JP2003146676A - Sintered compact of colored glass and method of manufacturing the same - Google Patents

Sintered compact of colored glass and method of manufacturing the same

Info

Publication number
JP2003146676A
JP2003146676A JP2001390660A JP2001390660A JP2003146676A JP 2003146676 A JP2003146676 A JP 2003146676A JP 2001390660 A JP2001390660 A JP 2001390660A JP 2001390660 A JP2001390660 A JP 2001390660A JP 2003146676 A JP2003146676 A JP 2003146676A
Authority
JP
Japan
Prior art keywords
glass
sintered body
colored
particles
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001390660A
Other languages
Japanese (ja)
Inventor
Masumi Nakajima
真澄 中島
Sunao Tashiro
直 田代
Junji Shimohara
潤治 下原
Kanji Takagi
寛司 高木
Isao Hiwatari
勇雄 樋渡
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP2001390660A priority Critical patent/JP2003146676A/en
Publication of JP2003146676A publication Critical patent/JP2003146676A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material

Abstract

PROBLEM TO BE SOLVED: To provide a sintered compact of colored glass which solves all of various problems which arise in consequence of the light leakage of a glass material used in optical industry, such as reflectors for projectors and ferrules for connection of optical fibers. SOLUTION: Particles of coloring components are embedded into a matrix of a sintered glass compact formed by sitering glass powder, by which the shielding of right is performed with the coloring component particles. A practicable light shielding effect can be exhibited when the sintered glass compact, manufactured by using carbon as black particles and amorphous silica powder of 0.1 to 5 μm in average particle size as a matrix raw material, contains black particles of <=10 μm in average particle size at a volumetric ratio of 0.1 to 30%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光産業に用いられ
るガラス部材に属するもので、詳しくは、プロジェクタ
ー等で用いられるリフレクターや光ファイバーを接続す
るための光ファイバーコネクターのフェルール等遮光性
を有するガラス部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass member used in the optical industry, and more specifically, a glass member having a light-shielding property such as a ferrule of an optical fiber connector for connecting a reflector or an optical fiber used in a projector or the like. It is about.

【0002】[0002]

【従来の技術】プロジェクターは文字や図形及び映像を
拡大投影する光技術を利用した機器である。用いる素子
の種類によってプロジェクターは液晶型とDLP型に大
別されるが、両者共に素子を照らす光源が必要である。
光源はバルブ(ランプ)とリフレクター(反射容器)か
ら構成される。リフレクターは透光性のあるガラス材料
で作製されるので、そのままでは光を反射することはな
い。従って、リフレクターの内面には通常反射膜が蒸着
されるが、バルブの光を全て反射することはなく、数%
の光が透過する。投影画面をより明るくするためにバル
ブの高輝度化がはかられるに伴い、一方ではこの漏洩光
がプロジェクター内部にある制御電子系やその他の光学
系への悪影響が最近では問題化しており、リフレクター
には遮光性が強く要望されている。
2. Description of the Related Art A projector is a device utilizing an optical technique for enlarging and projecting characters, figures and images. A projector is roughly classified into a liquid crystal type and a DLP type depending on the type of element used, but both require a light source for illuminating the element.
The light source is composed of a bulb (lamp) and a reflector (reflection container). Since the reflector is made of a translucent glass material, it does not reflect light as it is. Therefore, a reflective film is usually vapor-deposited on the inner surface of the reflector, but it does not reflect all the light from the bulb.
Light is transmitted. As the brightness of the bulb is increased to make the projection screen brighter, on the other hand, the adverse effect of this leaked light on the control electronics and other optical systems inside the projector has recently become a problem. Is strongly required to have a light-shielding property.

