JP2006026582A - Exhaust gas processor - Google Patents

Exhaust gas processor Download PDF

Info

Publication number
JP2006026582A
JP2006026582A JP2004211571A JP2004211571A JP2006026582A JP 2006026582 A JP2006026582 A JP 2006026582A JP 2004211571 A JP2004211571 A JP 2004211571A JP 2004211571 A JP2004211571 A JP 2004211571A JP 2006026582 A JP2006026582 A JP 2006026582A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
carrier
catalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211571A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Yasuhiro Tsutsui
泰弘 筒井
Nobuhiro Kondo
暢宏 近藤
Minehiro Murata
峰啓 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2004211571A priority Critical patent/JP2006026582A/en
Publication of JP2006026582A publication Critical patent/JP2006026582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas processor which can control the fluctuation of carrier temperature by increasing the thermal capacity of a catalyst carrier to maintain the temperature of a catalyst within its active temperature region. <P>SOLUTION: In the carrier disposed in the exhaust passage of an internal combustion engine and made of a honeycomb structure having many circulation holes separated by partition walls, the catalyst carrier having the function of occluding NOx when an exhaust gas air-fuel ratio is lean, and releasing and reducing the occluded NOx when the exhaust gas air-fuel ratio is rich, is formed so as to maintain a thermal capacity of ≥0.4 J/cm<SP>3</SP>×°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気路に配備され、特に、排気中のNOxを処理するための排気ガス処理装置に関する。   The present invention relates to an exhaust gas processing apparatus that is disposed in an exhaust passage of an internal combustion engine, and in particular, processes NOx in exhaust gas.

内燃機関はその排気を無害化して排出するため、排気路に各内燃機関の排出する排気ガス特性に応じた排気ガス処理装置である触媒やフィルタを装着している。この内、触媒は排気路に配備され多数の通気路を有する担体に各種触媒物質を担持し、これによって排気ガス中の有害物質(CO、HC、NOx等)を無害物質に浄化反応させるよう作動できる。   In order to make the exhaust gas harmless and exhaust, the internal combustion engine is equipped with a catalyst or a filter, which is an exhaust gas treatment device corresponding to the exhaust gas characteristics exhausted by each internal combustion engine, in the exhaust path. Among them, the catalyst is installed in the exhaust passage, and supports various catalytic substances on a carrier having a large number of ventilation passages, thereby operating the harmful substances (CO, HC, NOx, etc.) in the exhaust gas to purify the harmless substances. it can.

例えば、排気ガス中のNOxを処理する触媒として、白金、パラジウム、ロジウムなどの貴金属及びNOxを吸蔵する機能を有する金属元素を酸化物担体へ担持したものが良く知られている。担体はアルミナ、シリカ、シリカアルミナ等の高表面積を有する各種酸化物が用いられ、自動車用の排気浄化装置では目詰まりが少なく、約1000℃の高温にも耐えられ成形性が良いコージェライトのハニカム担体が使用されている。
なお、このようなハニカム担体を用いた触媒の一例が特開2003−112048号公報(特許文献1)に開示されている。
For example, as a catalyst for treating NOx in exhaust gas, a catalyst in which a noble metal such as platinum, palladium and rhodium and a metal element having a function of occluding NOx are supported on an oxide carrier is well known. The carrier is made of various oxides having a high surface area such as alumina, silica, silica alumina, etc., and the exhaust gas purification device for automobiles is less clogged and can withstand high temperatures of about 1000 ° C. and has good formability and is a cordierite honeycomb. A carrier is used.
An example of a catalyst using such a honeycomb carrier is disclosed in Japanese Patent Application Laid-Open No. 2003-1112048 (Patent Document 1).

特開2003−112048号公報JP 2003-1112048 A

ところで、車載されるエンジンの排気系に使用されている触媒はコージェライトやメタルを担体として用い、その上に触媒をコーティングしたシステムを採用している。しかし、排気温度の極端に低い領域をもつディーゼルエンジンでは、排温が触媒活性温度以下(200℃以下)となる運転域が発生しやすく、この運転域では排気ガス浄化性能が急に低下する。   By the way, the catalyst used for the exhaust system of the engine mounted on the vehicle employs a system in which cordierite or metal is used as a carrier and the catalyst is coated thereon. However, in a diesel engine having a region where the exhaust temperature is extremely low, an operating region in which the exhaust temperature is equal to or lower than the catalyst activation temperature (200 ° C. or less) is likely to occur, and in this operating region, the exhaust gas purification performance deteriorates rapidly.

この主な原因は担体の熱容量が低く(小さく)、温度の低い排気ガスが流れると、排気ガス温度に追従し、すぐに触媒担体が冷やされてしまうためである。
更に、還元剤を用いたNOx浄化装置の場合、NOx浄化に最適な触媒温度範囲である浄化ウインドが存在するが、この場合、特に熱容量が低い担体では排気ガス温度の急上昇により触媒温度もすぐに上昇し、触媒温度(担体)が高温になりすぎると、還元剤がNOxと反応せずに、酸素と反応し、NOxの浄化が不十分になる。
This is mainly because the heat capacity of the carrier is low (small), and when exhaust gas having a low temperature flows, the exhaust gas temperature follows and the catalyst carrier is immediately cooled.
Furthermore, in the case of a NOx purification device using a reducing agent, there is a purification window that is in the optimum catalyst temperature range for NOx purification. In this case, particularly in a carrier having a low heat capacity, the catalyst temperature immediately increases due to a sudden rise in exhaust gas temperature. If the temperature rises and the catalyst temperature (support) becomes too high, the reducing agent does not react with NOx, but reacts with oxygen, resulting in insufficient purification of NOx.

このように、熱容量の低い触媒は、排気ガス温度に対し、追従性が良く早期活性化には適するが、その使い方によっては活性温度を外れる頻度が増え、触媒性能をフルに引き出せない可能性があり、この点に本発明者は着目し、本発明を導き出したものである。   In this way, a catalyst with a low heat capacity has good followability with respect to the exhaust gas temperature and is suitable for early activation.However, depending on how it is used, the frequency of deviating from the activation temperature increases, and the catalyst performance may not be fully exploited. The present inventor has paid attention to this point and derived the present invention.

