa以上の高い曲げ強度を有し、熱膨張係数が透明石英ガラスと同等の3×10−7〜9×10−7−1であり、放射率が0.85以上の黒色石英ガラスが得られた。 NO. In 2 to 5, 8, 9, 12, 15, 16, 19, and 20, the density is 2.15 to 2.21 g / cm 3 , and the transmittance in the wavelength region of 200 to 10000 nm is 1% at a thickness of 1 mm. Black having a high bending strength of 70 MPa or more, a thermal expansion coefficient of 3 × 10 −7 to 9 × 10 −7 K −1 equivalent to that of transparent quartz glass, and an emissivity of 0.85 or more. Quartz glass was obtained.

NO.1では炭素添加量が少なく、十分な遮光性が得られなかった。NO.6では炭素添加量が多く、焼結が阻害され、緻密な焼結体を得ることができなかった。   NO. In No. 1, the amount of carbon added was small, and sufficient light shielding properties could not be obtained. NO. In No. 6, the amount of carbon added was large, sintering was hindered, and a dense sintered body could not be obtained.

NO.7では炭素の平均粒径が小さく、シリカとの反応が生じ、緻密な焼結体が得られなかった。NO.10では炭素の平均粒径が大きく、十分な遮光性が得られなかった。   NO. In No. 7, the average particle size of carbon was small, reaction with silica occurred, and a dense sintered body could not be obtained. NO. In No. 10, the average particle size of carbon was large, and sufficient light shielding properties could not be obtained.

NO.11ではシリカ原料として、気相法によって作製した平均粒径0.03μmの粉末を使用した。シリカの平均粒径が小さいため、密度の高い成形体を作製できず、焼結体には多数の気泡が残存した。NO.13ではシリカの平均粒径が大きく、緻密な焼結体が得られなかった。   NO. In No. 11, powder having an average particle size of 0.03 μm prepared by a vapor phase method was used as a silica raw material. Since the average particle diameter of silica was small, a molded body having a high density could not be produced, and many bubbles remained in the sintered body. NO. In No. 13, the average particle diameter of silica was large, and a dense sintered body was not obtained.

NO.14では焼結温度が低く、緻密な焼結体が得られなかった。NO.17では焼結温度が高く、シリカと炭素の反応が生じ、同じく緻密な焼結体が得られなかった。   NO. In No. 14, the sintering temperature was low, and a dense sintered body could not be obtained. NO. In No. 17, the sintering temperature was high, a reaction between silica and carbon occurred, and a dense sintered body could not be obtained.

NO.18では炭素原料として、アモルファス炭素を用いた。シリカと炭素の反応が生じ、緻密な焼結体は得られなかった。   NO. 18 used amorphous carbon as a carbon raw material. A reaction between silica and carbon occurred, and a dense sintered body could not be obtained.

NO.19ではシリカ原料として、四塩化珪素を酸水素火炎中で加水分解することによって作製した水酸基量が972ppmである合成石英ガラスを、平均粒径が0.3μmとなるように粉砕した粉末を用いた。   NO. In No. 19, synthetic silica glass having a hydroxyl group content of 972 ppm produced by hydrolyzing silicon tetrachloride in an oxyhydrogen flame was used as a silica raw material, and the powder was pulverized to an average particle size of 0.3 μm. .

NO.20ではシリカ原料として、微粉砕した珪石を酸水素バーナーの火炎中に供給して作製した平均粒径が0.3μmの球状シリカ粉末を用いた。   NO. In No. 20, spherical silica powder having an average particle size of 0.3 μm prepared by supplying finely ground silica into a flame of an oxyhydrogen burner was used as a silica raw material.

NO.21ではシリカ原料として、石英粉を電気炉を用いて熔融することによって作製した水酸基量が11ppmである熔融石英ガラスを、平均粒径が0.3μmとなるように粉砕した粉末を用いた。NO.19と同焼成条件では焼結が十分に進行せず、緻密な焼結体が得られなかった。また、焼成温度を高めた場合、シリカと炭素の反応が生じ、同じく緻密な焼結体は得られなかった。   NO. In No. 21, a fused silica glass having a hydroxyl group content of 11 ppm prepared by melting quartz powder using an electric furnace as a silica raw material was pulverized so as to have an average particle size of 0.3 μm. NO. Under the same firing conditions as in No. 19, sintering did not proceed sufficiently, and a dense sintered body could not be obtained. Further, when the firing temperature was raised, a reaction between silica and carbon occurred, and a dense sintered body could not be obtained.