【0003】光を伝送する光ファイバーにおいても同様
な漏洩光の問題がある。光ファイバーを相互接続する際
には、コネクターが用いられる。コネクターを構成する
部材にフェルールがある。光ファイバーを接続するフェ
ルール端面で光ファイバーからの漏洩光が乱反射し再び
光ファイバー内に進入することで、光伝送に支障を生じ
ている。光ファイバーの接続には光硬化性樹脂が利用さ
れる。このためフェルールはガラス材料で作製すること
が望ましい。上記フェルール端面部の乱反射を防止し且
つ端面部以外は透明ガラスであるようなガラス材料が強
く望まれている。
Optical fibers that transmit light also have the same problem of leakage light. Connectors are used when interconnecting optical fibers. There is a ferrule as a member that constitutes the connector. Leaked light from the optical fiber is diffusely reflected at the end face of the ferrule that connects the optical fibers and re-enters the optical fibers, which interferes with optical transmission. A photocurable resin is used to connect the optical fibers. Therefore, it is desirable that the ferrule be made of a glass material. There is a strong demand for a glass material that prevents irregular reflection at the end surface of the ferrule and is transparent glass except for the end surface.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したリ
フレクターや光ファイバー接続用フェルールに代表され
る光産業で多用されるガラス材料の光漏洩の問題を解決
するためになされたもので、その課題は、ガラスマトリ
ックス中に埋入された着色粒子で漏洩光を遮蔽する機能
をもつ新規なガラスを与えるものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the problem of light leakage of a glass material which is frequently used in the optical industry represented by the above-mentioned reflector and ferrule for connecting optical fibers. Provides a novel glass having a function of shielding leakage light with colored particles embedded in a glass matrix.

【0005】[0005]

【課題を解決するための手段】ガラス焼結体のマトリ
ックス中に、着色成分粒子を埋入した構造からなる着色
されたガラス焼結体であって、着色区域における該着色
成分粒子の平均粒子径が10μm以下で、且つ着色成分
粒子の占める体積割合が0.1%以上、30%以下であ
ることを特徴とする着色されたガラス焼結体。
A colored glass sintered body having a structure in which colored component particles are embedded in a matrix of the glass sintered body, wherein the average particle diameter of the colored component particles in a colored area is Is 10 μm or less, and the volume ratio of the coloring component particles is 0.1% or more and 30% or less, a colored glass sintered body.

【0006】上記ガラス焼結体のマトリックスを構成
する成分が石英ガラスである上記に記載の着色された
ガラス焼結体。
The colored glass sintered body according to the above, wherein the component constituting the matrix of the glass sintered body is quartz glass.

【0007】上記着色成分粒子が黒色である上記あ
るいはに記載の着色されたガラス焼結体。
The colored glass sintered body as described in the above item 1 or 2, wherein the colored component particles are black.

【0008】平均粒子径が0.1〜5μmの非晶質ガ
ラス粉体と、平均粒子径が0.05〜10μmの着色成
分粉体を、着色成分粉体の体積割合が0.1%以上、3
0%以下の割合で混合、成形して1000〜1700℃
で焼結することを特徴とする上記〜のいずれかに記
載の着色されたガラス焼結体の製造方法。
An amorphous glass powder having an average particle diameter of 0.1 to 5 μm and a coloring component powder having an average particle diameter of 0.05 to 10 μm are used, and the volume ratio of the coloring component powder is 0.1% or more. Three
1000-1700 ° C after mixing and molding at a ratio of 0% or less
5. The method for producing a colored glass sintered body according to any one of the above 1 to 4, which is characterized by sintering.

【0009】平均粒子径が0.1〜5μmの非晶質ガ
ラス粉体の成形体あるいは仮焼結体に着色成分を含む溶
液あるいはゾル液を用いて、焼結後の着色区域における
該着色成分の体積割合が0.1%以上、30%以下の割
合になるように含浸させて、1000〜1700℃の温
度で焼結することを特徴とする上記〜のいずれかに
記載の着色されたガラス焼結体。
Using a solution or sol solution containing a coloring component in a molded or pre-sintered body of amorphous glass powder having an average particle diameter of 0.1 to 5 μm, the coloring component in the coloring area after sintering is used. The glass is impregnated so that the volume ratio thereof is 0.1% or more and 30% or less, and is sintered at a temperature of 1000 to 1700 ° C., The colored glass according to any one of the above items. Sintered body.