即ち、排気温度が様々に変化する排気ガスを浄化するにあたって、触媒内温度を出来るだけ活性温度域内に経時的に均一に保持することで高い性能が引出されると推測される。そのためには、触媒を担持する担体の熱容量を大きくし、高温時から低温時になった場合も担体の熱で活性を維持し、逆に、急激な温度上昇があった場合でも、担体でその温度を吸収して触媒内温度が活性温度内にとどまるようにし、常に触媒を活性温度にキープするようにすることが有効と見做される。
本発明は、触媒担体の熱容量を比較的大きくして担体温度の高低変動を抑制し、触媒温度を活性温度域内に維持することのできる排気ガス処理装置を提供することを目的とする。
That is, when purifying exhaust gas whose exhaust temperature varies variously, it is estimated that high performance can be obtained by keeping the temperature in the catalyst as uniform as possible in the active temperature range over time. For this purpose, the heat capacity of the carrier supporting the catalyst is increased, and the activity is maintained by the heat of the carrier even when the temperature is low from the high temperature. Conversely, even if there is a sudden temperature rise, It is considered effective to absorb the catalyst so that the temperature in the catalyst stays within the activation temperature, and always keep the catalyst at the activation temperature.
It is an object of the present invention to provide an exhaust gas treatment apparatus that can suppress the fluctuation of the carrier temperature by keeping the heat capacity of the catalyst carrier relatively large and maintain the catalyst temperature within the active temperature range.

この発明の請求項1に係る排気ガス処理装置は、内燃機関の排気通路に配置され、隔壁により仕切られた多数の流通孔を有したハニカム構造からなる担体に、排気の空燃比がリーンのときに排気中のNOxを吸蔵し、流入する排気の空燃比がリッチになったときに吸蔵したNOxを放出、還元する機能を有する触煤を担持した排気ガス処理装置において、上記担体の熱容量が0.4J/cm・℃以上であることを特徴とする。 According to a first aspect of the present invention, there is provided an exhaust gas processing apparatus according to a first aspect of the present invention, wherein a carrier having a honeycomb structure having a large number of flow holes arranged in an exhaust passage of an internal combustion engine and partitioned by a partition wall has a lean air-fuel ratio. In the exhaust gas processing apparatus carrying a catalyst having a function of storing NOx in the exhaust gas and releasing and reducing the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes rich, the heat capacity of the carrier is 0 4 J / cm 3 · ° C. or more.

請求項2の発明は、請求項1記載の排気カス処理装置において、上記担体の熱容量が0.6J/cm・℃以上であることを特徴とする。 According to a second aspect of the present invention, in the exhaust gas treatment apparatus according to the first aspect, the carrier has a heat capacity of 0.6 J / cm 3 · ° C. or more.

請求項3の発明は、請求項1又は2記載の排気ガス処理装置において、上記担体よりも上流側の排気通路に、当該担体よりも熱容量の小さい担体から成るNOx吸蔵触媒を備えたことを特徴とする。   According to a third aspect of the present invention, in the exhaust gas processing apparatus according to the first or second aspect, an NOx storage catalyst comprising a carrier having a smaller heat capacity than the carrier is provided in the exhaust passage upstream of the carrier. And

この発明によれば、担体の熱容量が0.4J/cm・℃以上なので、排気ガス温度の過度の高低変動に対する担体温度の高低変動が抑制され、なまされるので、担体温度が排気ガス温度の過度の高低変動に追従することを抑制できる。このため触媒の温度が活性温度域内に維持され、担体温度が過度に高温変動することで生じる担体熱劣化や、低温状態時に触媒に吸蔵されたNOxの熱解離、即ち、NOxの高温時放出を防止して、浄化効率を向上できる。 According to the present invention, since the heat capacity of the carrier is 0.4 J / cm 3 · ° C. or more, the fluctuation in the carrier temperature with respect to the excessive fluctuation in the exhaust gas temperature is suppressed and smoothed. It is possible to suppress following the excessive fluctuation in height. For this reason, the temperature of the catalyst is maintained within the active temperature range, and the carrier thermal deterioration caused by excessively high temperature fluctuation of the carrier and the thermal dissociation of NOx occluded in the catalyst in a low temperature state, that is, the release of NOx at a high temperature. This can improve the purification efficiency.

更に、この発明によれば、担体の熱容量が0.6J/cm・℃以上では排気ガス温度の過度の高低変動に対する担体温度の高低変動がより確実に抑制され、緩やかとなるので、担体温度が排気ガス温度の高低変動に追従することをより確実に抑制でき、触媒の温度が活性温度域内により確実に維持されて、担体温度が過度に高温変動することで生じる担体熱劣化や、低温状態に吸収されたNOxの熱解離を防止して、浄化効率をより確実に向上できる。 Furthermore, according to the present invention, when the heat capacity of the carrier is 0.6 J / cm 3 · ° C. or more, the fluctuation in the carrier temperature with respect to the excessive fluctuation in the exhaust gas temperature is more reliably suppressed and becomes gentle. Can more reliably prevent the exhaust gas temperature from following the fluctuations in the exhaust gas temperature, the temperature of the catalyst is more reliably maintained within the active temperature range, and the carrier heat deterioration caused by excessively high temperature fluctuations or low temperature conditions Thus, the thermal dissociation of NOx absorbed in the catalyst can be prevented, and the purification efficiency can be improved more reliably.

更に、この発明によれば、排気浄化装置の排気上流側に熱容量の小さいNOx吸蔵触媒を備えたので始動時等においても前段NOx触媒が後流の担体よりも早急に活性化されるので浄化処理を早期に行え、下流の担体の温度が活性温度に達するまでの間の浄化効率の低下を防止でき、運転域全体で良好な浄化性能が得られる。   Further, according to the present invention, since the NOx occlusion catalyst having a small heat capacity is provided on the exhaust upstream side of the exhaust purification device, the front-stage NOx catalyst is activated more rapidly than the downstream carrier even at the time of starting, etc. The purification efficiency can be prevented from being lowered until the temperature of the downstream carrier reaches the activation temperature, and good purification performance can be obtained in the entire operation region.