NO.3で作製した試料と市販の透明合成石英ガラスを用いて光学分析用セルを以下の手順で作製した。黒色石英ガラスと透明石英ガラスとを所定の形状に切断後、研磨し、5kg/cmの圧力をかけながら1100℃に加熱して接合を行った。接合に際し、変形や割れ、接合むらは発生せず、光学分析用セルを作製することが可能であった。なお、NO.3及び透明石英ガラスの熱膨張係数はそれぞれ5.8×10−7−1と5.6×10−7−1であり、極めて近い数値であった。 NO. Using the sample prepared in 3 and a commercially available transparent synthetic quartz glass, an optical analysis cell was prepared by the following procedure. Black quartz glass and transparent quartz glass were cut into a predetermined shape, polished, and heated to 1100 ° C. while applying a pressure of 5 kg / cm 2 to perform bonding. At the time of joining, deformation, cracking, and joining unevenness did not occur, and it was possible to produce an optical analysis cell. In addition, NO. The thermal expansion coefficients of 3 and transparent quartz glass were 5.8 × 10 −7 K −1 and 5.6 × 10 −7 K −1 , respectively, which are very close numerical values.

Figure 2006027930
Figure 2006027930

Claims (7)

平均粒径が0.05〜1μmの結晶質炭素微粒子が0.05〜2重量%分散されてなる密度が2.15〜2.21g/cmのシリカガラスであって、厚さ1mmにおいて200〜10000nmの波長域の透過率が1%以下である黒色石英ガラス。 A silica glass having a density of 2.15 to 2.21 g / cm 3 in which 0.05 to 2% by weight of crystalline carbon fine particles having an average particle diameter of 0.05 to 1 μm are dispersed, and having a thickness of 200 mm at a thickness of 1 mm. Black quartz glass having a transmittance of 1% or less in a wavelength range of 10000 nm. 曲げ強度が70MPa以上、室温〜1000℃での熱膨張係数が3×10−7〜9×10−7−1かつ0.85以上の放射率を有することを特徴とする請求項1記載の黒色石英ガラス。 The bending strength is 70 MPa or more, and the thermal expansion coefficient at room temperature to 1000 ° C is 3 × 10 −7 to 9 × 10 −7 K −1 and an emissivity of 0.85 or more. Black quartz glass. 平均粒径が0.1〜1μmで50ppm以上の水酸基を含有する非晶質シリカ粉末と平均粒径0.05〜1μmの結晶質炭素微粒子とを、炭素微粒子の添加量がシリカ粉末重量に対して0.05〜2重量%となるように混合し、成形した後、1100℃〜1500℃の範囲で焼結させることを特徴とする請求項1または請求項2項記載の黒色石英ガラスの製造方法。 Amorphous silica powder having an average particle diameter of 0.1 to 1 μm and containing hydroxyl groups of 50 ppm or more and crystalline carbon fine particles having an average particle diameter of 0.05 to 1 μm are added with respect to the silica powder weight. The black quartz glass according to claim 1 or 2, wherein the mixture is formed and mixed so as to be 0.05 to 2% by weight, and then sintered in a range of 1100 ° C to 1500 ° C. Method. 請求項1または請求項2記載の黒色石英ガラスを用いた分析用光学セル。 An optical cell for analysis using the black quartz glass according to claim 1. 請求項1または請求項2記載の黒色石英ガラスを用いた半導体製造装置用の遮光性部材。 The light-shielding member for semiconductor manufacturing apparatuses using the black quartz glass of Claim 1 or Claim 2. 請求項1または請求項2記載の黒色石英ガラスを用いた半導体製造装置用の赤外線遮蔽部材。 An infrared shielding member for a semiconductor manufacturing apparatus using the black quartz glass according to claim 1. 請求項1または請求項2記載の黒色石英ガラスを用いた半導体製造装置用の赤外線放射性部材。
An infrared radiation member for a semiconductor manufacturing apparatus using the black quartz glass according to claim 1.
JP2004206457A 2004-07-13 2004-07-13 Black-colored quartz glass, its producing method, and member using the quartz glass Pending JP2006027930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206457A JP2006027930A (en) 2004-07-13 2004-07-13 Black-colored quartz glass, its producing method, and member using the quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206457A JP2006027930A (en) 2004-07-13 2004-07-13 Black-colored quartz glass, its producing method, and member using the quartz glass

Publications (1)

Publication Number Publication Date
JP2006027930A true JP2006027930A (en) 2006-02-02

Family

ID=35894724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206457A Pending JP2006027930A (en) 2004-07-13 2004-07-13 Black-colored quartz glass, its producing method, and member using the quartz glass

Country Status (1)