【0010】[0010]

【発明の実施の形態】ガラス材料の遮光特性は、着色成
分を粒子の形でガラス焼結体のマトリックス中に埋入さ
せ、着色成分粒子で、ガラス焼結体中を透過する光を遮
蔽すると実現できる。ガラス材料は一般的に溶融して作
製されるが、ここでいうガラス焼結体とは、溶融工程を
通ることなく、ガラス成分の粉末を所定の材料形状に成
形後、焼結して作製されるガラスを言う。
BEST MODE FOR CARRYING OUT THE INVENTION The light-shielding property of a glass material is that a coloring component is embedded in the form of particles in a matrix of a glass sintered body, and the coloring component particles block light transmitted through the glass sintered body. realizable. Generally, a glass material is produced by melting, but a glass sintered body here is produced by forming a glass component powder into a predetermined material shape and sintering it without passing through a melting process. Say glass.

【0011】着色区域に埋入される着色粒子の平均粒子
径は10μm以下で、且つその量は体積割合で概ね0.
1〜30%である。更に好ましくは、平均粒子径が5μ
m以下でその体積割合は0.1〜20%である。これら
の範囲以外ではガラス焼結体の焼結性が極端に悪くなる
あるいは遮光性が欠如するからである。
The average particle diameter of the colored particles embedded in the colored area is 10 μm or less, and the amount thereof is about 0.
It is 1 to 30%. More preferably, the average particle size is 5μ.
When it is m or less, the volume ratio is 0.1 to 20%. It is because the sinterability of the glass sintered body is extremely deteriorated or the light shielding property is lacked outside the range.

【0012】着色区域とは、埋入された着色粒子の区域
を意味し、例えば着色粒子がガラス焼結体のマトリック
ス中に均一に分散状態で埋入される場合は、着色区域は
ガラス焼結体全体を示し、ガラス焼結体の例えば表面の
一部に面状あるいは線状に着色粒子が埋入されるなら
ば、それぞれの箇所が着色区域となる。
The colored area means an area of embedded colored particles, for example, when the colored particles are embedded in a matrix of a sintered glass body in a uniformly dispersed state, the colored area is a glass sintered body. When the whole body is shown and colored particles are embedded in a planar or linear shape in, for example, a part of the surface of the glass sintered body, each part becomes a colored area.

【0013】ガラス焼結体のマトリックスを構成する成
分は、原理的には限定はない。一般的に溶融して製造さ
れるガラス成分組成は、ガラスの基本網目構造を造るS
iO、B、P等、これら網目構造の孔に
入りガラスの性質を変化させるNaO、KO、Ca
O等、両者の中間的な役割をするAl、ZnO等
の酸化物の組み合せで構成され、その組み合せは無限大
に等しい。
The components constituting the matrix of the glass sintered body are not limited in principle. Generally, the glass component composition produced by melting is S that forms the basic network structure of glass.
iO 2, B 2 O 3, P 2 O 5 , etc., to change the nature of the glass enters the hole of network structure Na 2 O, K 2 O, Ca
It is composed of a combination of oxides such as O, etc., which have an intermediate role between the two, such as Al 2 O 3 , ZnO, etc., and the combination is infinite.

【0014】本発明のガラス焼結体において、マトリッ
クス成分として上記全ての組成が基本的に適応できる
が、ガラス焼結体を作製する際には、焼結中の粉体粒子
の結晶化速度よりも焼結速度が速くなければならない条
件がある。これを実現するためには、用いるガラス粉体
を残存応力が小さい状態で微粉末化することが必須条件
となる。上記の溶融して作製されたガラスを粉砕して微
粉末とすると、ガラス溶融後の冷却過程で発生する内部
応力に加えて粉砕による応力が微粉末粒子に導入され
る。このようにして作製されるガラス粉体は、焼結時に
結晶化してしまい実用的なガラス焼結体は得られない。
これを解決するためには、ゾルゲル法や気相法で調整さ
れたガラス微粉体を用いるとよい。これらの方法は溶融
過程や過度の粉砕工程を通らずに容易に微粉体が得られ
る。従って、粉体粒子には応力がなくガラス焼結体が得
られる。
In the glass sintered body of the present invention, all of the above-mentioned compositions can be basically applied as the matrix component. However, when the glass sintered body is manufactured, the crystallization rate of powder particles during sintering is taken into consideration. However, there are conditions that require a high sintering rate. In order to realize this, it is an essential condition that the glass powder used is made into a fine powder with a small residual stress. When the glass produced by melting is pulverized into fine powder, stress due to pulverization is introduced into fine powder particles in addition to internal stress generated in the cooling process after melting the glass. The glass powder produced in this way is crystallized during sintering and a practical glass sintered body cannot be obtained.
In order to solve this, it is preferable to use fine glass powder prepared by a sol-gel method or a vapor phase method. According to these methods, fine powder can be easily obtained without passing through a melting process or an excessive pulverization process. Therefore, the powder particles have no stress and a glass sintered body can be obtained.