以下、本発明の一実施形態としての排気ガス処理装置をディーゼルエンジン(以後単にエンジンと記す)1に適用した例について説明する。
エンジン1は直列に4つの燃焼室2を配備し、各燃焼室2には直接燃料を噴射する燃料噴射弁3が設けられている。ここで、燃料タンク4の燃料(軽油)は高圧燃料噴射ポンプ5で加圧されてコモンレール6(蓄圧室)に圧送され、コモンレール6から燃料噴射弁3を介し各気筒内に噴射される。ここでの燃料噴射弁3は後述のECU7から出力される噴射パルスに応じてその燃料噴射量Qと噴射時期が制御されるという周知の構成を採る。なお、燃料噴射量Qはエンジン1の負荷情報でもあり、後述のNOx放出還元処理で使用される。
Hereinafter, an example in which an exhaust gas treatment apparatus as an embodiment of the present invention is applied to a diesel engine (hereinafter simply referred to as an engine) 1 will be described.
The engine 1 includes four combustion chambers 2 in series, and each combustion chamber 2 is provided with a fuel injection valve 3 that directly injects fuel. Here, the fuel (light oil) in the fuel tank 4 is pressurized by the high-pressure fuel injection pump 5 and is pumped to the common rail 6 (pressure accumulating chamber), and is injected into each cylinder from the common rail 6 via the fuel injection valve 3. The fuel injection valve 3 here has a well-known configuration in which the fuel injection amount Q and the injection timing are controlled in accordance with an injection pulse output from an ECU 7 described later. The fuel injection amount Q is also load information of the engine 1 and is used in the NOx emission reduction process described later.

各燃焼室2の一側より延びる不図示の吸気ポートは吸気マニホールド8に連通し、同吸気マニホールド8に吸気路Iを形成する吸気管9が接続される。この吸気管9はエアクリーナ11より吸入した吸気を過給機12で加圧し、過給機12からの吸気の冷却をインタークーラ13で行ってから吸気マニホールド8に導入している。なお、符号14は不図示の冷却水循環系の放熱用のラジエータを示す。   An intake port (not shown) extending from one side of each combustion chamber 2 communicates with the intake manifold 8, and an intake pipe 9 that forms an intake passage I is connected to the intake manifold 8. The intake pipe 9 pressurizes the intake air drawn from the air cleaner 11 by the supercharger 12, cools the intake air from the supercharger 12 by the intercooler 13, and then introduces the intake air into the intake manifold 8. Reference numeral 14 denotes a radiator for heat radiation of a cooling water circulation system (not shown).

各燃焼室2の他側より延びる不図示の排気ポートは排気マニホールド15に連通し、同排気マニホールド15には排気路Exを形成する排気管16が接続される。排気管16にはその上流から下流に向けて、排気ガス流動エネルギを受けて駆動する過給機12のタービン121と、その下流の前段NOx吸蔵触媒17と、NOx触媒18と、不図示のマフラーがこの順に配設されている。   An exhaust port (not shown) extending from the other side of each combustion chamber 2 communicates with the exhaust manifold 15, and an exhaust pipe 16 that forms an exhaust path Ex is connected to the exhaust manifold 15. The exhaust pipe 16 includes a turbine 121 of the supercharger 12 driven by receiving exhaust gas flow energy from upstream to downstream, a downstream NOx storage catalyst 17, a NOx catalyst 18, and a muffler (not shown). Are arranged in this order.

前段NOx吸蔵触媒17はハニカム状のコージェライト担体171で製作され、これにカリウムK、ナトリウムNa等のアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、セリウムCeのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持して形成されている。コージェライト担体171は全体容量が後述のNOx吸蔵触媒18における担体19と比較して小さく、しかも、コージェライト担体171の熱容量は0.39J/cm・℃と比較的低く(小さく)、これにより早期活性化を図り易い構造を採用し、低温時におけるNOxの浄化効率の低下を抑制するようにしている。 The front NOx storage catalyst 17 is made of a honeycomb cordierite carrier 171, which includes an alkali metal such as potassium K and sodium Na, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and cerium Ce. And at least one component selected from the above and a noble metal such as platinum Pt. The cordierite carrier 171 has a smaller overall capacity than the carrier 19 in the NOx storage catalyst 18 described later, and the heat capacity of the cordierite carrier 171 is relatively low (small) 0.39 J / cm 3 · ° C. A structure that facilitates early activation is employed to suppress a decrease in NOx purification efficiency at low temperatures.

なお、前段触媒としてコージェライトの担体を有する前段NOx吸蔵触媒17を説明したが、これに代えてメタル担体を用いてもよく、更に、前段NOx吸蔵触媒17に代えて、低容量の酸化触媒(不図示)を採用してもよく、この場合は低温時におけるHCの浄化効率の低下を抑制できると共に、下流側の排ガス温度の上昇が測れるので、NOx吸蔵触媒18の早期活性化が図れ、NOxの低減処理可能な運転域を拡大できる。   Although the preceding stage NOx occlusion catalyst 17 having a cordierite carrier as the former stage catalyst has been described, a metal carrier may be used instead, and a low capacity oxidation catalyst (instead of the preceding stage NOx occlusion catalyst 17) (Not shown) may be employed, and in this case, a decrease in the HC purification efficiency at low temperatures can be suppressed, and an increase in exhaust gas temperature on the downstream side can be measured, so that the NOx occlusion catalyst 18 can be activated early and NOx It is possible to expand the operating range that can be reduced.

図1、2に示すように、NOx吸蔵触媒18はそのケーシング181内にNOx吸蔵還元触媒としての担体19を収容する。担体19全体が多孔質材の炭化珪(SiC)製であり、比較的大きな容量に形成され、しかも、その熱容量も比較的大きな値である0.65J/cm・℃を保持するものが採用されている。
担体19は隔壁wにより仕切られた多数の直状の流通孔である流通路rを有するハニカム構造を成す。
As shown in FIGS. 1 and 2, the NOx storage catalyst 18 accommodates a carrier 19 as a NOx storage reduction catalyst in its casing 181. The entire support 19 is made of porous silicon carbide (SiC), has a relatively large capacity, and has a relatively large heat capacity of 0.65 J / cm 3 · ° C. Has been.
The carrier 19 has a honeycomb structure having flow passages r which are a large number of straight flow holes partitioned by partition walls w.