Country Link
JP (1) JP2006027930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199186A (en) * 2009-02-24 2010-09-09 Shinetsu Quartz Prod Co Ltd Quartz glass jig for heat treatment of infrared transparent member
WO2015067688A1 (en) * 2013-11-11 2015-05-14 Heraeus Quarzglas Gmbh & Co. Kg Composite material, heat-absorbing component, and method for producing the composite material
US20160153919A1 (en) * 2012-11-01 2016-06-02 Owens-Brockway Glass Container Inc. Inspectable Black Glass Containers
GB2538590A (en) * 2015-02-20 2016-11-23 Iqs Gmbh Light-absorbing quartz glass and method of producing it
DE102015102858B4 (en) 2015-02-20 2019-04-18 Iqs Gmbh Method for producing a light-absorbing quartz glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232967A (en) * 1983-06-17 1984-12-27 東芝タンガロイ株式会社 Zirconia base sintered body
JP2000281430A (en) * 1999-03-31 2000-10-10 Kyocera Corp Black silicon dioxide-based corrosion resistant member and its production
JP2001180964A (en) * 1999-12-27 2001-07-03 Kyocera Corp Black type sintered quartz
JP2003146676A (en) * 2001-11-16 2003-05-21 Koransha Co Ltd Sintered compact of colored glass and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232967A (en) * 1983-06-17 1984-12-27 東芝タンガロイ株式会社 Zirconia base sintered body
JP2000281430A (en) * 1999-03-31 2000-10-10 Kyocera Corp Black silicon dioxide-based corrosion resistant member and its production
JP2001180964A (en) * 1999-12-27 2001-07-03 Kyocera Corp Black type sintered quartz
JP2003146676A (en) * 2001-11-16 2003-05-21 Koransha Co Ltd Sintered compact of colored glass and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199186A (en) * 2009-02-24 2010-09-09 Shinetsu Quartz Prod Co Ltd Quartz glass jig for heat treatment of infrared transparent member
US20160153919A1 (en) * 2012-11-01 2016-06-02 Owens-Brockway Glass Container Inc. Inspectable Black Glass Containers
US10018575B2 (en) * 2012-11-01 2018-07-10 Owens-Brockway Glass Container Inc. Inspectable black glass containers
WO2015067688A1 (en) * 2013-11-11 2015-05-14 Heraeus Quarzglas Gmbh & Co. Kg Composite material, heat-absorbing component, and method for producing the composite material
JP2016536254A (en) * 2013-11-11 2016-11-24 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG COMPOSITE MATERIAL, HEAT ABSORBING COMPONENT AND METHOD FOR PRODUCING THE COMPOSITE MATERIAL
GB2538590A (en) * 2015-02-20 2016-11-23 Iqs Gmbh Light-absorbing quartz glass and method of producing it
GB2538590B (en) * 2015-02-20 2018-06-06 Iqs Gmbh Light-absorbing quartz glass and method of producing it
DE102015102858B4 (en) 2015-02-20 2019-04-18 Iqs Gmbh Method for producing a light-absorbing quartz glass

Similar Documents

Publication Publication Date Title
Irifune et al. Pressure-induced nano-crystallization of silicate garnets from glass
EP3068739B1 (en) Composite material, heat-absorbing component, and method for producing the composite material
TWI652240B (en) Opaque quartz glass and method of manufacturing same
JP2010511304A (en) Quartz sealed heater assembly
Sun et al. High‐quality translucent alumina ceramic through digital light processing stereolithography method
Delaizir et al. Spark plasma sintering: an easy way to make infrared transparent glass–ceramics
Boyer et al. Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics
JP6379508B2 (en) Opaque quartz glass and method for producing the same
Lee et al. Fabrication of transparent Y2O3 ceramics by two‐step spark plasma sintering
JP2006027930A (en) Black-colored quartz glass, its producing method, and member using the quartz glass
CN115974553A (en) Method for producing ceramic molded body for sintering and method for producing ceramic sintered body
US6812441B2 (en) Method and apparatus for the preparation of transparent alumina ceramics by microwave sintering
JP2019199078A (en) Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
AU2012307424B2 (en) Solar radiation receiver having an entry window made of quartz glass and method for producing an entry window
TW202146357A (en) Method for manufacturing sintered body
JPS5826295A (en) Nuclear fuel preparation and scrap recirculation
Xue et al. Microwave dielectric characterization and thermal analysis of B2O3-La2O3-ZnO glass-ceramic/Al2O3 composites for LTCC applications
KR101349527B1 (en) Method of fabricating silicon carbide powder
CN113754436B (en) Preparation method of nanocrystalline laser-grade sesquioxide transparent ceramic
JP3793553B2 (en) Black SiO2 corrosion-resistant member and method for producing the same
Heilmann et al. Fe2O3-doped forsterite ceramics as a joining partner for ZrO2 in a laser brazing process
Irom et al. Low‐pressure fabrication of IR‐transparent Y2O3 via spark plasma sintering
WO2022070930A1 (en) Black quartz glass and method for manufacturing same
JP2006156119A (en) Heater unit
Mohamed et al. High‐Throughput Fabrication of Phosphor‐In‐Silica Glass via Injection Molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130