【0015】しかし上述したようにガラス成分は多成分
で、その組み合せは無限大に等しいので、ゾルゲル法や
気相法でのガラス微粉体の調製は、付加価値のあるガラ
ス材料としての幅広い応用と需要がないと製造価格的に
現実性がない。この観点から、石英ガラスは単一成分で
しかもシリコン半導体の製造プロセスから排気される高
純度シリコン成分を利用して、比較的に安価でゾルゲル
法や気相法で調製された微粉体が入手できる。
However, as described above, the glass components are multi-components and the combinations thereof are infinite. Therefore, the preparation of glass fine powder by the sol-gel method or the vapor phase method has a wide range of applications as a glass material with added value. If there is no demand, the manufacturing price is not realistic. From this point of view, quartz glass is a single component, and by using the high-purity silicon component exhausted from the silicon semiconductor manufacturing process, relatively inexpensive fine powder prepared by the sol-gel method or the vapor phase method can be obtained. .

【0016】本発明でガラス焼結体に遮光特性を付与す
る着色粒子とは、真空紫外光で蛍光励起発光するような
自己発光物質や顔料に代表される赤、青、緑及び黒色の
光吸収型の着色粒子を示す。自己発光物質は例えばPD
P(プラズマディスプレー)で用いられる赤、青、緑の
三原色物質等が利用できる。また、顔料は例えばカラー
LCD(液晶ディスプレー)の三原色物質及びブラック
ストライプの黒色物質等が利用できる。PDPやLCD
の構造はこれら着色物質粒子が同一ガラス基板上の特定
表面に塗布されているが、本発明との大きな違いは、こ
れらの着色粒子がガラス基板の表面近傍のマトリックス
中に埋入されていないことにある。従って、本発明で着
色粒子として上記三原色を用いて構築したPDPやLC
Dパネルは本発明の範疇に入ることはいうまでもない。
In the present invention, the colored particles which impart the light-shielding property to the glass sintered body include red, blue, green and black light absorption represented by a self-luminous substance or pigment which is fluorescently excited and emitted by vacuum ultraviolet light. Shows colored particles of a mold. The self-luminous substance is, for example, PD
The three primary color substances of red, blue and green used in P (plasma display) can be used. Further, as the pigment, for example, the three primary color substances of a color LCD (liquid crystal display), the black substance of a black stripe, and the like can be used. PDP and LCD
In the structure described above, these coloring substance particles are applied to a specific surface on the same glass substrate, but the major difference from the present invention is that these coloring particles are not embedded in the matrix near the surface of the glass substrate. It is in. Therefore, the PDP or LC constructed by using the above three primary colors as the colored particles in the present invention
It goes without saying that the D panel falls within the scope of the present invention.

【0017】このように着色粒子は特定の波長の光を吸
収して遮光特性を有すが、リフレクターやフェルールに
おいても同様な原理で遮光特性が付与できる。広範囲の
波長を吸収する色は黒である。特にリフレクターのバル
ブから発せられる光は可視光つまり白色光に近いので、
可視域にわたる光の波長で遮光特性効率が良い黒色を選
択するのが好ましい。黒色粒子の成分は上述したように
特に限定されないが、ガラス焼結体の焼結特性、結晶化
に悪影響を及ぼさない範囲で選択できる。経済性と後述
する製造方法の簡便性を考慮すると、好ましい黒色成分
はカーボン、炭化珪素、シリコン、酸化チタン等のチタ
ン化合物である。
As described above, the colored particles have a light-shielding property by absorbing light of a specific wavelength, but a reflector or a ferrule can also be provided with the light-shielding property by the same principle. The color that absorbs a wide range of wavelengths is black. Especially, the light emitted from the reflector bulb is close to visible light, that is, white light,
It is preferable to select black, which has a high light-shielding property efficiency at the wavelength of light over the visible range. The component of the black particles is not particularly limited as described above, but can be selected within a range that does not adversely affect the sintering characteristics and crystallization of the glass sintered body. Considering the economical efficiency and the simplicity of the production method described later, preferred black components are titanium compounds such as carbon, silicon carbide, silicon and titanium oxide.