担体19の各流通孔rはその両端部が開放され、排気ガスを容易に通過させることができる。同担体19の全表面域にはNOx吸蔵還元触媒として機能する触媒元素が一様に担持され、具体的には、カリウムK、ナトリウムNa等のアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、セリウムCeのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持している。NOx吸蔵還元触媒19は流入する排気ガスの空燃比がリーンのときに、排気中のNOx(NO、NO)を吸蔵収し、流入排気ガスがリッチになると吸蔵したNOxを放出するNOxの吸放出作用を行う。 Each flow hole r of the carrier 19 is open at both ends so that the exhaust gas can easily pass therethrough. A catalytic element that functions as a NOx occlusion reduction catalyst is uniformly supported on the entire surface area of the carrier 19, and specifically, alkaline metals such as potassium K and sodium Na, alkaline earth such as barium Ba and calcium Ca. And at least one component selected from rare earths such as lanthanum La and cerium Ce, and a noble metal such as platinum Pt. The NOx occlusion reduction catalyst 19 stores NOx (NO 2 , NO) in the exhaust when the air-fuel ratio of the inflowing exhaust gas is lean, and absorbs NOx that releases the stored NOx when the inflowing exhaust gas becomes rich. Perform release action.

このようなNOx吸蔵還元触媒18は、排気中の酸素濃度が増大すると(すなわち排気の空燃比がリーン空燃比になると)、これら酸素は白金Pt上で排気中のNOx(NOが主成分)と酸化反応を起してNOが生成される。また、流入排気中のNOは白金Pt上で更に酸化されつつ吸蔵剤としての酸化バリウムBaOと結合しながら吸蔵剤内に拡散する。このため、リーン雰囲気下では排気中のNOxがNOx吸蔵還元触媒19内に吸蔵されるようになる。 When the oxygen concentration in the exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), the NOx occlusion-reduction catalyst 18 is in contact with NOx (NO is the main component) in the exhaust gas on the platinum Pt. An oxidation reaction occurs to generate NO 2 . Further, NO 2 in the inflowing exhaust gas is further oxidized on platinum Pt and diffuses into the storage agent while being combined with barium oxide BaO as the storage agent. For this reason, NOx in the exhaust gas is stored in the NOx storage reduction catalyst 19 in a lean atmosphere.

また、流入排気中の酸素濃度が低下すると(すなわち、排気の空燃比が低下して理論空燃比以下のリッチ空燃比になると)、白金Pt上でのNO生成量が減少するため、反応が逆方向に進むようになり、吸収剤内のNOxはNOの形でNOx吸蔵還元触媒19から放出されるようになる。この場合、排気中にHC、CO等の成分が存在すると白金Pt上でこれらの成分によりNOがN還元される。なお、この作用に関しては前述の前段NOx吸蔵還元触媒17についても同様である。 Further, when the oxygen concentration in the inflowing exhaust gas decreases (that is, when the air-fuel ratio of the exhaust gas decreases to a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio), the amount of NO 2 generated on the platinum Pt decreases, so that the reaction now proceeds in the reverse direction, NOx in the absorbent is to be released from the NOx storage reduction catalyst 19 in the form of NO 2. In this case, if components such as HC and CO are present in the exhaust gas, NO 2 is reduced by N 2 by these components on platinum Pt. Note that the same applies to the above-described previous NOx storage reduction catalyst 17.

更に、NOx吸蔵還元触媒18は、図3に示すように、その触媒内部の温度である触媒温度Tcがほぼ200℃乃至350℃のNOx浄化に最適な触媒活性温度範囲である浄化ウインドEgで運転されると、高浄化率を維持できる。一方、浄化ウインドEgより低側域Eldに外れるに従い、不活性域に入り、浄化反応は急減し、また、浄化ウインドEgより高側域Eudに外れるに従い担体温度が高温になりすぎると、NOx吸蔵剤の熱平衡の関係から吸蔵反応が起きなくなり、NOxを浄化できなくなると共に、吸蔵剤の内部にNOxを吸蔵していると、NOxを放出(熱解離)してしまう。   Further, as shown in FIG. 3, the NOx occlusion reduction catalyst 18 is operated in a purification window Eg in which the catalyst temperature Tc, which is the temperature inside the catalyst, is approximately 200 ° C. to 350 ° C., which is the optimum catalyst activation temperature range for NOx purification. In this case, a high purification rate can be maintained. On the other hand, as it goes to the lower side region Eld from the purification window Eg, it enters the inactive region, the purification reaction sharply decreases, and when the carrier temperature becomes too high as it goes to the higher side region Eud from the purification window Eg, it stores NOx. Occlusion reaction does not occur due to the thermal equilibrium relationship of the agent, and NOx cannot be purified. If NOx is occluded in the occlusion agent, NOx is released (thermal dissociation).

本実施形態では、エンジン1としてディーゼル機関が使用されているため機関排気は通常リーン空燃比であり、NOx吸蔵還元触媒19は排気中のNOxを吸蔵する。しかし、NOx吸蔵還元触媒19に吸蔵されたNOx量が増大すると吸蔵剤(BaO等)が飽和してしまい、NOx吸蔵還元触媒19が排気中のNOxを吸蔵できなくなる。そこで、後述するように、NOx吸蔵還元触媒19に吸収されたNOx量が飽和する前時期に還元剤供給装置24に接続された還元剤供給ノズル25を駆動し、強制的にリッチ雰囲気を形成して、NOx吸蔵還元触媒19からNOxを放出させ、還元浄化するようにしている。   In this embodiment, since a diesel engine is used as the engine 1, the engine exhaust is normally at a lean air-fuel ratio, and the NOx occlusion reduction catalyst 19 occludes NOx in the exhaust. However, when the amount of NOx occluded in the NOx occlusion reduction catalyst 19 increases, the occlusion agent (BaO or the like) is saturated, and the NOx occlusion reduction catalyst 19 cannot occlude NOx in the exhaust. Therefore, as described later, the reducing agent supply nozzle 25 connected to the reducing agent supply device 24 is driven to forcibly form a rich atmosphere before the NOx amount absorbed by the NOx storage reduction catalyst 19 is saturated. Thus, NOx is released from the NOx occlusion reduction catalyst 19 for reduction and purification.