【0018】ガラス焼結体のマトリックス成分を構成す
る原料粉体の平均粒子径は0.1〜5μmである。この
範囲で異なる平均粒子径をもつ複数の粉体を混合して使
用することもできる。ガラス粉体粒子の焼結性を高める
ためには平均粒子径は小さいほど好ましいが、あまりに
小さくなると成形工程までの取り扱いが非常に困難とな
る。従って、下限は0.1μmで十分であり、また上限
は、焼結性の観点から5μm程度である。
The raw material powder constituting the matrix component of the glass sintered body has an average particle size of 0.1 to 5 μm. A plurality of powders having different average particle diameters within this range can be mixed and used. In order to enhance the sinterability of the glass powder particles, the smaller the average particle diameter is, the more preferable, but if it is too small, the handling up to the molding step becomes very difficult. Therefore, the lower limit is sufficient to be 0.1 μm, and the upper limit is about 5 μm from the viewpoint of sinterability.

【0019】ガラス焼結体のマトリックス成分のみある
いはマトリックス成分に0.05〜10μmの平均粒子
径を持つ着色成分を体積割合で0.1〜30%の範囲で
混合した粉体を成形する方法は、鋳込み成形、プレス成
形、ラバープレス成形、射出および押し出し成形等最終
形状と生産性を考慮して選択できる。成形体は1000
〜1700℃の温度範囲で焼結するとよい。用いるマト
リックス成分の粉体粒子径が小さい場合は低温度で、大
きい場合は高温度で焼結する。焼結時の加熱プログラ
ム、例えば昇温速度や保持時間はガラス焼結体が軟化変
形しないように最適化すればよい。焼結時の雰囲気は不
活性ガス、水素、真空の中から選択するとよい。またこ
れらの雰囲気を組み合わせて焼結してもよい。窒素ガス
は焼結するガラス成分が窒素化合物に変化しない範囲で
限定的に使用できる。上記各種ガス雰囲気に不純物とし
て含まれる水蒸気や酸素はガラス焼結体の結晶化が生じ
ないように規定すればよい。真空度は概ね10−1Pa
以下であればよい。更に好ましくは10−3Pa以下で
ある。
A method of molding a powder in which only a matrix component of a glass sintered body or a coloring component having an average particle diameter of 0.05 to 10 μm is mixed in the matrix component in a volume ratio of 0.1 to 30% is used. , Cast molding, press molding, rubber press molding, injection and extrusion molding can be selected in consideration of the final shape and productivity. 1000 compacts
It is preferable to sinter in the temperature range of ˜1700 ° C. When the powder particle size of the matrix component used is small, it is sintered at a low temperature, and when it is large, it is sintered at a high temperature. The heating program at the time of sintering, such as the heating rate and the holding time, may be optimized so that the glass sintered body is not softened and deformed. The atmosphere during sintering may be selected from inert gas, hydrogen and vacuum. Moreover, you may sinter combining these atmospheres. Nitrogen gas can be used in a limited manner as long as the glass component to be sintered does not change to a nitrogen compound. Water vapor and oxygen contained as impurities in the various gas atmospheres may be specified so that crystallization of the glass sintered body does not occur. Vacuum degree is approximately 10 -1 Pa
The following is acceptable. More preferably, it is 10 −3 Pa or less.