ここで還元剤供給装置24は還元剤として燃料タンク4の燃料(軽油)を用いる。
この還元剤供給装置24は燃料タンク4の燃料(軽油)を循環ポンプ21で燃料循環路22に循環させ、燃料循環路22の途中の流量制御弁23を後述のECU7からの制御信号に応じて開閉駆動することで、還元剤供給ノズル25から加圧燃料(軽油)をNOx吸蔵還元触媒19に供給する。
Here, the reducing agent supply device 24 uses the fuel (light oil) in the fuel tank 4 as the reducing agent.
The reducing agent supply device 24 circulates the fuel (light oil) in the fuel tank 4 to the fuel circulation path 22 with the circulation pump 21, and the flow control valve 23 in the middle of the fuel circulation path 22 in accordance with a control signal from the ECU 7 described later. By driving to open and close, pressurized fuel (light oil) is supplied from the reducing agent supply nozzle 25 to the NOx occlusion reduction catalyst 19.

この還元剤供給ノズル25からの燃料供給によって、NOx吸蔵還元触媒19がリッチ雰囲気に保持され、NOxの放出と還元浄化とを行なうものである。なお、リッチ雰囲気の形成にあたっては、筒内における燃料のポンプ噴射を実施して、リッチ化を図ってもよい。
車両にはエンジン制御手段であるエンジンコントロールユニット(以後単にECU7と記す)が設けられている。
By supplying fuel from the reducing agent supply nozzle 25, the NOx occlusion reduction catalyst 19 is maintained in a rich atmosphere, and NOx is released and reduced and purified. In forming the rich atmosphere, the fuel may be pump-injected in the cylinder for enrichment.
The vehicle is provided with an engine control unit (hereinafter simply referred to as ECU 7) which is an engine control means.

ECU7の不図示の入力ポートには、不図示のクランク軸近傍に配置された回転数センサ26からクランク軸一定回転角毎にパルス信号が入力され、エンジン回転数Neの算出に利用されている。不図示のアクセルペダルに配置したアクセル開度センサ27から運転者のアクセルペダル踏込み量(アクセル開度)θaを表す信号が入力される。ECU7はアクセル開度センサ27で検出されたアクセル開度θaと機関回転数Neとに基づいて機関基本燃料噴射量Q0と燃料噴射時期を算出し、この基本燃料噴射量Q0に機関運転状態に応じた補正を加えて機関の燃料噴射量Qと燃料噴射時期とを設定する。なお、NOx吸蔵還元触媒18の温度Tcが温度センサ28で検出され、ECU7に入力されている。   A pulse signal is input to an input port (not shown) of the ECU 7 from a rotation speed sensor 26 arranged in the vicinity of the crankshaft (not shown) at every constant crankshaft rotation angle, and is used to calculate the engine speed Ne. A signal representing the driver's accelerator pedal depression amount (accelerator opening) θa is input from an accelerator opening sensor 27 arranged on an accelerator pedal (not shown). The ECU 7 calculates the engine basic fuel injection amount Q0 and the fuel injection timing based on the accelerator opening θa detected by the accelerator opening sensor 27 and the engine speed Ne, and the basic fuel injection amount Q0 is determined according to the engine operating state. Then, the engine fuel injection amount Q and the fuel injection timing are set. The temperature Tc of the NOx storage reduction catalyst 18 is detected by the temperature sensor 28 and input to the ECU 7.

一方、ECU7の不図示の出力ポートは、各気筒への燃料噴射量Q及び燃料噴射時期を制御するために、燃料噴射回路(ドライバー)29を介して各気筒の燃料噴射弁3に接続され、しかも、高圧燃料ポンプ5に図示しない駆動回路を介して接続され、高圧燃料ポンプ5からコモンレール6への燃料圧送量を制御している。また、ECU7の出力ポートには還元剤供給装置24の流量制御弁23が接続される。この流量制御弁23はNOx吸蔵還元触媒19からNOxを放出させるべきときに還元剤供給ノズル25から還元剤をNOx吸蔵還元触媒19に供給するよう作動する。   On the other hand, an output port (not shown) of the ECU 7 is connected to the fuel injection valve 3 of each cylinder via a fuel injection circuit (driver) 29 in order to control the fuel injection amount Q and the fuel injection timing to each cylinder. Moreover, it is connected to the high-pressure fuel pump 5 via a drive circuit (not shown) to control the amount of fuel pumped from the high-pressure fuel pump 5 to the common rail 6. Further, a flow rate control valve 23 of the reducing agent supply device 24 is connected to the output port of the ECU 7. This flow control valve 23 operates to supply the reducing agent from the reducing agent supply nozzle 25 to the NOx storage reduction catalyst 19 when NOx should be released from the NOx storage reduction catalyst 19.

ECU7はエンジン制御を実施し、特に、エンジン1の排気浄化装置にのみ着目した場合、NOx吸蔵量カウント積算手段A1、リッチ運転判定手段A2、リッチ運転制御手段A3としての各機能を備えている。ここで、NOx吸蔵量カウント積算手段A1はエンジンの運転状態に応じてNOx吸蔵還元触媒18に単位時間あたり吸収されるNOx量に対応するカウント量qnを不図示のカウント量マップにより設定し、このカウント量qnを機関運転中に積算して、積算値(ΣCount←ΣCount+qn)を順次求める。   The ECU 7 performs engine control. In particular, when attention is paid only to the exhaust gas purification device of the engine 1, the ECU 7 has functions as NOx occlusion amount count integration means A1, rich operation determination means A2, and rich operation control means A3. Here, the NOx occlusion amount count integration means A1 sets a count amount qn corresponding to the NOx amount absorbed per unit time by the NOx occlusion reduction catalyst 18 in accordance with the operating state of the engine using a count amount map (not shown). The count amount qn is integrated during engine operation, and an integrated value (ΣCount ← ΣCount + qn) is obtained sequentially.