【0020】着色粒子をガラス焼結体のマトリックス中
に埋入させる方法は、最終的に得られる着色されたガラ
ス焼結体の用途に応じて選択する。例えば、リフレクタ
ーそのものを着色する場合は、マトリックス成分の粉体
と着色物質の粉体とを上述したように予め混合し、成
形、焼結すればよい。ガラス焼結体の表面の一部を着色
する場合は、例えば、ガラスマトリックス成分をフェル
ール形状に成形した後、十分に乾燥あるいは仮焼結した
成形体に着色成分を含む溶液あるいはゾル液をフェルー
ルの短面部に含浸後、焼結すると短面部分のみ着色した
ガラス焼結体のフェルールが得られる。
The method of embedding the colored particles in the matrix of the glass sintered body is selected according to the intended use of the finally obtained colored glass sintered body. For example, when coloring the reflector itself, the powder of the matrix component and the powder of the coloring substance may be mixed in advance as described above, molded, and sintered. In the case of coloring a part of the surface of the glass sintered body, for example, after molding the glass matrix component into a ferrule shape, a solution or sol solution containing a coloring component in a sufficiently dried or pre-sintered molded body is applied to the ferrule. After impregnation of the short face portion and sintering, a ferrule of a glass sintered body in which only the short face portion is colored is obtained.

【0021】着色成分を含む溶液やゾル液は市販されて
いる色インクや金属アルコキシド、各種ゾル液あるいは
顔料を高分散させた水系あるいは非水系のスラリーを調
製し、使用できる。例えば、着色成分が黒色の場合は、
ゾル液として市販の酸化チタンゾル液やフェノール溶液
等が使用される。特にフェノール等有機溶液は焼結時に
分解しカーボンとなる。ガラスマトリックス成分として
石英ガラスを選択し、この成形体にフェノール樹脂液を
含浸後、焼結すると、含浸量と焼結温度によって焼結過
程でフェノール樹脂から生成したカーボンがマトリック
スのシリカ成分と反応して、カーボン、シリコン、炭化
珪素に変化する。このように最終的に得られるガラス焼
結体中の着色成分は焼結過程で反応した生成物でもよ
い。
As a solution or sol liquid containing a coloring component, a commercially available color ink, a metal alkoxide, various sol liquids or an aqueous or non-aqueous slurry in which a pigment is highly dispersed can be prepared and used. For example, if the coloring component is black,
As the sol solution, a commercially available titanium oxide sol solution, a phenol solution or the like is used. In particular, an organic solution such as phenol decomposes into carbon during sintering. When quartz glass is selected as the glass matrix component and this molded product is impregnated with the phenol resin solution and then sintered, the carbon produced from the phenol resin during the sintering process reacts with the silica component of the matrix depending on the impregnation amount and the sintering temperature. Then, it changes into carbon, silicon, and silicon carbide. Thus, the coloring component in the finally obtained glass sintered body may be a product reacted in the sintering process.

【0022】含浸手段は、ディッピング法、はけ塗り
法、スプレー法等適宜選択できる。着色成分をガラス焼
結体の表面に微細に形成する際には、インクジェットで
成形体の表面に吹き付けると良い。吹き付けられた着色
成分を含む溶液は、瞬時に成形体を構成する粒子間隙に
浸透する。これを焼結すると着色成分が粒子の形で埋入
された着色したガラス焼結体が得られる。
As the impregnating means, a dipping method, a brush coating method, a spraying method or the like can be appropriately selected. When the coloring component is finely formed on the surface of the glass sintered body, it may be sprayed onto the surface of the molded body by inkjet. The sprayed solution containing the coloring component instantly penetrates into the interstices between the particles forming the molded body. When this is sintered, a colored glass sintered body in which the coloring component is embedded in the form of particles is obtained.

【0023】[0023]

【実施例】本発明を明確に示すための一例を以下に示
す。 (実施例1)マトリックス成分として非晶質シリカ粉体
を、着色成分としてカーボン粉体及びフェノール樹脂液
をもちいて着色されたガラス焼結体を作製した。結果を
表1に示す。
EXAMPLES An example for clarifying the present invention will be shown below. (Example 1) An amorphous silica powder was used as a matrix component, and carbon powder and a phenol resin liquid were used as coloring components to prepare a colored glass sintered body. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上、説明したように本発明による着色
されたガラス焼結体は、以下のような産業上の利点を有
す。 リフレクターのバルブからの漏洩光を防止し、周辺電
子系や光学系に悪影響を及ぼさないプロジェクターが構
築できる。 フェルールの短面のみ漏洩光を吸収させて、漏洩光に
よる散乱を防止することで安定した光伝送が可能とな
る。 の他PDPやLCDパネル等の光産業で使用される透
明ガラスの着色に利用できる。
Industrial Applicability As described above, the colored glass sintered body according to the present invention has the following industrial advantages. It is possible to construct a projector that prevents light leaking from the reflector bulb and does not adversely affect peripheral electronic systems and optical systems. Stable optical transmission is possible by absorbing the leaked light only on the short side of the ferrule and preventing the scattering due to the leaked light. Besides, it can be used for coloring transparent glass used in the optical industry such as PDP and LCD panel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 寛司 佐賀県西松浦郡有田町幸平一丁目3番8号 株式会社香蘭社内 (72)発明者 樋渡 勇雄 佐賀県西松浦郡有田町幸平一丁目3番8号 株式会社香蘭社内 (72)発明者 栗田 澄彦 佐賀県杵島郡山内町宮野91の114 Fターム(参考) 2H036 QA17 QA20 4G014 AH00 4G062 AA01 AA15 BB02 CC01 DA08 MM02 MM04 NN05 PP11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kanji Takagi             1-3-8 Kodaira, Arita-cho, Nishimatsuura-gun, Saga Prefecture               Koran Co., Ltd. (72) Inventor Yuuhi Hiwatari             1-3-8 Kodaira, Arita-cho, Nishimatsuura-gun, Saga Prefecture               Koran Co., Ltd. (72) Inventor Sumihiko Kurita             114 of 91 Miyano, Yamauchi-cho, Kishima-gun, Saga Prefecture F-term (reference) 2H036 QA17 QA20                 4G014 AH00                 4G062 AA01 AA15 BB02 CC01 DA08                       MM02 MM04 NN05 PP11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス焼結体のマトリックス中に、着色
成分粒子を埋入した構造からなる着色されたガラス焼結
体であって、着色区域における該着色成分粒子の平均粒
子径が10μm以下で、且つ着色成分粒子の占める体積
割合が0.1%以上、30%以下であることを特徴とす
る着色されたガラス焼結体。
1. A colored glass sintered body having a structure in which colored component particles are embedded in a matrix of the glass sintered body, wherein the average particle diameter of the colored component particles in the colored area is 10 μm or less. A colored glass sintered body, characterized in that the volume ratio of the colored component particles is 0.1% or more and 30% or less.
【請求項2】 上記ガラス焼結体のマトリックスを構成
する成分が石英ガラスである請求項1に記載の着色され
たガラス焼結体。
2. The colored glass sintered body according to claim 1, wherein the component constituting the matrix of the glass sintered body is quartz glass.
【請求項3】 上記着色成分粒子が黒色である請求項1
あるいは2に記載の着色されたガラス焼結体。
3. The color component particles are black.
Alternatively, the colored glass sintered body according to 2.
【請求項4】 平均粒子径が0.1〜5μmの非晶質ガ
ラス粉体と、平均粒子径が0.05〜10μmの着色成
分粉体を、着色成分粉体の体積割合が0.1%以上、3
0%以下の割合で混合、成形して1000〜1700℃
で焼結することを特徴とする請求項1〜3のいずれかに
記載の着色されたガラス焼結体の製造方法。
4. An amorphous glass powder having an average particle diameter of 0.1 to 5 μm and a coloring component powder having an average particle diameter of 0.05 to 10 μm, wherein the volume ratio of the coloring component powder is 0.1. % Or more, 3
1000-1700 ° C after mixing and molding at a ratio of 0% or less
The method for producing a colored glass sintered body according to any one of claims 1 to 3, characterized in that
【請求項5】 平均粒子径が0.1〜5μmの非晶質ガ
ラス粉体の成形体あるいは仮焼結体に着色成分を含む溶
液あるいはゾル液を用いて、焼結後の着色区域における
該着色成分の体積割合が0.1%以上、30%以下の割
合になるように含浸させて、1000〜1700℃の温
度で焼結することを特徴とする請求項1〜3のいずれか
に記載の着色されたガラス焼結体。
5. A solution or sol solution containing a coloring component is used in a molded body or a pre-sintered body of an amorphous glass powder having an average particle diameter of 0.1 to 5 μm, and the solution in a colored area after sintering is used. The impregnation is performed so that the volume ratio of the coloring component is 0.1% or more and 30% or less, and sintering is performed at a temperature of 1000 to 1700 ° C. Colored glass sintered body of.
JP2001390660A 2001-11-16 2001-11-16 Sintered compact of colored glass and method of manufacturing the same Pending JP2003146676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390660A JP2003146676A (en) 2001-11-16 2001-11-16 Sintered compact of colored glass and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390660A JP2003146676A (en) 2001-11-16 2001-11-16 Sintered compact of colored glass and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003146676A true JP2003146676A (en) 2003-05-21