リッチ運転判定手段A2はカウント積算値ΣCountが予め設定されるNOx担持量である閾値Limitを上回るとリッチ運転指令(リッチスパイク)を発する。ここで、閾値LimitはNOx量が飽和する直前あるいは所定の余裕を持たせた吸蔵量に設定される。リッチ運転制御手段A3はリッチ運転指令に応じエンジン1を所定時間だけリッチ運転駆動し、この間、還元剤供給ノズル25から加圧燃料(軽油)をNOx吸蔵還元触媒18に供給し、排気中の酸素濃度を低下して、NOxを還元処理する。   The rich operation determination means A2 issues a rich operation command (rich spike) when the count integrated value ΣCount exceeds a threshold Limit which is a preset NOx carrying amount. Here, the threshold Limit is set immediately before the NOx amount is saturated or an occlusion amount with a predetermined margin. The rich operation control means A3 drives the engine 1 for a predetermined time in response to the rich operation command, and during this time, pressurized fuel (light oil) is supplied from the reducing agent supply nozzle 25 to the NOx occlusion reduction catalyst 18, and oxygen in the exhaust gas is exhausted. Reduce the concentration to reduce NOx.

このような内燃機関の排気浄化装置の作動を説明する。
ECU7はエンジンが運転に入ると運転情報に基づく燃料噴射制御を実行する。その間、エンジン回転数Ne、燃料噴射量Q相当のカウント量qnを予め設定した所定のカウント量マップ(不図示)により求め、今回のカウント量qnを前回値ΣCountに積算して、今回の積算値ΣCount(←ΣCount+qn)を更新して求める。次いで、最新の積算値ΣCountが所定の閾値Limitを上回ると、リッチ運転指令を発し、これに応じてエンジン1を所定時間だけリッチ運転する。
The operation of such an exhaust gas purification apparatus for an internal combustion engine will be described.
When the engine starts operation, the ECU 7 executes fuel injection control based on the operation information. Meanwhile, the engine speed Ne and the count quantity qn corresponding to the fuel injection quantity Q are obtained by a predetermined count quantity map (not shown), and the current count quantity qn is added to the previous value ΣCount to obtain the current integrated value. ΣCount (← ΣCount + qn) is updated and obtained. Next, when the latest integrated value ΣCount exceeds a predetermined threshold Limit, a rich operation command is issued, and the engine 1 is richly operated for a predetermined time accordingly.

具体的には還元剤供給装置24の流量制御弁23を駆動し、還元剤供給ノズル25から燃料(軽油)をNOx吸蔵還元触媒18に供給し、排気中の酸素濃度を低下させ、白金Pt上でのNO生成量を減少させる。これにより、吸収剤内のNOxはNOの形でNOx吸蔵還元触媒18から放出され、しかも、排気中にHC、CO等の成分が存在すると白金Pt上でこれらの成分によりNOが還元処理される。 Specifically, the flow control valve 23 of the reducing agent supply device 24 is driven, fuel (light oil) is supplied from the reducing agent supply nozzle 25 to the NOx occlusion reduction catalyst 18, the oxygen concentration in the exhaust gas is lowered, and the platinum Pt The amount of NO 2 produced at Accordingly, NOx in the absorbent is released from the NOx storage reduction catalyst 18 in the form of NO 2, moreover, NO 2 is reduced processed by these components on HC, platinum when components such as CO are present Pt in the exhaust Is done.

このようなNOx吸蔵還元触媒19を用いた内燃機関の排気浄化装置の駆動が行われたとする。この場合にNOx吸蔵還元触媒18のNOx浄化率は、図3に示すように、触媒温度Tcが200℃〜350℃の浄化ウインドウEgにおいて比較的高レベルに保持される。ここでNOx吸蔵還元触媒18の担体19は多孔性の炭化珪素で作成され、その熱容量は比較的高い値の0.65J/cm・℃である。このようなNOx吸蔵還元触媒18はその浄化ウインドウEg内の平均NOx浄化率が73%の試験結果が得られている。これは従来使用のコージェライト担体の熱容量0.39J/cm・℃の場合の浄化ウインドウ内の平均NOx浄化率試験結果に対し、10%の浄化率の向上が得られた結果となっている。 It is assumed that the exhaust gas purification device for the internal combustion engine using the NOx occlusion reduction catalyst 19 is driven. In this case, the NOx purification rate of the NOx occlusion reduction catalyst 18 is maintained at a relatively high level in the purification window Eg where the catalyst temperature Tc is 200 ° C. to 350 ° C., as shown in FIG. Here, the carrier 19 of the NOx occlusion reduction catalyst 18 is made of porous silicon carbide, and its heat capacity is a relatively high value of 0.65 J / cm 3 · ° C. Such a NOx occlusion reduction catalyst 18 has a test result that the average NOx purification rate within the purification window Eg is 73%. This is a result of 10% improvement in the purification rate compared with the average NOx purification rate test result in the purification window when the heat capacity of the conventional cordierite carrier is 0.39 J / cm 3 · ° C. .

更に、このような内燃機関の排気浄化装置を搭載する車両の走行時における排気ガス温度Tgと触媒温度Tcとの経時変化特性を図4に示した。
図4において、定常運転域E1では排気ガス温度Tg(図4に破線で示す)が200℃近傍に頻繁に低下する運転域でもあるにもかかわらず、触媒温度Tc(図4に実線で示す)が、比較的高NOx浄化率を確保できる250℃前後の状態に維持されている。なお、従来使用の熱容量0.39J/cm・℃のコージェライト担体を用いた場合の触媒温度Tc’の変動を、図4に一点鎖線により対比して示した。ここで、コージェライト担体の触媒温度Tc’変動は排気ガス温度Tgの高低変動に対し比較的追従した動きを示し、高浄化率を得られる温度状態に維持され難くなっている。
Further, FIG. 4 shows the temporal change characteristics of the exhaust gas temperature Tg and the catalyst temperature Tc when the vehicle equipped with such an exhaust gas purification device for an internal combustion engine is running.
In FIG. 4, the catalyst temperature Tc (shown by a solid line in FIG. 4) is present in the steady operation region E <b> 1, even though the exhaust gas temperature Tg (shown by a broken line in FIG. 4) is also an operating region in which the exhaust gas temperature frequently decreases to around 200 ° C. However, it is maintained at a temperature around 250 ° C., which can ensure a relatively high NOx purification rate. Incidentally, the fluctuation of the catalyst temperature Tc 'in the case of using the conventional use of heat capacity 0.39J / cm 3 · ℃ cordierite carrier, shown in comparison with one-dot chain line in FIG. 4. Here, the catalyst temperature Tc ′ fluctuation of the cordierite carrier shows a movement that relatively follows the fluctuation of the exhaust gas temperature Tg, and it is difficult to maintain a temperature state where a high purification rate can be obtained.