Family

ID=19188428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390660A Pending JP2003146676A (en) 2001-11-16 2001-11-16 Sintered compact of colored glass and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003146676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027930A (en) * 2004-07-13 2006-02-02 Tosoh Corp Black-colored quartz glass, its producing method, and member using the quartz glass
WO2022070930A1 (en) 2020-10-01 2022-04-07 東ソ-・エスジ-エム株式会社 Black quartz glass and method for manufacturing same
WO2022075028A1 (en) 2020-10-07 2022-04-14 東ソ-・エスジ-エム株式会社 Black quartz glass and method of manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027930A (en) * 2004-07-13 2006-02-02 Tosoh Corp Black-colored quartz glass, its producing method, and member using the quartz glass
WO2022070930A1 (en) 2020-10-01 2022-04-07 東ソ-・エスジ-エム株式会社 Black quartz glass and method for manufacturing same
KR20230079075A (en) 2020-10-01 2023-06-05 토소 에스지엠 가부시키가이샤 Black quartz glass and manufacturing method thereof
WO2022075028A1 (en) 2020-10-07 2022-04-14 東ソ-・エスジ-エム株式会社 Black quartz glass and method of manufacturing same
KR20230079076A (en) 2020-10-07 2023-06-05 토소 에스지엠 가부시키가이샤 Black quartz glass and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR102163254B1 (en) Display device including green-emitting quantum dots and red KSF phosphor
US10580637B2 (en) Color-shifted lamps using neodymium-fluorine containing coating
KR101828463B1 (en) Quantum dot based lighting
CN107861291A (en) Backlight module, display screen and terminal
JP6376225B2 (en) Wavelength conversion member and light emitting device
EP1279705A4 (en) Oxide composite particle and method for its production, phosphor and method for its production, color filter and method for its manufacture, and color display
US20220328731A1 (en) Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element
CN107357080A (en) Color diaphragm and preparation method thereof and color membrane substrates
WO2011013505A1 (en) Phosphor-dispersed glass, and process for production thereof
CN110272208A (en) A kind of green fluorescence glass ceramics and its preparation method and application
CN110471215A (en) Quantum dot shows equipment
JP2014229503A (en) Light-emitting device, method for manufacturing the same, and projector
CN105185890A (en) LED light source structure and packaging method thereof
CN210245548U (en) Lens assembly and LED packaging structure
TWI657308B (en) Processor-based device with emissive display and removable screen
CN105140377A (en) Quantum dot glass box, and fabrication method and application thereof
KR102201048B1 (en) Glass composition for high-reliability ceramic phosphor plate and ceramic phosphor plate using the same
JP2003146676A (en) Sintered compact of colored glass and method of manufacturing the same
WO2012039442A1 (en) Light-emitting device package and method of manufacturing thereof
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
US6508573B1 (en) Incandescent lamp
KR20150030324A (en) Method of manufacturing color conversion materials for light emitting device and led package with color conversion materials manufactured by the method
CN102483478B (en) Composition for producing a filter material for radiation, method for producing a composition for a filter material, material for filtering radiation, and an optoelectronic component comprising the material
JP6301576B2 (en) Light diffusion transmission sheet
CN108333830B (en) Color film substrate and manufacturing method thereof, and light shielding layer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070613

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A02