更に、高負荷側運転状態E2に変動した場合においても、排気ガス温度Tgが400℃近くに変動するのに対し、触媒温度Tcはその高温変動がなまされ、比較的高NOx浄化率を確保できる350℃近くの温度に維持されている。
このように、排気ガス温度Tgの経時的推移に対して、NOx吸蔵還元触媒18の触媒温度Tcの経時的推移を対比すると、担体19が比較的大きな熱容量0.65J/cm・℃で形成されたことによって、触媒温度Tcの高低変動が排気ガス温度Tgの高低変動に比べると、なまされて緩やかな変動となり、排気ガス温度Tgに追従することが抑制され、比較的高NOx浄化率が得られる温度状態を維持することができる。しかも、担体温度である触媒温度Tcが過度に高温変動することで生じる触媒の熱劣化や、NOx吸蔵還元触媒18の場合に起きるNOxの熱解離、即ち、担体191に吸蔵していたNOxの高温時放出を防止でき、走行状態に左右されずに排気ガスの浄化効率を向上できる。
Further, even when the operating state changes to the high-load side operation state E2, the exhaust gas temperature Tg fluctuates close to 400 ° C., whereas the catalyst temperature Tc is fluctuated so as to ensure a relatively high NOx purification rate. It is maintained at a temperature close to 350 ° C.
Thus, when the time-dependent transition of the catalyst temperature Tc of the NOx storage reduction catalyst 18 is compared with the time-dependent transition of the exhaust gas temperature Tg, the carrier 19 is formed with a relatively large heat capacity of 0.65 J / cm 3 · ° C. As a result, the fluctuation of the catalyst temperature Tc is moderated compared to the fluctuation of the exhaust gas temperature Tg, and the fluctuation of the catalyst temperature Tc is suppressed to follow the exhaust gas temperature Tg. Can be maintained in a temperature state. Moreover, thermal degradation of the catalyst caused by excessively high temperature fluctuation of the catalyst temperature Tc, which is the carrier temperature, thermal dissociation of NOx occurring in the case of the NOx occlusion reduction catalyst 18, that is, the high temperature of NOx occluded in the carrier 191. The time emission can be prevented, and the exhaust gas purification efficiency can be improved without being influenced by the running state.

ここで、図1のN0x吸蔵触媒18では、熱容量を高めるにあたり、炭化珪素sicを担体として利用した。その理由は、熱容量を高める手法として、既存のコージェライトでは壁圧を厚くしたり、壁をアンポーラス(緻密)にすることなどが考えられるが、壁圧を厚くすると排気圧力の上昇を招いたり煤による目詰まりが発生しやすくなり、壁をアンポーラス(緻密)にした場合には衝撃強度が低下してしまうといった問題が発生するため、熱容量を高める手法として実用的ではない。また、担体がメタルで形成される場合には、担体の箔膜を厚くすることで熟容量を上げることが可能であるが、この場合には成形性が悪化してしまい、やはり実用的ではない。これに対して炭化珪素SiCの場合においては、単位あたりの比重がコージェライトに対して1.24倍ほどあり、また押し出し成形により容易に成形できるので、熱容量を高めるのに適した材料といえる。また、比較的見かけ比重の大きい炭化珪素SiCを担体として利用することにより、熱容量0.6J/cm・℃以上を保持するように形成することが容易となるのである。 Here, in the N0x storage catalyst 18 of FIG. 1, silicon carbide sic was used as a carrier in order to increase the heat capacity. The reason for this is to increase the wall pressure in existing cordierite or to make the wall unporous (dense) as a method of increasing the heat capacity. However, increasing the wall pressure may lead to an increase in exhaust pressure. Clogging due to wrinkles is likely to occur, and when the wall is made unporous (impact), the impact strength is reduced, which is not practical as a method for increasing the heat capacity. In addition, when the carrier is made of metal, it is possible to increase the mature capacity by increasing the thickness of the foil film of the carrier. However, in this case, the moldability deteriorates and is not practical. . On the other hand, in the case of silicon carbide SiC, the specific gravity per unit is about 1.24 times that of cordierite, and it can be easily formed by extrusion, so it can be said that it is a material suitable for increasing the heat capacity. In addition, by using silicon carbide SiC having a relatively large apparent specific gravity as a carrier, it becomes easy to form a silicon substrate with a heat capacity of 0.6 J / cm 3 · ° C. or more.

更に、NOx吸蔵還元触媒18の熱容量が大きく設定されたことで、活性温度に上がり難くなっているが、ここでは、エンジン1とNOx吸蔵還元触媒18の間にコージェライト担体171で熱容量が0.39J/cm・℃と比較的低い(小さい)前段NOx吸蔵触媒17を設けた。このため、比較的小熱容量に設定された前段NOx吸蔵触媒17は、熱容量の大きいNOx吸蔵還元触媒18が不活性域にあっても、排気ガス温度Tgの比較的低い低温運転時で活性化されるので、排ガス温度Tgが低い場合のNOx浄化効率の低下を抑制でき、全運転域で良好な浄化効率を得ることができる。 Further, since the heat capacity of the NOx occlusion reduction catalyst 18 is set to be large, it is difficult to increase the activation temperature, but here, the heat capacity of the cordierite carrier 171 is 0. 0 between the engine 1 and the NOx occlusion reduction catalyst 18. A pre-stage NOx storage catalyst 17 having a relatively low (small) 39 J / cm 3 · ° C. was provided. For this reason, the front-stage NOx storage catalyst 17 set to a relatively small heat capacity is activated during a low temperature operation at a relatively low exhaust gas temperature Tg even if the NOx storage reduction catalyst 18 having a large heat capacity is in the inactive region. Therefore, a decrease in NOx purification efficiency when the exhaust gas temperature Tg is low can be suppressed, and good purification efficiency can be obtained in the entire operation region.

上述のところにおいて、排気ガス処理装置はディーゼルエンジンの排気系にて適用されるスルータイプのNOx吸蔵触媒や担体であったが、担体19の入口側と出口側とを交互に閉塞して、排気微粒子のフィルタ機能を持たせたNOx吸蔵触媒担体としても良い。また、ガソリンエンジンにおけるNOx吸蔵触媒に適用することも可能である。   In the above, the exhaust gas treatment device is a through-type NOx occlusion catalyst or carrier applied in the exhaust system of a diesel engine, but the exhaust side is closed by alternately closing the inlet side and the outlet side of the carrier 19. A NOx occlusion catalyst carrier having a fine particle filter function may be used. Further, it can be applied to a NOx occlusion catalyst in a gasoline engine.

本発明の一実施形態にかかる排気ガス処理装置としてのNOx吸蔵還元触媒、及び同触媒を備えた内燃機関の全体概略構成図である。1 is an overall schematic configuration diagram of a NOx occlusion reduction catalyst as an exhaust gas treatment device according to an embodiment of the present invention and an internal combustion engine equipped with the catalyst. 図1のNOx吸蔵還元触媒の拡大切欠断面図である。FIG. 2 is an enlarged cutaway cross-sectional view of the NOx storage reduction catalyst of FIG. 1. 図1のNOx吸蔵還元触媒の作動持におけるNOx浄化率−触媒温度の特性線図である。FIG. 2 is a characteristic diagram of NOx purification rate-catalyst temperature when the NOx storage reduction catalyst of FIG. 1 is in operation. 図1のNOx吸蔵還元触媒の作動時における触媒温度−運転時間の特性線図である。FIG. 2 is a characteristic diagram of catalyst temperature-operation time when the NOx storage reduction catalyst of FIG. 1 is operated.

符号の説明Explanation of symbols

1 エンジン
18 NOx吸蔵還元触媒
19 担体
r 流通孔
w 隔壁
Ex 排気路
L1 隔壁の軸線
DESCRIPTION OF SYMBOLS 1 Engine 18 NOx occlusion reduction catalyst 19 Carrier r Flow hole w Bulkhead Ex Exhaust path L1 Axis of partition

Claims (3)

内燃機関の排気通路に配置され、隔壁により仕切られた多数の流通孔を有したハニカム構造からなる担体に、排気の空燃比がリーンのときに排気中のNOxを吸蔵し、流入する排気の空燃比がリッチになったときに吸蔵したNOxを放出、還元する機能を有する触煤を担持した排気ガス処理装置において、上記担体の熱容量が0.4J/cm・℃以上であることを特徴とする排気ガス処理装置。 NOx in the exhaust gas is occluded in the carrier having a honeycomb structure arranged in the exhaust passage of the internal combustion engine and having a number of flow holes partitioned by the partition walls when the air-fuel ratio of the exhaust gas is lean. In an exhaust gas treatment apparatus carrying a catalyst having a function of releasing and reducing NOx occluded when the fuel ratio becomes rich, the heat capacity of the carrier is 0.4 J / cm 3 · ° C. or more. Exhaust gas treatment device. 請求項1記載の排気カス処理装置において、上記担体の熱容量が0.6J/cm・℃以上であることを特徴とする排気ガス処理装置。 2. The exhaust gas treatment apparatus according to claim 1, wherein the carrier has a heat capacity of 0.6 J / cm 3 · ° C. or more. 請求項1又は2記載の排気ガス処理装置において、上記担体よりも上流側の排気通路に、当該担体よりも熱容量の小さい担体から成るNOx吸蔵触媒を備えたことを特徴とする排気カス処理装置。
3. The exhaust gas treatment apparatus according to claim 1, wherein an NOx occlusion catalyst made of a carrier having a smaller heat capacity than the carrier is provided in the exhaust passage upstream of the carrier.
JP2004211571A 2004-07-20 2004-07-20 Exhaust gas processor Pending JP2006026582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211571A JP2006026582A (en) 2004-07-20 2004-07-20 Exhaust gas processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211571A JP2006026582A (en) 2004-07-20 2004-07-20 Exhaust gas processor

Publications (1)

Publication Number Publication Date
JP2006026582A true JP2006026582A (en) 2006-02-02

Family

ID=35893545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211571A Pending JP2006026582A (en) 2004-07-20 2004-07-20 Exhaust gas processor

Country Status (1)

Country Link
JP (1) JP2006026582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532196A (en) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド Gas-through-flow ceramic substrate with catalyst for quick ignition and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532196A (en) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド Gas-through-flow ceramic substrate with catalyst for quick ignition and method for producing the same

Similar Documents

Publication Publication Date Title
JP4270201B2 (en) Internal combustion engine
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
WO2009082035A1 (en) Exhaust purification device for internal combustion engine
JP4952645B2 (en) Exhaust gas purification device for internal combustion engine
WO2009019951A1 (en) Exhaust gas purification apparatus for internal combustion engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
JP2009156168A (en) Exhaust emission control device for internal combustion engine
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
JP4888380B2 (en) Exhaust gas purification device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP4406309B2 (en) Exhaust gas purification device for internal combustion engine
JP5835488B2 (en) Exhaust gas purification device for internal combustion engine
JP2010249100A (en) Exhaust emission control device of internal combustion engine
JP2001303937A (en) Exhaust emission control device for internal combustion engine
JP2009156164A (en) Exhaust emission control device for internal combustion engine
JP4867911B2 (en) Exhaust gas purification device for internal combustion engine
JPH1193641A (en) Exhaust emission control device for internal combustion engine
JPWO2013121520A1 (en) Exhaust gas purification device for internal combustion engine
JP2010043583A (en) Exhaust emission purifier of internal combustion engine
JP4357917B2 (en) Exhaust gas purification device for internal combustion engine
JP2006026582A (en) Exhaust gas processor
JP2011231755A (en) Exhaust emission control device of internal combustion engine
JP2009293572A (en) Exhaust emission control device for internal combustion engine
JP2009264284A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020